Effective field theory for perturbations in dark energy & modified gravity

Jonathan A. Pearson (with Richard A. Battye)

Jodrell Bank Centre for Astrophysics, University of Manchester

Jp@jb.man.ac.uk

@jpoffline

NAM 2012

arXiv: 1203.0398

The problem...

- General Relativity + FRW + standard model particles + observational data: *inconsistent*
 - … invent dark energy ~70%.
- * Or perhaps GR is not the right gravitational theory for cosmological scales...
 - * c.f. Newton & Mercury/Sun system
- * **Models of dark energy:** Λ, quintessence, k-essence, elastic dark energy, ...
- * Modified gravity: F(R), Horndeski, galileon, Gauss-Bonnet, Aether, TeVeS, ...
 - * MG... obtain different gravitational potential for the same matter content
- Lagrangian engineering

Generalized gravitational field equations

 All modified gravity & dark energy theories have gravitational field equations which can be written as

$$G_{\mu\nu} = 8\pi G T_{\mu\nu} + U_{\mu\nu}$$

Stems from an action:

$$\mathcal{L}_{\text{grav}} = \mathcal{L}_{\text{GR}} + \mathcal{L}_{\text{known}} + \mathcal{L}_{\text{dark}}$$

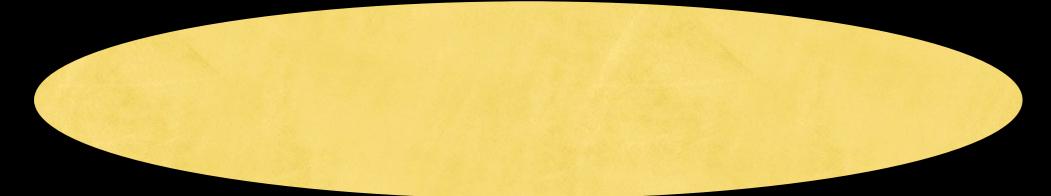
At perturbed order: structures...

$$\delta G_{\mu\nu} = 8\pi G \delta T_{\mu\nu} + \frac{\delta U_{\mu\nu}}{\delta U_{\mu\nu}}$$

* Q: How do we write down the allowed, consistent modifications to the gravity field equations? *A: Lagrangian for the dark sector perturbations*

