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Key science interests w/obvious LOFAR synergy
Supernova remnants CR interactions in diffuse  

gas/Galactic Center

Pulsar Wind Nebulae
Clusters of Galaxies

SMBH/AGN Jets

GRBs/Transients
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Too many unknowns = degeneracy in the theories

Jet Feedback

Jet Dynamics

Jet Launching

Plasma 
ContentParticle 

Acceleration

TeV observations can help address several 
key outstanding questions:

Constraining particle content (hadron/lepton):  places limits on jet 
launching scenarios (accretion flow vs black hole ergosphere) 
Constraining ratio of  synchrotron vs inverse Compton processe:  
constrains internal plasma conditions (magnetic vs thermal vs nonthermal) 
Constraining particle acceleration process and efficiency:  helps track 
conversion of magnetic to kinetic energy, localises acceleration sites
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>2 order of 
magnitude flare 

2-3 minute 
variability 
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17&Three
>2500 sources at MeV-GeV"
>500 sources > 10 GeV"
>150 sources > 100 GeV"



~ 120 m

γ-ray enters 
atmosphere 

Electromagnetic cascade

10 nanosecond snapshot

0.1 km2 “light pool”,  a few photons per m2.

Ground based:  Imaging Atmospheric (or Air) Cherenkov Telescope
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First TeV detection of supernova shell: RX J1713.7-3946

ROSAT – X-ray HESS – TeV γ-ray

Moon 
For  
Scale

ASCA 
contours

• Purely non-thermal X-ray source 
• First TeV gamma-ray SNR (and first image, Nature 432, 75) 
• Closely correlated keV/TeV and radio morphology… 



Diffuse Emission from CRs in molecular gas

1 degree

CS Line Emission (dense clouds) 
smoothed to match H.E.S.S. PSF

HESS
 pp → π0 → γγ
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1 degree
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For many “firsts”!
Winner EU!

Descartes Prize!
in 2007!



TeV Highlights
● Microquasars: Science 309, 746 (2005), Science 312, 1771 (2006) 
● Pulsars: Science 322, 1221 (2008), Science 334, 69 (2011) 
● Supernova Remnants: Nature 432, 75 (2004) 
● The Galactic Centre: Nature 439, 695 (2006) 
● Galactic Survey: Science 307, 1839 (2005)  
● Starbursts: Nature 462, 770 (2009), Science 326,1080 (2009) 
● AGN: Science 314,1424 (2006), Science 325, 444 (2009) 
● EBL: Nature 440, 1018 (2006), Science 320, 752 (2008) 
● Dark Matter: PRL 96, 221102 (2006), PRL 106, 161301 (2011) 
● Lorentz Invariance: PRL 101, 170402 (2008) 
● Cosmic Ray Electrons: PRL 101, 261104 (2009)

Results from HESS,  
MAGIC and VERITAS



How to improve sensitivity, resolution, localisation:

More telescopes = 
larger collecting area  
More photons ➠ 
better spectra, 
images, increased 
sensitivity 
More trajectories to 
trace back ➠ better 
source localisation  
Improved 
background 
rejection Simula6on:	
  

Superimposed	
  images	
  from	
  8	
  cameras	
  

More telescopes!





Key design goals: 
•Range overlapping Fermi:  20 GeV-200+ TeV 
• 10x better sensitivity at TeV energies and 10x better effective energy coverage 
• Larger field of view for surveys 
• Improved angular resolution 
• Improved pointing accuracy  
• Full sky coverage: one array per hemisphere

28 countries, >1000 members, ~200M€ investment, construction planned for  
2015-2020.  Two sites, N & S, with > 100 telescopes total!



CTA Timeline
● Design Study 

} Design development 2006-9 
} CTA appears on key roadmaps 

● Preparatory Phase 
} EU FP7 funded activity 2010-14 
} Preliminary Design Review 2013 
} Site Selection during 2014 
} Critical Design Rev. early 2015 

● Construction Phase	 
} Site development and first telescopes 

on site 2015/16 (“seed array”) 
} First science 2016/17 
} Completion ~2020
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23 m diameter 
389 m2 dish area 
28 m focal length 
1.5 m mirror facets 
!
4.5o field of  view 
0.1o pixels 
!
Carbon-fibre structure 
for 20 s positioning 
!
Active mirror control 
!
4 LSTs on South site 
4 LSTs on North site 

Large-Sized Telescope  



~12m diameter 
100 m2 dish area 
16 m focal length 
1.2 m  mirror facets 
!
7.5o field of  view 
~2000 x 0.18o pixels 
!
25 MSTs on South site 
15 MSTs on North site 
!

Berlin  
MST prototype

Medium-Sized Telescope  



~4-7 m diameter 
~8 m2 dish area 
Dual and single mirror options
	 SST-1M 
	 SST-2M 
!
~9o field of  view 
0.17-0.24o pixels 
!
70 SSTs on South site 
!
Require low cost and high 
reliability 
~4-7 km2 collection area 

Small-Sized Telescope  ASTRI  
SST-2M  
Design

GATE 
SST-2M Design

SST-1M 
Prototype



CTA Sites

+30

-30

Two sites to cover full sky 
at 20o-30o N, S

Galactic plus 
extragalactic 

science

Mainly 
extragalactic 

science



Sites: Candidates
Arizona

Chile - ESO

Argentina

Aar Namibia

Tenerife/La Palma

HESS Namibia

++



CTA

Current Galactic 
VHE sources (with  
distance estimates)

● Galactic objects 
} Newly born pulsars and the 

supernova remnants   
› typical brightness such that 

HESS etc can see only 
relatively local (typically ~ few 
kpc) objects 

} CTA will see whole Galaxy 
!

