

SKA Group

Richard Schilizzi JBCA Symposium, 31 October 2012

<u>The SKA</u>

- a large radio telescope for transformational science
- up to 1 million m² collecting area distributed over a distance of 3000+ km
- operating as a wide-field interferometer at frequencies from 70 MHz to10 GHz (4m-3cm) with two or more detector technologies
- •connected to a signal processor and high performance computing system by an optical fibre network (sensor network)

The Great Observatories for the coming decades

E

ical

SKA Key Science Drivers

ORIGINS
The history of the Universe in neutral hydrogen

Probing the dark ages: When did the first stars and galaxies form? How did galaxies evolve? Dark Energy, Dark Matter

≻Astro-biology

FUNDAMENTAL FORCES > Pulsars, General Relativity & gravitational waves

Origin & evolution of cosmic magnetism

NEW PHENOMENA (EXPLORATION OF THE UNKNOWN) > Transients

Science with the Square Kilometre Array Editors: Christopher Carilli, Steve Rawlings

Science with the Square Kilometre Array (2004, eds. C. Carilli & S. Rawlings, New Astron. Rev., **48**)

Epoch of Reionization

Universe made rapid transition from largely neutral to largely ionized 400 Myr to 1 Gyr after the Big Bang

SKA objective: Image the transition in the InterGalactic Medium in the neutral hydrogen (21cm) spectral line

- Gunn-Peterson trough in high-z quasars
- Electron scattering opacity in CMB analysis

Galaxy Assembly & Evolution

- H I is the raw material for galaxies and star formation
- How do galaxies turn gas into stars?
- How does gas content vary with
 - Shape and size;
 - Time after the Big Bang;

VCC 132

- Environment;
- Mergers;
- Feedback;

The expansion of the universe is accelerating. Why?

- Measured using "standard candles" and "standard rulers"
- Candle: Type Ia supernova
- Ruler: scale size of plasma acoustic oscillations in early Universe, frozen in at the time of recombination

SKA and Dark Energy

- Next-generation goal:
 - Survey large volume
 - Slice into redshift bins
 - Detect BAOs in each z bin
- SDSS surveyed ~ 1 Gpc^3 One redshift bin ~ 0.35
- SKA targeting 100 Gpc³ (z > 1.5)
- A billion H I galaxies
 - Intrinsically spectroscopic survey
 - Different biases than LSST, Euclid/WFIRST

Did Einstein Have the Last Word on Gravity?

$$G_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu} / c^4$$

Relativistic binaries probe

Equivalence principle
Strong-field tests of gravity

Only neutron star-neutron
star binaries known
Black hole-neutron star binaries?

PSR J0737-3039

Kramer et al.

5

10

SKA: Gravitational Wave Detector

-15

-10

-5

log (f/Hz)

- Pulsar Timing Array = freely-falling millisecond pulsars
- LIGO = suspended mirrors
- LISA = freely-falling masses in spacecraft

Cosmic Magnetism

- Unique insight into the Magnetic Universe
- Origin of Cosmic Magnetism
- Role in the formation of structure
- Cloud collapse / star formation
- Stellar activity / stellar outflows
- ISM turbulence / gas motions
- Stability of galactic disks
- Acceleration / propagation/ confinement of cosmic rays
- Heating in galaxy clusters
- AGNs / jets/ blackhole IGM feedback

The Dynamic Radio Sky

- Neutron stars
 - Magnetars
 - Giant pulses
 - Short GRBs?

0.1	9			ir ^t η.	2004 Mar 20	
0 0.5 0 1 0 1	1			_	2003 Sep 28	
	e	L++++	*****		2002 Oct 1	
	d		+++++++++++++++++++++++++++++++++++++++	1	2002 Oct 1	
0 1	c	.,,,	++++++++++++++++++++++++++++++++++++++	×.	2002 Oct 1	
0 1	b			Υ	2002 Sep 30	
0 1	a		++++++		2002 Sep 30	
5	5	60	65 Time (minut	70 es)	75	1 de la come
	1	8 I	R		10-11	
				12 2	an The second	

- GRBs (g-ray loud; g-ray quiet?)
 - Afterglows
 - Prompt emission?
- Sub-stellar objects
 - Brown dwarfs
 - Extrasolar planets?
- Microquasars
- Scintillation
- UHECRs
- ETI
- Exploding black holes
- · ???

