

MANCHESTER 1824

Modelling AGN Feedback in Galaxy Simulations

Rick Newton

Scott Kay

AGN at a Distance

- Active Galactic Nuclei
- Black holes as a source of energy
 - Due to the effects of heating in-falling material
- 'Small' scale physics poorly understood
- Do know they can have a BIG impact on LARGE scales
- In simulations, black hole particle is key:
 - Formation
 - How? where?
 - Growth
 - Accretion rate? Accretion radius?
 - Feedback
 - Thermal/kinetic? Mass loading?

Rick Newton

High Dynamic Range

- Spatial range of scales
 - ~Gpc simulation → sub-pc accretion disc
 - 10 orders of magnitude
 - Typically only resolve to ~100pc
- Temporal resolution is critical
 - M_{BH} fixed over a timestep
 - Effectively neglects feedback!
 - May attempt to accrete more particles than 'neighbours'
 - New timestep limit

$$\mathrm{d}t_{acc} = k_{acc} \frac{N_{ngb} \, m_{gas}}{\dot{M}_{BH}}$$

Rick Newton

MANCHESTER 1824

Numerical Efficiency

- Communication
 - Nature of parallel codes, no single core knows of all gas
 - Each step in AGN model needs comm.
 - BH thread does not know about all 'local' gas
 - Complicates algorithm design
 - e.g. heat exactly 1 neighbour at random
 - Takes time; minimise and consolidate
- Memory
 - Wish to avoid adding new entries to arrays
 - 3 new 4byte entries in 10 billion part's \rightarrow 120GB RAM

Rick Newton

MANCHESTER

Ongoing Work

- So far, 3 distinct AGN models employed in modular fashion
- Conduct first full investigation disentangling 3 stages of method
- Perform tests in isolated galaxies, mergers and toy groups
 - ...before going on to cosmological volumes...

The Results

Rick Newton

MANCHESTER 1824

Rick Newton