LOFAR + GAMMA-RAY ASTRONOMY: SYNERGY AND STRATEGY WITH THE CHERENKOV TELESCOPE ARRAY

Sera Markoff (UvA) CTA-NL (vd Berg, Berge, Hörandel, Stuik, Venema, Vink)

© Fabio Acero

. 0

(c) F. Acero & H. Gast

۲

Key science interests w/obvious LOFAR synergy

Supernova remnants

Pulsar Wind Nebulae

CR interactions in diffuse gas/Galactic Center

SMBH/AGN Jets

GRBs/Transients

Clusters of Galaxies

Hadronic CR + (γ or ion) \rightarrow CR's + N(π^0, π^+, π^-)

Too many unknowns = degeneracy in the theories

Particle

Acceleration

Jet Dynamics

Plasma

Content

et Launching

Jet Feedback

- ★ Constraining particle content (hadron/lepton): places limits on jet launching scenarios (accretion flow vs black hole ergosphere)
- Constraining ratio of synchrotron vs inverse Compton processe: constrains internal plasma conditions (magnetic vs thermal vs nonthermal)
- ★ Constraining particle acceleration process and efficiency: helps track conversion of magnetic to kinetic energy, localises acceleration sites

degeneracy in the theories

TeV observations can help address several key outstanding questions:

- ★ Constraining particle content (hadron/lepton): places limits on jet launching scenarios (accretion flow vs black hole ergosphere)
- Constraining ratio of synchrotron vs inverse Compton processe: constrains internal plasma conditions (magnetic vs thermal vs nonthermal)
- ★ Constraining particle acceleration process and efficiency: helps track conversion of magnetic to kinetic energy, localises acceleration sites

MeV/GeV state-of-the-art: Fermi Telescope

FermiThree/ear all-sky map

17

FermiThreevear all-sky map

>2500 sources at MeV-GeV
>500 sources > 10 GeV
>150 sources > 100 GeV

Fermi reveals the universe above 10 GeV

17

Credit: NASA/Goddard Space Flight Cent

Ground based: Imaging Atmospheric (or Air) Cherenkov Telescope

Electromagnetic cascade

10 nanosecond snapshot

0.1 km^2 "light pool", a few photons per m^2 .

γ-ray enters atmosphere

Electromagnetic cascade

10 nanosecond snapshot

0.1 km² "light pool", a few photons per m².

Primary Y

e

e⁺

e⁺

Electromagnetic cascade

10 nanosecond snapshot

0.1 km² "light pool", a few photons per m².

Primary Y

e

e

GeV/TeV state-of-the-art: HESS-2

HESS-1: 4×12m tels HESS-2: +28m tel.

First TeV detection of supernova shell: RX J1713.7-3946

ROSAT – X-ray

HESS – TeV γ-ray

- Purely non-thermal X-ray source
- First TeV gamma-ray SNR (and first image, Nature 432, 75)
- Closely correlated keV/TeV and radio morphology...

Diffuse Emission from CRs in molecular gas

CS Line Emission (dense clouds) smoothed to match H.E.S.S. PSF

Diffuse Emission from CRs in molecular gas

TeV Highlights

Results from HESS, MAGIC and VERITAS

- *Microquasars:* Science 309, 746 (2005), Science 312, 1771 (2006)
- *Pulsars:* Science 322, 1221 (2008), Science 334, 69 (2011)
- Supernova Remnants: Nature 432, 75 (2004)
- The Galactic Centre: Nature 439, 695 (2006)
- Galactic Survey: Science 307, 1839 (2005)
- *Starbursts:* Nature 462, 770 (2009), Science 326,1080 (2009)
- *AGN:* Science 314,1424 (2006), Science 325, 444 (2009)
- *EBL:* Nature 440, 1018 (2006), Science 320, 752 (2008)
- Dark Matter: PRL 96, 221102 (2006), PRL 106, 161301 (2011)
- Lorentz Invariance: PRL 101, 170402 (2008)
- Cosmic Ray Electrons: PRL 101, 261104 (2009)

How to improve sensitivity, resolution, localisation:

More telescopes!

