0000	00	00	00	

Testing Cosmology with Extreme Galaxy Clusters

lan Harrison with Peter Coles

Royal Astronomical Society/Astronomische Gesellschaft UK-Germany National Astronomy Meeting, Manchester 29 March 2012

Harrison & Coles (2011) MNRAS 418, L20, arXiv:1108.1358

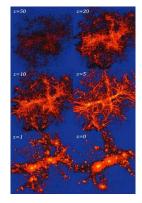
Harrison & Coles (2012) MNRAS 421, L19, arXiv:1111.1184

The Problem of Big Clusters o oooo	Extreme Value Statistics 00 00	Cosmological Null Tests 000 00	Future Prospects 0 00	Outro
Table of Cont	ents			

1 The Problem of Big Clusters

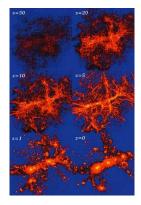
- Structure Formation in ΛCDM
- High-Mass, High-Redshift Clusters
- 2 Extreme Value Statistics
 - Introduction to EVS
 - EVS and the HMF
- 3 Cosmological Null Tests
 - ACDM
 - Alternative Models

4 Future Prospects

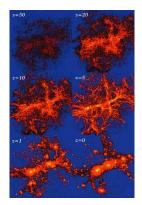

- Parameter Estimation
- Example: *f_{NL}* using SPT Clusters

The Problem of Big Clusters			
Structure Formation in ACDM			
Structure For	nation		

Structure Formation

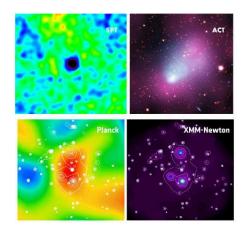

- Standard Model Cosmology in 2012
 - (near-)Gaussian ICs from inflation
 - Einstein gravity, perturbed FLRW metric
 - ACDM contents
- Makes definite predictions for structure formation
- Many of the plausible extensions to ACDM are capable of enhancing (or depleting) structure formation

The Problem of Big Clusters ● ○○○○			
Structure Formation in ACDM			
Structure For	nation		


- Standard Model Cosmology in 2012
- Makes definite predictions for structure formation
 - 'bottom up' or hierarchical
 - Haloes, filaments, voids
 - Quantitatively: HMF, linear growth function
- Many of the plausible extensions to ACDM are capable of enhancing (or depleting) structure formation

The Problem of Big Clusters ● ○○○○			
Structure Formation in ACDM			
Structure Forr	nation		

- Standard Model Cosmology in 2012
- Makes definite predictions for structure formation
- Many of the plausible extensions to ACDM are capable of enhancing (or depleting) structure formation
 - Priomordial non-Gaussianity
 - Scalar fields
 - Modified gravity, etc



High m, z Clusters – Concerns for ACDM?

 Have recently begun to probe the largest structures at higher and higher redshifts (XMM-Newton, SPT, ACT, Planck)

The Problem of Big Clusters			
0000			
High-Mass, High-Redshift Cluster	rs		

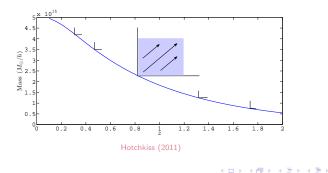
High m, z Clusters – Concerns for Λ CDM?

 Have been claims that some of the galaxy clusters observed are too massive, too early to have been produced by the ACDM model

(Jimenez & Verde, Hoyle et al, Cayon et al, Holz & Perlmutter, Jee et al, Enqvist et al)

- Calculate abundance of clusters $\langle \textit{N}(>\textit{m}_{cl},>\textit{z}_{cl})\rangle$ in a survey from the HMF
- Find fraction of realisations of ΛCDM with such a cluster to be very low \rightarrow tension with ΛCDM
- Point out tension can be eased with large $f_{\rm NL}$ (~ 300 500!)

(日)


The Problem of Big Clusters			Outro
0000			
High-Mass, High-Redshift Cluster	'S		

High m, z Clusters – Concerns for Λ CDM?

• Unfortunately, these analyses shown to be biased as count the wrong number of 'equally rare' events

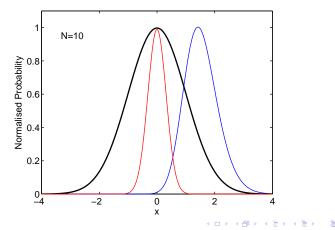
Fergus Simpson on CosmoCoffee, Hotchkiss (2011)

- Overestimate the tension with ACDM
- Take bias into account: tension goes away

The Problem of Big Clusters			Outro
0000			
High-Mass, High-Redshift Cluste	rs		

High m, z Clusters – Concerns for Λ CDM?