Effective theories: philosophy

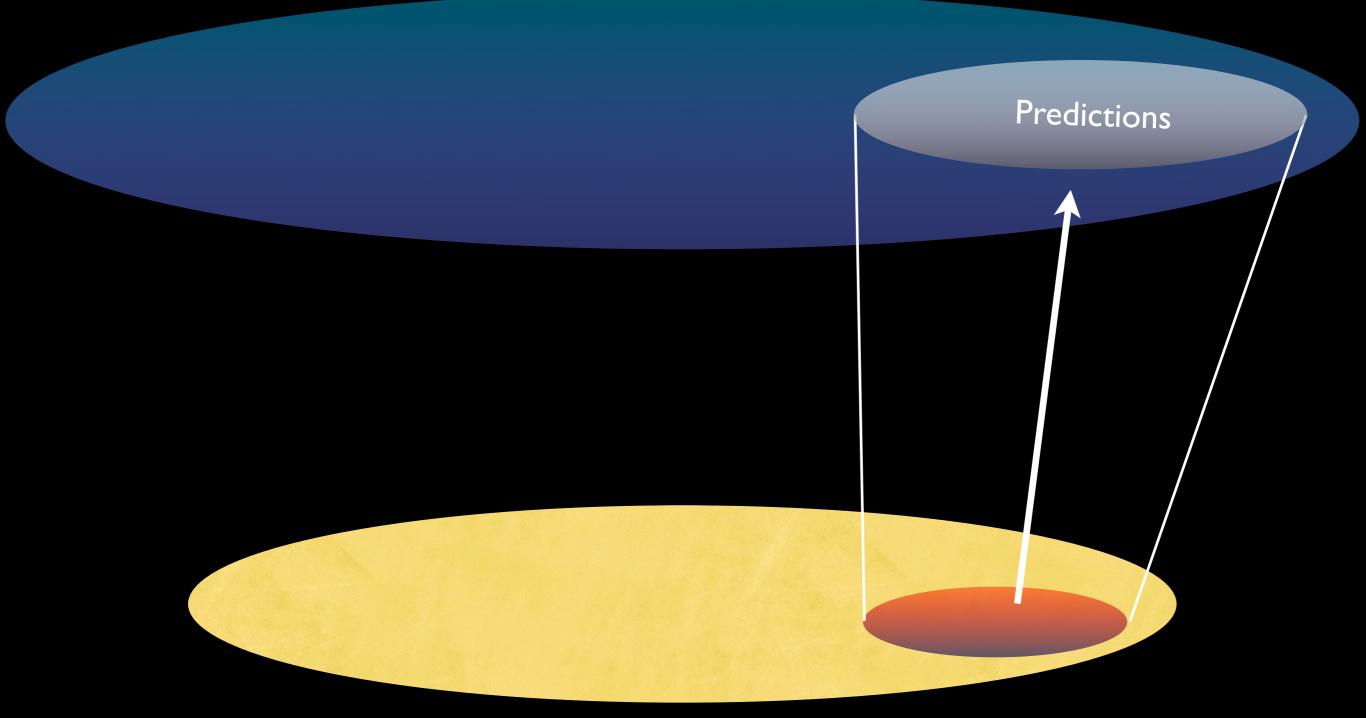
"Observables" space



"Theory" space

Effective theories: philosophy

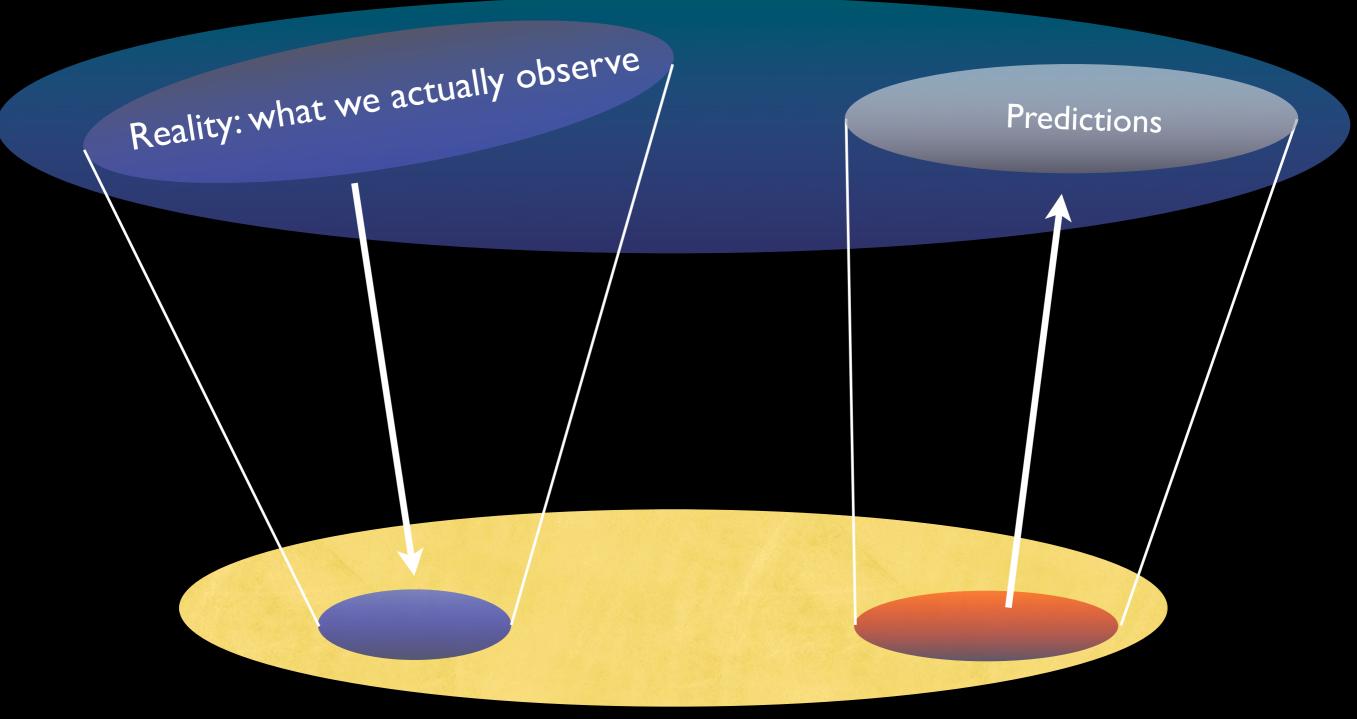
"Observables" space



"Theory" space

Effective theories: philosophy

"Observables" space



"Theory" space

Effective field theory

- Some theories may be probing "theory space" which is already ruled out by observations... but you don't know that untill you write down the theory & do the calculations
- Want to write down "everything" with all possible "free parameters" and find out what values they can take to be consistent with observational data
 - *Particle physicists* do this... field content + symmetry: work out how to measure the free parameters (interaction terms, masses, etc...)
- Doing this with a Lagrangian enables *clear physical interpretation* of constraints on parameters

Lagrangian for perturbations

The Lagrangian for perturbations is a *quadratic functional* in perturbations of fields...

$$\mathcal{L}_{\{2\}} = \sum_{A=1}^{N} \sum_{B=1}^{N} \mathsf{G}_{AB}^{\{0\}} \, \delta X^{(A)} \, \delta X^{(B)}$$

The Lagrangian for perturbations is equivalent to the *second measure-weighted variation* of the action...

