

Satellite Galaxies in a WDM Universe

Mark Lovell

Adrian Jenkins, Carlos Frenk, Vince Eke, Liang Gao, Tom Theuns, Jie Wang, Simon White, Alexey Boyarsky, Oleg Ruchayskiy

Outline

- Problems to address
- Implementation of warm dark matter
 Results

The Problem

Boylan-Kolchin et al. 2012

Tollerud et al. 2011

Warm Dark Matter

Particle physics

Becomes nonrelativistic later

Small scale perturbations erased

Later formation times/less substructure

Lovell et al. in prep

The Difference

WDM and satellites

Lovell et al. 2012

WDM Formation Times

Lovell et al. 2012

Current Work z=0

Lovell et al. in prep

Density Profiles

Lovell et al. in prep

- CDM predicts more dark matter in the centres of satellite galaxies than has been observed.
- Simulated Aq-A halo with WDM power spectrum (suppress power at small scales).
- 'Massive satellite problem' ameliorated by late formation of WDM haloes compared to CDM.
- Now examining the effects of different sterile neutrino masses.

Bonus slide 1

Bonus Slide 2

Bonus Slide 3