- But high-m, high-z clusters are still interesting
 - Have only surveyed fraction of the sky with enough sensitivity for these objects
 - A **ACDM-killer** could still be out there


'Rareness' based estimates can clearly be slippery, is there a cleaner option?

Can ask: what do we expect the most massive cluster in the Universe to be? Answer lies in Extreme Value Statistics

	Extreme Value Statistics •o •o		
Introduction to EVS			
Predicting Ext	remes		

- Usual question: "What is the distribution of sample means?"
- EVS question: "What is the distribution of sample extrema?"

	Extreme Value Statistics ○● ○○		Outro
Introduction to EVS			
Extreme Value	Statistics		

- Have a long history in environmental sciences, finance etc...
- Exact distribution for maximum M_{max} of N i.i.d. random variates from underlying pdf f(m), cdf F(m)

$$\begin{aligned} \Phi(M_{\max} \leq m; N) &= F^N(m) \\ \phi(M_{\max} = m; N) &= Nf(m) \left[F(m)\right]^{N-1} \end{aligned}$$

• Just as CLT, is an asymptotic distribution as $N
ightarrow \infty$

$$P_{GEV}(m; \alpha_N, \beta_N, \gamma) = \exp\left\{-\left[1 + \gamma\left(\frac{m - \alpha_N}{\beta_N}\right)\right]^{-1/\gamma}\right\}$$

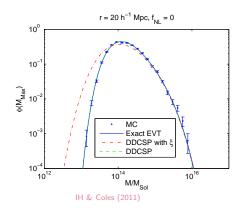
• Where γ depends on the underlying distribution

A D F A B F A B F A B F

	Extreme Value Statistics ○○ ●○		
EVS and the HMF			
EVS of HMFs	- Exact Distri	bution	

- For CDM haloes, we know f(m): the Halo Mass Function
- Can construct PDF:

$$f(m) = \frac{1}{n_{\text{tot}}} \frac{dn(m)}{dm},$$


$$F(m) = \frac{1}{n_{\text{tot}}} \left[\int_{-\infty}^{M} dM \frac{dn(M)}{dM} \right].$$

- ...and feed this into $\phi(M_{\max} = m; N)$ with $N = n_{tot}V$
- Can predict the PDF of highest mass object on a spatial hypersurface

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

	Extreme Value Statistics ○○ ○●		
EVS and the HMF			
EVS of HMEs	- Results		

 Well matches other results (& N-body simulations)

Davis et al 2011 (DDCSP)

$$\Phi^{\text{void}}(M_{\text{max}} = m) = \frac{dP_0(m)}{dm}$$
$$P_0(m) = \exp(-n(>m)V)$$

・ロト ・四ト ・ヨト ・ヨト

	Cosmological Null Tests ●00 ○0	
ΛCDM		

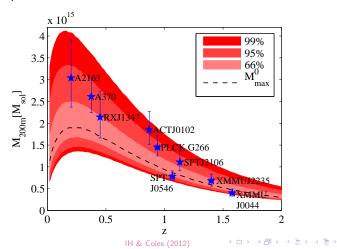
Comparing with Observations

Can do EVS for simulations, what about observations?

- EVS in a survey, not just a spatial hypersurface
 - $n(m) \rightarrow n(m, z)$ • $V \rightarrow dV/dz$

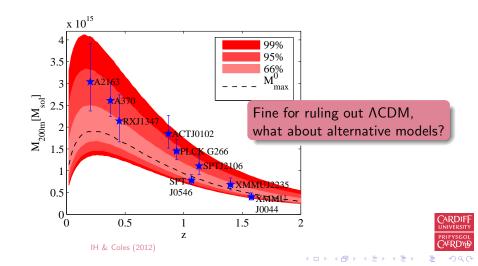
$$f(m) = \frac{1}{N_{tot}} \left[f_{sky} \int_{z_{min}}^{z_{max}} dz \, \frac{dV}{dz} \frac{dn(m, z)}{dM} \right],$$

$$N_{tot} = \left[f_{sky} \int_{z_{min}}^{z_{max}} \int_{-\infty}^{\infty} dz \, dM \, \frac{dV}{dz} \frac{dn(m, z)}{dM} \right]$$


- Specify cosmology
 - WMAP7 parameters
 - Tinker HMF
 - Use cluster M_{200m}^{Edd} masses