$$\delta^2 S = \int d^4 x \sqrt{-g} \left[\frac{1}{\sqrt{-g}} \delta^2 (\sqrt{-g} \mathcal{L}) \right] = \int d^4 x \sqrt{-g} \mathcal{L}_{\{2\}}$$

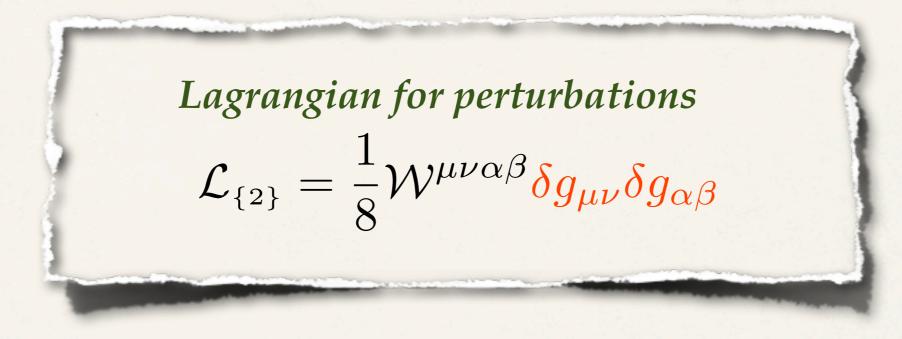
This allows us to $\Delta^2 \mathcal{L}$

(1) "dream up" a Lagrangian for perturbations,
 (2) explicitly calculate for some known theory... compare with established theories

Map from general parameterization to established theories, but we are not limited by them!

Nothing extra

Field content: just the metric



Gravitational effects...

$$\delta U^{\mu\nu} = -\frac{1}{2} \left[\mathcal{W}^{\mu\nu\alpha\beta} + U^{\mu\nu}g^{\alpha\beta} \right] \delta g_{\alpha\beta}$$

Elastic dark energy, Feirz-Pauli & massive gravity in GR,...

Scalar fields $\mathcal{L} = \mathcal{L}(g_{\mu\nu}, \phi, \nabla_{\mu}\phi)$

$$\mathcal{L}_{\{2\}} = \mathcal{L}_{\{2\}}(\delta g_{\mu\nu}, \delta \phi, \nabla_{\mu} \delta \phi)$$

 $\mathcal{L}_{\{2\}} = \mathcal{A}\delta\phi\delta\phi + \mathcal{B}^{\mu}\delta\phi\nabla_{\mu}\delta\phi + \frac{1}{2}\mathcal{C}^{\mu\nu}\nabla_{\mu}\delta\phi\nabla_{\nu}\delta\phi + \frac{1}{4}\left[\mathcal{V}^{\mu\nu}\delta\phi\delta g_{\mu\nu} + \mathcal{Y}^{\alpha\mu\nu}\nabla_{\alpha}\delta\phi\delta g_{\mu\nu} + \frac{1}{2}\mathcal{W}^{\mu\nu\alpha\beta}\delta g_{\alpha\beta}\delta g_{\mu\nu}\right]$

Gravitational effects...