● Field of view + sens. 
} Survey speed ~200×HESS2

HESS

CTA capabilities

5°

8°



CTA Spatial Resolution
Arcm

inutes

1

10

CTA
Requirement

Goal



CTA resolution+sensitivity can 
disentangle diffuse emission from point 
sources, localize shocks within SNR…

HESS

SNR 
G0.9+0.1

Sgr B2
Sgr A*

NRAO: 20cm, 1.1mm, 5 µm 

CTA PSF

HESS PSF

e.g. The Galactic Centre



Transients with CTA

Huge Opportunity for  
short-timescale phenomena:  

GRBs, AGN/Microquasar flares, ...

Adapted from Funk+Hinton 2012

10-11 Jy!



CTA Prototyping:  Seed Array/ASTRI
● Type to enter text

Crab	
  Nebula Differential!
Sensitivity

HESS

CTA Baseline

SST	
  5-­‐telescopes	
  
	
  	
  	
  	
  	
  Preliminary

Required

Goal
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CTA as an astronomical observatory!

CTA will operate like other 
major astronomical facilities 
} Calls for proposals, proprietary 

period, data archive, high level 
data products in FITS, user 
support, … 

Early science 
} Science verification phase 

followed by Key Science 
Projects + open* time  (small 
at first but growing during 
construction) 

} Consortium guaranteed time 
30-50% over 10 years

CTA “Science User Group”  
} Consider joining – NOT limited to consortium members	  
} What do you would you want as a potential CTA proposer/user? 

*probably limited to scientists  
from contributing countries 



The Observatory TDR is being drafted right now, with 
overview of  plans for transients in first ~5 yrs of  operation 
➠ CTA will be able to trigger quite quickly w/external triggers:  

i.e., LST can trigger in ~ subminute + ~30s to determine if  
there’s a source, MST/SST slew after 

➠ At moment strategy based on X-ray/MeV/GeV triggers, with 
event rates far lower than what transient factories (radio/
optical) will offer 

Things to think about for synergy/cooperation
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What is best for LOFAR TKP?   MoU/agreement?  Gives 
access to early science.   But then what is our current 
“trading transient” policy?  And/or we apply for GO time 
(later) for our favourite transients? 
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Summary & Outlook

✸ VHE (~TeV) γ-ray astronomy is the highest energy EM window on the 
universe:  Exciting new era of  development for IACT astronomy 

✸ CTA is the international VHE γ-ray facility on the horizon with first science 
expected 2016/2017:  Improved sensitivity, resolution and pointing will 
allow ToOs and maybe even RTA ➠ transient discovery.   Can also localise 
regions of  particle acceleration/interaction w/in extended sources  

✸ CTA represents new transition from experiment to observatory:  Opens 
door to a wider range of  projects, community access, user end support   

✸ LOFAR TKP:  Agreements may be advantageous for early access to science 
commissioning data, and “mini-array" prototype, but GO program coming 

✸ Interested?    Read all about CTA in the  
special issue of  Astroparticle Physics:



EXTRA SLIDES



CTA Science Targets

● Guaranteed astrophysics 
} Current detections are the tip of the iceberg 

● Major discovery potential 
} Probing extreme environments + fundamental 

physics:  DM, axions, constancy of speed of 
light

Distance                        kpc                          Mpc                           Gpc

Blazars
SNR/PWN

Binaries Radio Gal.

Pulsed

Starbursts Clusters

adapted from  
Horan & Weekes 2003

Colliding 
Winds

Fl
ux

Current 
!
!

CTA

Sensitivity

+Dark MatterGRBs



CTA Pointing Accuracy (Astrometry)

HESS on a good day (with effort) has ~10” 
pointing accuracy, usually around 20” 

That would be 30% uncertainty for the 1’ angular 
resolution of  CTA  

Goal: improve pointing reconstruction to ~3”
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Binary PWN

Composite SNR

Compact 
companion?

Jets?

Active cloud

In cluster?

Supernova

SNR shell

PWN outlasts or 
escapes SNR?

PWN

No acceleration 
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The Era of Big Surveys

Modern sky surveys obtain  ~ 1012 –1018 bytes of images 
Catalogs ~ 108 –109 objects (stars, galaxies, etc.) 

and measure ~ 102 –104 numbers per object

SDSS:  4.3 MB/sec, ~40 TB total 

LSST:  160 MB/sec, ~13 TB/night, 30 PB over 5 years 

LOFAR:  ~100 TB/night, 6-10 PB/yr archived data 

MWA:  16 GB/sec, 6 PB/yr archived data 

ASKAP:  spectral line data 80 PB/yr, Cont./HI sky 

1-4 PB/yr 

CTA:  3-10 PB/yr archived data, raw data 10x higher 

SKA:  0.1-3 EB/yr archived science-ready data 



Hillas Diagram:  estimates of CR accelerator sites

Larmor radius < source size: 
Emax ~ ZeBR



Surprise: FRI’s/Blazars are the GeV/TeV γ-ray sources!

Cen A

(Cheung++2010, Science)