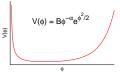
(日)

		Cosmological Null Tests ○●○ ○○	
ACDM			
Result – ΛCD	M Survives		


• Compute confidence regions in bins $\Delta z = 0.02$, with $f_{sky} = 1$ and plot clusters

	Cosmological Null Tests ○○● ○○	
ACDM		

Result – Λ CDM Survives

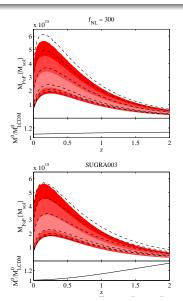


		Cosmological Null Tests ○○○ ●○	
Alternative Models			
Two Toy Mod	lels		

- 1. Primordial non-Gaussianity
 - Generated by non-vanilla inflaton Lagrangians
 - $f_{NL} \sim 300 500$ suggested as explanation for high-m, high-z clusters
 - Include via non-Gaussian correction factor *R*(*f*_{NL}) to a ΛCDM mass function:

$$\begin{array}{lll} \mathcal{R}(f_{NL}) & = & n_{nG}^{th}(f_{NL})/n_{G}^{th}, \\ n_{nG}^{sim}(f_{NL}) & = & \mathcal{R}(f_{NL})n_{G}^{sim} \end{array}$$

- 2. Coupled scalar field Dark Energy 'SUGRA003'
 - SUGRA motivated quintessence model with 'bounce' (Brax & Martin 1999)


 Structure formation enhanced (depleted) before (after) the bounce

	Cosmological Null Tests ○○○ ○●	
Alternative Models		
— — —		

Two Toy Results

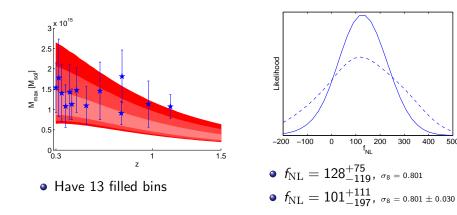
- Make use of ACDM and SUGRA003 CoDECS simulations (Baldi 2011)
 - h(z)
 - *D*(*z*)
 - Halo mass function
- Large clusters at high and/or low redshifts can disfavour different models of enhanced structure formation

		Future Prospects ● ○○	
Parameter Estimation			
Beyond a Null	Test		

- Can test one cluster at a time, what about information from multiple clusters to do proper parameter estimation?
- To get constraints on a parameter, need to guarantee are not missing any more extreme clusters in our survey
- SZ surveys are 'nearly mass-limited to arbitrarily high redshift'

Consider an idealised survey: complete above some mass threshold $m_{thresh}\sim 5 imes 10^{14}M_{\odot}$

		Future Prospects ○ ●○	Outro
Example: <i>f_{NL}</i> using SPT Cluster	S		
<i>f_{NL}</i> from 'idea	lised' SPT		


- Take the 26 highest SZ S/N clusters from SPT Williamson et al (2011), treat as complete above the mass of the lowest of these 26 (i.e. m_{thresh} = min{m₁...m₂₆})
- Define redshift bins
 - Occupied bins: Treat this as most massive cluster
 - Unoccupied bins: Most massive cluster is not more massive than m_{thresh}
- Take sharp priors on everything else (σ_8 , hmf parameters...)
- Calculate probabilities for both types of bins and form likelihood for $f_{\rm NL}$

$$\mathcal{L}(f_{\rm NL}) = \prod_{Occ.} \phi(m_{obs}; f_{\rm NL}, \Delta z_i) \prod_{Unocc.} \left[\int_{-\infty}^{m_{thresh}} \phi(m; f_{\rm NL}, \Delta z_j) dm \right]_{\text{UNIVERSITE ONE OF COMPARISON OF COM$$

(日)

э

		0.	
Example: f _{NL} using SPT Cluster	S		
Likelihood for	f _{NL}		

Preliminary!

(日) (四) (三) (三)

		Outro

Summary and Prospects

- Extreme Value Statistics can predict PDF for the most massive cluster M_{max} in a given cosmology
- Observation of even a single cluster significantly larger than M_{max} is good evidence against that cosmology
 - ACDM survives current observations
 - Other models easily tested
- In order to do parameter estimation, require survey with mass limit less than expected region for M_{max}

Open Questions

- EVS for cluster observables (rather than masses)?
- Are we throwing too much information away?
- Extension to other objects (e.g. lenses, voids, quasars, superstructures...)
- How much can we trust the halo mass function?

		Outro
End		

Thanks

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・