$$\delta U^{\mu\nu} = -\frac{1}{2} \bigg[\mathcal{V}^{\mu\nu} \delta \phi + \mathcal{Y}^{\alpha\mu\nu} \nabla_{\alpha} \delta \phi + \mathcal{W}^{\mu\nu\alpha\beta} \delta g_{\alpha\beta} + U^{\mu\nu} g^{\alpha\beta} \delta g_{\alpha\beta} \bigg]$$

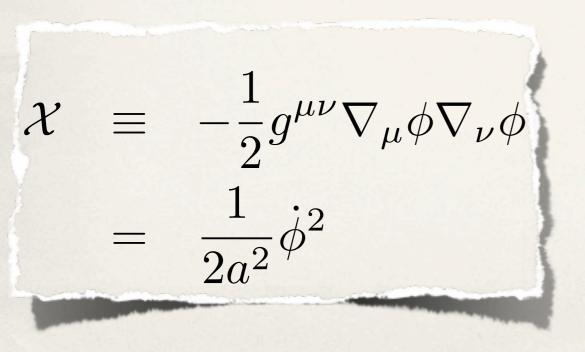
Quintessence, k-essence, Lorentz violating theories,...

Total number of free functions

Scalar field case before imposing anything

Tensors in L_{{2} $\left\{ \mathcal{A}, \mathcal{B}^{\mu}, \mathcal{C}^{\mu\nu}, \mathcal{V}^{\mu\nu}, \mathcal{V}^{\mu\nu}, \mathcal{V}^{\alpha\mu\nu}, \mathcal{W}^{\mu\nu\alpha\beta} \right\}$ # components1410104024

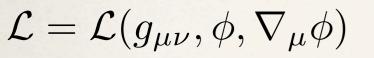
 $\mathcal{L} = \mathcal{L}(g_{\mu\nu}, \phi, \nabla_{\mu}\phi)$

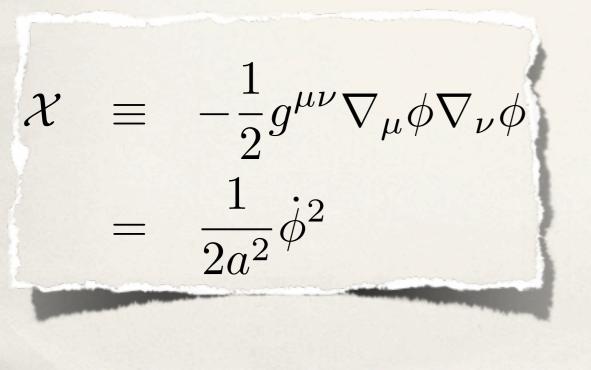


Total number of free functions

Scalar field case before imposing anything

Tensors in L_{{2} $\left\{ \mathcal{A}, \mathcal{B}^{\mu}, \mathcal{C}^{\mu\nu}, \mathcal{V}^{\mu\nu}, \mathcal{V}^{\mu\nu}, \mathcal{V}^{\alpha\mu\nu}, \mathcal{W}^{\mu\nu\alpha\beta} \right\}$ # components1410104024





Total: 90 Impose *isotropy*: 90 -> 14 Impose *linking*: 14 -> 11 Impose $\mathcal{L} = \mathcal{L}(\phi, \mathcal{X})$: 11 -> 3

e.g. isotropy of spatial sections...

everything becomes compatible with FRW

(3+1) decomposition $g_{\mu\nu} = \gamma_{\mu\nu} - u_{\mu}u_{\nu}$ $\gamma_{\mu\nu}u^{\nu} = 0$ $u_{\mu}u^{\mu} = -1$

Coefficients in Lagrangian become:

$$\mathcal{W}_{\mu\nu\alpha\beta} = A_{\mathcal{W}} u_{\mu} u_{\nu} u_{\alpha} u_{\beta} + B_{\mathcal{W}} \left(\gamma_{\mu\nu} u_{\alpha} u_{\beta} + \gamma_{\alpha\beta} u_{\mu} u_{\nu} \right)$$
$$+ 2C_{\mathcal{W}} \left(\gamma_{\mu(\alpha} u_{\beta)} u_{\nu} + \gamma_{\nu(\alpha} u_{\beta)} u_{\mu} \right) + \mathcal{E}_{\mu\nu\alpha\beta},$$

$$\mathcal{E}_{\mu\nu\alpha\beta} = D_{\mathcal{W}}\gamma_{\mu\nu}\gamma_{\alpha\beta} + 2E_{\mathcal{W}}\gamma_{\mu(\alpha}\gamma_{\beta)\nu}.$$

e.g. isotropy of spatial sections...