- More telescopes = larger collecting area
- More photons
 better spectra, images, increased sensitivity
- ★ More trajectories to trace back
 → better source localisation
- Improved
 background
 rejection

Simulation: Superimposed images from 8 cameras

28 countries, >1000 members, ~200M€ investment, construction planned for 2015-2020. Two sites, N & S, with > 100 telescopes total!

cherenkov telescope array

Key design goals:

- Range overlapping Fermi: 20 GeV-200+ TeV
- 10x better sensitivity at TeV energies and 10x better effective energy coverage
- Larger field of view for surveys
- Improved angular resolution
- Improved pointing accuracy
- Full sky coverage: one array per hemisphere

CTA Timeline

• Design Study

- Design development 2006-9
- CTA appears on key roadmaps

Preparatory Phase

- EU FP7 funded activity 2010-14
- Preliminary Design Review 2013
- Site Selection during 2014
- Critical Design Rev. early 2015

Construction Phase

- Site development and first telescopes on site 2015/16 ("seed array")
- First science 2016/17
- Completion ~2020

EUROPEAN ROADMAP FOR RESEARCH INFRASTRUCTURES

Report 2006

Mon on Science, Engineering, and Medicine

MARC

Advisers to the

Large-Sized Telescope

23 m diameter
389 m² dish area
28 m focal length
1.5 m mirror facets
4.5° field of view

0.1° pixels

Carbon-fibre structure for 20 s positioning

Active mirror control

4 LSTs on South site 4 LSTs on North site

Medium-Sized Telescope

~12m diameter 100 m² dish area 16 m focal length 1.2 m mirror facets

7.5° field of view ~2000 x 0.18° pixels

25 MSTs on South site 15 MSTs on North site

> Berlin MST prototype

Small-Sized Telescope

~4-7 m diameter ~8 m² dish area Dual and single mirror option SST-1M SST-2M

~9° field of view 0.17-0.24° pixels

70 SSTs on South site

Require low cost and high reliability ~4-7 km² collection area

Sites: Candidates

CTA capabilities

VHE sources (with distance estimates)

ςο

80

HESS

• Galactic objects

HESS

CTA

- Newly born pulsars and the supernova remnants
 - typical brightness such that HESS etc can see only relatively local (typically ~ few kpc) objects

CTA will see whole Galaxy

Field of view + sens.
 Survey speed ~200×HESS2

CTA Spatial Resolution

e.g. The Galactic Centre

★ CTA resolution+sensitivity can disentangle diffuse emission from point sources, localize shocks within SNR...

HESS

Sgr B2

HESS PSF

Sgr A

Transients with CTA

CTA Prototyping: Seed Array/ASTRI

CTA Prototyping: Seed Array/ASTRI

CTA as an astronomical observatory!

★ CTA will operate like other major astronomical facilities

 Calls for proposals, proprietary period, data archive, high level data products in FITS, user support, ...

★ Early science

- Science verification phase followed by Key Science
 Projects + open* time (small at first but growing during construction)
- Consortium guaranteed time 30-50% over 10 years

*probably limited to scientists from contributing countries

★ CTA "Science User Group"

- Consider joining NOT limited to consortium members
- What do you would you want as a potential CTA proposer/user?

Things to think about for synergy/cooperation

- ★ The Observatory TDR is being drafted right now, with overview of plans for transients in first ~5 yrs of operation
 - CTA will be able to trigger quite quickly w/external triggers: i.e., LST can trigger in ~ subminute + ~30s to determine if there's a source, MST/SST slew after
 - At moment strategy based on X-ray/MeV/GeV triggers, with event rates far lower than what transient factories (radio/ optical) will offer

Table 1: Summary of GRB follow-up strategy and observir and South sites.

Strategy	Expected event
	rate (yr^{-1})
Prompt follow-up of accessible alerts	~ 12
Extended follow-up for detections	0.5-1.5
Late-time follow-up of LAT GRBs not accessible promptly	~1

Table 2: Summary table of Galactic transients proposed within the Transient KSP durin (High Energy), SXT (Soft X-ray Transient), LMXB (Low Mass X-ray Binary), HXTs (Ha Binary), VHE (Very High Energy), inverse Compton (IC). Site codes are N (North), S (So

