The Variability Timescales and Brightness Temperatures of Radio Synchrotron/Cyclotron Flares

M. Pietka, R. Fender, E. Keane

Manchester, September 9, 2014

UNIVERSITY OF

Examples of Synchrotron/Cyclotron Flares

Isotropic expansion:

• Nova

Supernova

relativistic flows:

Electrons trapped in the magnetic coronal loop

- Flare Star
- Magnetic CV

• X-ray binary

Collimated

 GRB afterglow

• AGN

Synchrotron/Cyclotron Radio Flares

- Flares originating from stars to supermassive black holes
- Rise and decline phases fit by exponential functions
- Compared against peak radio luminosities
- Measured for a sample of ~ 200 light curves from ~90 objects
- 5 GHz 8GHz
- Variability timescales
 ~min to ~yr

Origin of the emission

Synchrotron:

- AGN
- GRB afterglow
- Supernova
- Nova
- X-ray Binary

Gyro-synchrotron:

- Algol
- RSCVn
- Magnetic CV
- Flare Star

$$\log(L_{peak}) = a \log(\tau) + b$$

	a ± δa	b ± δb		a ± δa	b ± δb
RISE	4.79 ± 0.15	31.35 ± 2.13	RISE	4.86 ± 0.17	31.19 ± 2.45
DECLINE	4.90 ± 0.20	29.45 ± 2.72	DECLINE	5.47 ± 0.24	28.10 ± 2.99
Linear fit done including all the sources			Flares originating from gyro- synchrotron emission excluded from the fit		

Fitted relation: $L_{peak} = 10^{31.35 \pm 2.13} \tau_{R}^{4.79 \pm 0.15}$

Fitted relation: $L_{peak} = 10^{31.35 \pm 2.13} \tau_R^{4.79 \pm 0.15}$

From Rayleigh-Jeans law:

$$L = \frac{2k_B T_B v^3}{c^2} 4\pi r^2$$

Fitted relation: $L_{peak} = 10^{31.35 \pm 2.13} \tau_R^{4.79 \pm 0.15}$

From Rayleigh-Jeans law: $L = \frac{2k_B T_B v^3}{c^2}$

For the maximum size of the source:

 $r = c \tau$

 $-4\pi r^2$

Fitted relation: $L_{peak} = 10^{31.35 \pm 2.13} \tau_R^{4.79 \pm 0.15}$

From Rayleigh-Jeans law: $L = \frac{2k_B T_B v^3}{c^2} 4\pi r^2$

For the maximum size of the source: $r=c\tau$

We expect:

 $L \propto \overline{T}_{B,min} \overline{\tau}^2$

• T_{B,min} based on the variability time scale is a rising function of source luminosity

Relativistic beaming?

 $T_{B,min} \propto \frac{L}{r^2}$

Would apply to AGN, GRB

 $\frac{L}{r^2}$

 $T_{B,min} \propto$

 $\tau_{obs} \ll \tau_{intr}$

Different size? $r = v \tau$

Different size? $r = v \tau$

 $v \sim c$

For flare stars: $v \sim 10^{-2} c$

$$T_{B,min}[flare star] \propto \frac{L}{(c \tau)^2} 10^4 \gg \frac{L}{(c \tau)^2}$$

Two Types of Radio Transients

Incoherent synchrotron:

- Slow variability
- Limited brightness temperature
- Detected in image plane

Coherent:

- Fast variability
- High brightness temperature
- Detected in time series

Radio Transients Parameter Space

Radio Transients Parameter Space

Pietka, Fender, Keane 2014; to be re-submitted after the first referee report

Next: Transients Classification Tool

Estimated sky rates of different classes of objects at the flux limit of 0.1 mJy

Class	Rate (deg ⁻²) single epoch
Flare stars	1.2398
Algol	0.00896
RSCVns	0.0106
Novae	0.0021
Dwarf Novae	0.0013
XRBs	2.4e-05
SGRs	4e-07
Supernovae	0.2078
GRBs	0.052
TDEs	0.5196
AGNs	2.2768

Conclusions

• Broad correlation between radio luminosity and variability timescales $L \propto \tau^5$

• NOT what we would expect for events with the same brightness temperature

relativistic beaming ? varying relation between the radius and the variability timescale ?

• Variability timescales as a method of classification radio transients originating from synchrotron events