everything becomes compatible with FRW

(3+1) decomposition $g_{\mu\nu} = \gamma_{\mu\nu} - u_{\mu}u_{\nu}$ $\gamma_{\mu\nu}u^{\nu} = 0$ $u_{\mu}u^{\mu} = -1$

Coefficients in Lagrangian become:

 $\mathcal{W}_{\mu\nu\alpha\beta} = A_{\mathcal{W}} u_{\mu} u_{\nu} u_{\alpha} u_{\beta} + B_{\mathcal{W}} \left(\gamma_{\mu\nu} u_{\alpha} u_{\beta} + \gamma_{\alpha\beta} u_{\mu} u_{\nu} \right) + 2C_{\mathcal{W}} \left(\gamma_{\mu(\alpha} u_{\beta)} u_{\nu} + \gamma_{\nu(\alpha} u_{\beta)} u_{\mu} \right) + \mathcal{E}_{\mu\nu\alpha\beta},$

 $\mathcal{E}_{\mu\nu\alpha\beta} = D_{\mathcal{W}}\gamma_{\mu\nu}\gamma_{\alpha\beta} + 2E_{\mathcal{W}}\gamma_{\mu(\alpha}\gamma_{\beta)\nu}.$

e.g. isotropy of spatial sections...

everything becomes compatible with FRW

(3+1) decomposition $g_{\mu\nu} = \gamma_{\mu\nu} - u_{\mu}u_{\nu}$ $\gamma_{\mu\nu}u^{\nu} = 0$ $u_{\mu}u^{\mu} = -1$

Coefficients in Lagrangian become: $\mathcal{W}_{\mu\nu\alpha\beta} \neq A_{\mathcal{W}} u_{\mu} u_{\nu} u_{\alpha} u_{\beta} + B_{\mathcal{W}} \left(\gamma_{\mu\nu} u_{\alpha} u_{\beta} + \gamma_{\alpha\beta} u_{\mu} u_{\nu} \right) + 2C_{\mathcal{W}} \left(\gamma_{\mu(\alpha} u_{\beta)} u_{\nu} + \gamma_{\nu(\alpha} u_{\beta)} u_{\mu} \right) + \mathcal{E}_{\mu\nu\alpha\beta},$

$$\mathcal{E}_{\mu\nu\alpha\beta} = D_{\mathcal{W}}\gamma_{\mu\nu}\gamma_{\alpha\beta} + 2E_{\mathcal{W}}\gamma_{\mu(\alpha}\gamma_{\beta)\nu}.$$

$$\mathcal{A}=A_{\mathcal{A}},$$

$$\mathcal{B}^{\mu} = A_{\mathcal{B}} u^{\mu},$$

$$\mathcal{C}_{\mu\nu} = A_{\mathcal{C}} u_{\mu} u_{\nu} + B_{\mathcal{C}} \gamma_{\mu\nu},$$

$$\mathcal{V}_{\mu\nu} = A_{\mathcal{V}} u_{\mu} u_{\nu} + B_{\mathcal{V}} \gamma_{\mu\nu},$$

 $\mathcal{Y}_{\alpha\mu\nu} = A_{\mathcal{Y}} u_{\alpha} u_{\mu} u_{\nu} + B_{\mathcal{Y}} u_{\alpha} \gamma_{\mu\nu} + 2C_{\mathcal{Y}} \gamma_{\alpha(\mu} u_{\nu)}.$

e.g. isotropy of spatial sections...

everything becomes compatible with FRW

(3+1) decomposition $g_{\mu\nu} = \gamma_{\mu\nu} - u_{\mu}u_{\nu}$ $\gamma_{\mu\nu}u^{\nu} = 0$ $u_{\mu}u^{\mu} = -1$

Coefficients in Lagrangian become: $\mathcal{W}_{\mu\nu\alpha\beta} = A_{\mathcal{W}} u_{\mu} u_{\nu} u_{\alpha} u_{\beta} + B_{\mathcal{W}} \left(\gamma_{\mu\nu} u_{\alpha} u_{\beta} + \gamma_{\alpha\beta} u_{\mu} u_{\nu} \right)$ $+2C_{\mathcal{W}}\left(\gamma_{\mu(\alpha}u_{\beta)}u_{\nu}+\gamma_{\nu(\alpha}u_{\beta)}u_{\mu}\right)+\mathcal{E}_{\mu\nu\alpha\beta},$