Rank	Source or type	Known @ VHE	Physics goal	Trigger	Rate	U
					(yr^{-1})	
1	Magnetar giant flares	No	Highest E	GRB-like	0.1	1
2	Crab Nebula flares	Not the flares	Test IC comp.	HE	1	1
3	Cygnus X-3	No, but HE	Highest E	HE/X-ray	0.5	1
4	Cygnus X-1	Maybe HE/VHE	Highest E	HE/X-ray	0.2	1
5	HE transients	Probably not	Detection/nature	HE	1	1
6	SXTs (LMXBs)	No	Highest E	X-ray/radio	1	1
7	X-ray novae	No, but HE	Hadronic nature	HE/opt.	1	1
8	Transitional pulsars	No, but HE(?)	HE cuttoff	Radio/opt.	0.5	1
9	HXTs (HMXBs)	No	Highest E	X-ray	1	1

Things to think about for synergy/cooperation

- ★ The Observatory TDR is being drafted right now, with overview of plans for transients in first ~5 yrs of operation
 - CTA will be able to trigger quite quickly w/external triggers: i.e., LST can trigger in ~ subminute + ~30s to determine if there's a source, MST/SST slew after
 - At moment strategy based on X-ray/MeV/GeV triggers, with event rates far lower than what transient factories (radio/ optical) will offer
 - CTA will also have realtime analysis and potentially find its own transients to trigger radio/optical/Xray
- ★ What is best for LOFAR TKP? MoU/agreement? Gives access to early science. But then what is our current "trading transient" policy? And/or we apply for GO time (later) for our favourite transients?

Things to think about for synergy/cooperation

Table 3: Summary table of maximum observation times for the Transients KSP of CTA.

	Observation times (h yr^{-1} site ⁻¹)				
Transient type	Early phase (2 years)	Years 1–2	Years 3–10	Years 1–10	
GRBs	50	50	50	50	
neutrinos & GWs	20	10	10	10	
Galactic	150	0	0	0	
Serendipitous VHE in FoV	100	50	50	50	
Total per site (h yr ⁻¹ site ⁻¹)	320	110	110	110	
Total both sites (h yr^{-1})	640	220	220	220	
Total in different CTA phases (h)	1280	440	1760	2200	

optical) will offer

- CTA will also have realtime analysis and potentially find its own transients to trigger radio/optical/Xray
- ★ What is best for LOFAR TKP? MoU/agreement? Gives access to early science. But then what is our current "trading transient" policy? And/or we apply for GO time (later) for our favourite transients?

Summary & Outlook

- VHE (~TeV) γ-ray astronomy is the highest energy EM window on the universe: Exciting new era of development for IACT astronomy
- CTA is the international VHE γ-ray facility on the horizon with first science expected 2016/2017: Improved sensitivity, resolution and pointing will allow ToOs and maybe even RTA → transient discovery. Can also localise regions of particle acceleration/interaction w/in extended sources
- CTA represents new transition from experiment to observatory: Opens door to a wider range of projects, community access, user end support
- **LOFAR TKP:** Agreements may be advantageous for early access to science commissioning data, and "mini-array" prototype, but GO program coming
- Interested? Read all about CTA in the special issue of Astroparticle Physics:

CTA Science Targets

- Major discovery potential
 - Probing extreme environments + fundamental physics: DM, axions, constancy of speed of light

CTA Pointing Accuracy (Astrometry)

HESS on a good day (with effort) has ~10" pointing accuracy, usually around 20"

★ That would be 30% uncertainty for the 1' angular resolution of CTA

★ Goal: improve pointing reconstruction to ~3"

CTA Pointing Accuracy (Astrometry)

The Era of Big Surveys

SDSS: 4.3 MB/sec, ~40 TB total LSST: 160 MB/sec, ~13 TB/night, 30 PB over 5 years LOFAR: ~100 TB/night, 6-10 PB/yr archived data **MWA: 16 GB/sec, 6 PB/yr archived data** ASKAP: spectral line data 80 PB/yr, Cont./HI sky **1-4 PB/yr** CTA: 3-10 PB/yr archived data, raw data 10x higher SKA: 0.1-3 EB/yr archived science-ready data

Modern sky surveys obtain ~ 10¹² –10¹⁸ bytes of images Catalogs ~ 10⁸ –10⁹ objects (stars, galaxies, etc.) and measure ~ 10² –10⁴ numbers per object

Hillas Diagram: estimates of CR accelerator sites

Surprise: FRI's/Blazars are the GeV/TeV γ -ray sources!