 $\mathcal{E}_{\mu\nu\alpha\beta} = D_{\mathcal{W}}\gamma_{\mu\nu}\gamma_{\alpha\beta} + 2E_{\mathcal{W}}\gamma_{\mu(\alpha}\gamma_{\beta)\nu}.$

 $\mathcal{A} = (A_{\mathcal{A}},)$ $\mathcal{B}^{\mu} \neq A_{\mathcal{B}} u^{\mu},$ $\mathcal{C}_{\mu\nu} \in A_{\mathcal{C}} u_{\mu} u_{\nu} + B_{\mathcal{C}} \gamma_{\mu\nu},$

 $\mathcal{V}_{\mu\nu} = A_{\mathcal{V}} u_{\mu} u_{\nu} + B_{\mathcal{V}} \gamma_{\mu\nu},$

 $\mathcal{Y}_{\alpha\mu\nu} = A_{\mathcal{Y}} u_{\alpha} u_{\mu} u_{\nu} + B_{\mathcal{Y}} u_{\alpha} \gamma_{\mu\nu} + 2C_{\mathcal{Y}} \gamma_{\alpha(\mu} u_{\nu)}.$

e.g. isotropy of spatial sections...

everything becomes compatible with FRW

(3+1) decomposition $g_{\mu\nu} = \gamma_{\mu\nu} - u_{\mu}u_{\nu}$ $\gamma_{\mu\nu}u^{\nu} = 0$ $u_{\mu}u^{\mu} = -1$

Coefficients in Lagrangian become: $\mathcal{W}_{\mu\nu\alpha\beta} = A_{\mathcal{W}} u_{\mu} u_{\nu} u_{\alpha} u_{\beta} + B_{\mathcal{W}} \left(\gamma_{\mu\nu} u_{\alpha} u_{\beta} + \gamma_{\alpha\beta} u_{\mu} u_{\nu} \right)$ $+2C_{\mathcal{W}}\left(\gamma_{\mu(\alpha}u_{\beta)}u_{\nu}+\gamma_{\nu(\alpha}u_{\beta)}u_{\mu}\right)+\mathcal{E}_{\mu\nu\alpha\beta},$

$$\mathcal{E}_{\mu\nu\alpha\beta} = D_{\mathcal{W}}\gamma_{\mu\nu}\gamma_{\alpha\beta} + 2E_{\mathcal{W}}\gamma_{\mu(\alpha}\gamma_{\beta)\nu}.$$

 $\mathcal{A} = A_{\mathcal{A}},$ $\mathcal{B}^{\mu} \neq A_{\mathcal{B}} u^{\mu},$ $\mathcal{C}_{\mu\nu} \in A_{\mathcal{C}} u_{\mu} u_{\nu} + B_{\mathcal{C}} \gamma_{\mu\nu},$

 $\mathcal{V}_{\mu\nu} = A_{\mathcal{V}} u_{\mu} u_{\nu} + B_{\mathcal{V}} \gamma_{\mu\nu},$

Impose some "theory" structure: $\mathcal{L} = \mathcal{L}(\phi, \mathcal{X})$ reduce 14 -> 3

 $\mathcal{Y}_{\alpha\mu\nu} = A_{\mathcal{Y}} u_{\alpha} u_{\mu} u_{\nu} + B_{\mathcal{Y}} u_{\alpha} \gamma_{\mu\nu} + 2C_{\mathcal{Y}} \gamma_{\alpha(\mu} u_{\nu)}.$

Function	(a) EDE	(b) $\mathcal{L} = \mathcal{L}(\phi, \mathcal{X})$	(c) $\mathcal{L} = F(\mathcal{X})$	(d) $\mathcal{L} = \mathcal{X} - V(\phi)$
$A_{\mathcal{V}}$	0	$-2(\mathcal{L}_{,\mathcal{X}\phi}\dot{\phi}^2 - \mathcal{L}_{,\phi})$	0	-2V'
$B_{\mathcal{V}}$	0	$-2\mathcal{L}_{,\phi}$	0	2V'
$A_{\mathcal{Y}}$	0	$-2(\mathcal{L}_{,\mathcal{X}\mathcal{X}}\dot{\phi}^2 + \mathcal{L}_{,\mathcal{X}}\dot{\phi})$	$-2(F''\dot{\phi}^2 + F'\dot{\phi})$	$-2\dot{\phi}$
$B_{\mathcal{Y}}$	0	$-2\mathcal{L}_{,\mathcal{X}}\dot{\phi}$	$-2F'\dot{\phi}$	$-2\dot{\phi}$
$C_{\mathcal{Y}}$	0	$2\mathcal{L}_{,\mathcal{X}}\dot{\phi}$	$2F'\dot{\phi}$	$2\dot{\phi}$
$A_{\mathcal{W}}$	$-\rho$	$-(\mathcal{L}_{\mathcal{X}\mathcal{X}}\dot{\phi}^4 + 2\rho + P)$	$-(F''\dot{\phi}^4 + 2\rho + P)$	$-(2\rho+P)$
$B_{\mathcal{W}}$	P	- ho	- ho	- ho
$C_{\mathcal{W}}$	-P	ρ	ρ	ρ
$D_{\mathcal{W}}$	$\beta - P - \frac{2}{3}\mu$	-P	-P	-P
$E_{\mathcal{W}}$	$\mu + P$	P	P	P

Parameterizing entropy $\delta P = w\delta\rho + P\Gamma$

$$w\Gamma = (\alpha - w) \left[\delta - 3\mathcal{H}\beta(1 + w)\theta \right]$$

Standard: Weller & Lewis: $\alpha = c_s^2$ $\beta = 1$ Physically, what does $\alpha \neq 1$ mean? Is α always a sound speed?

Nothing extra $\beta = 0$ Quintessence $\alpha = 1$ $\beta = 1$ Pure k-essence $\beta = 0$

 α is neither group nor phase velocity of waves

$$\alpha = \left(1 + 2\mathcal{X}\frac{\mathcal{L}_{\mathcal{X}\mathcal{X}}}{\mathcal{L}_{\mathcal{X}}}\right)^{-1},$$

$$\beta = \frac{2a\mathcal{L}_{,\phi}}{3\mathcal{H}\mathcal{L}_{,\mathcal{X}}\sqrt{2\mathcal{X}}} \left[1 + \mathcal{X}\left(\frac{\mathcal{L}_{,\mathcal{X}\mathcal{X}}}{\mathcal{L}_{,\mathcal{X}}} - \frac{\mathcal{L}_{,\mathcal{X}\phi}}{\mathcal{L}_{,\phi}}\right) \right] \frac{\alpha}{\alpha - w}$$

Effective metric that scalar field perturbations "feel"...

$$\mathcal{C}^{\mu\nu} = \mathcal{L}_{\mathcal{X}} g^{\mu\nu} + \mathcal{L}_{\mathcal{X}} \alpha^{-1} (\alpha - 1) u^{\mu} u^{\nu}$$

Scope of using the Lagrangian for perturbations

* Formalism

- The Lagrangian for perturbations
- The perturbed dark energy-momentum tensor
- Lagrangian & Eulerian perturbations
 (Stuckleberg completion/deformation vector)

* Examples

- Nothing extra
- Scalar & vector fields (*aether, TeVeS, ...*)
- "high order" derivative theories (galileon, F(R), Gauss-Bonnet, ...)

* Applications

- Cosmological perturbations
- Entropy & anisotropic stresses
- Massive gravity
- Modified gravity

Summary

- Construct coherent consistent modifications to the gravitational field equations at perturbed order
- All freedom inside "background" tensors
- Encompass theories never before considered: *L*_{{2}} needs scalars in background *and* perturbed field variables: more freedom!

- Encompass massive gravity & "high derivative" theories: e.g. galileon, Horndeski, Brans-Dicke.
- In a model independent way compute cosmological observables (CMB, lensing, P(k), ...): rule in/out before requiring the actual theory!
- Impose symmetry on background (e.g. isotropy... compatible with FRW)... allows split of BG tensors

Effective field theory for perturbations in dark energy & modified gravity

Jonathan A. Pearson (with Richard A. Battye)

Jodrell Bank Centre for Astrophysics, University of Manchester

Jon@jpoffline.com

@jpoffline

NAM 2012

arXiv: 1203.0398