Technical Requirements Snapshot

Wavelength	1 cm–4 m
(Frequency)	(0.07–25+ GHz)
Sensitivity	$A_{eff}/T_{sys} \sim 10000$
	(10 nJy, 1000 h)
Field of	1 deg ² or larger
view	(@ 1 GHz)
Survey	~ 10 ¹⁰ deg ² m ⁴ K ⁻²
speed	(100 Gpc ³ survey
	of H I to <i>z</i> > 1.5)

Baseline design component: Low frequency aperture arrays

MWA (Australia, India, USA)

LOFAR (Netherlands et al)

Exploring the Universe with the world's largest radio telescope

Baseline design component: Dishes + single pixel feeds

SKA Dish Verification Antenna #1 Mechanical design by Gordon Lacy & 10 m com Matt Fleming ASKAP 36x12m pa

ica) s

st radio telescope

Advanced Instrumentation Program: dishes+multi-pixel feeds

Exploring the Universe with the world's largest radio telescope

Advanced Instrumentation Program: mid-frequency aperture array

solar drift scan with 6 EMBRACE tiles at WSRT site

NL-UK

Industry already involved in production. First Fringes Exploring the Universe with the world's largest radio telescope

"SKA Observatory" with two sites

- SKA-low (aperture array) in Australia SKA-mid (dish array) in Southern Africa, incorporating MeerKAT
 - SKA₁ survey instrument in Australia, incorporating ASKAP
 - (SKA₂ aperture array in South Africa)
- Incorporates SKA pre-cursor telescopes in South Africa and Australia in SKA Phase 1 to maximise initial science return

Schedule

- Preparatory phase (current phase)
- Pre-construction phase (production readiness)
- SKA1 construction, verification, commissioning, acceptance, integration & first science
- SKA2 construction, commissioning, acceptance, integration & first science
- SKA Operations

SKA Organisation

- Company limited by guarantee in the UK
- Owned by funding agencies and government departments in
 - Australia
 - Canada
 - China
 - Italy
 - Netherlands
 - New Zealand
 - South Africa
 - Sweden
 - UK
 - (Germany, India)
- Headquarters located at Jodrell Bank from next Wonday

UK and the SKA

- Financial support from the STFC (2M£/yr)
- STFC Chief Executive is Chair of the Board of the SKA Organisation
- Manchester, Cambridge and Oxford provide the academic backbone of the UK involvement
- Industry will play a major role

U of Manchester and the SKA

 new building at Jodrell Bank for SKA Headquarters

adio telescope

U of Manchester and the SKA

 new building at Jodrell Bank for SKA Headquarters

 established the SKA Group in JBCA to play a leading global role in the science and engineering of the SKA

SKA science in Manchester

- Cosmology
 - Weak gravitational lensing
 - Gravitational lenses and dark matter
- Pulsars
 - Searching
 - Timing
- Galactic evolution
 - Star formation
 - Active Galactic Nuclei
- Magnetism

SKA engineering in Manchester

- Synchronisation & timing (lead)
- Signal and data transport (lead)

Signal Transport & Networks for the SKA

Data Network	 For transporting astronomical signals to a central processing facility (CPF)
Processing links	 For transporting data products between the
network	Correlator and the HPC
External Network	 For transporting data products to global regional science centres
A Monitor & Control Network (M&C)	 Including comms and required redundancy
Synch & Timing	 For the distribution of local oscillator signals for
Network	clocks and down converters.
Network	 Serves all those services carried over a fibre
Infrastructure	2 optic network

SKA engineering in Manchester

- Synchronisation & timing
- Signal and data transport
- Non-imaging processing for pulsars and transients
 - Pulsar search
- Aperture array element design (EEE)
- Aperture array calibration
- LNA development (EEE)

SKA Group

- Richard Schilizzi Head of Group
- Lecturer 1 science, instrumentation
- Lecturer 2 science, instrumentation
- Lecturer 3 science, instrumentation
- Althea Wilkinson Project Manager
- Richard Oberland Optical Engineer
- Paul Carr System Engineer
- Richard Whitaker Engineer
- Vacancy Engineer
- Aziz Ahmedsaid RA in non-imaging processing (from May 2013)
- David Zhang RA in AA element design (EEE)
- Ahmed El-Maradeh RA in AA element design (EEE)
- Ming Yang RF engineer (EEE)
- + 11-12 associated academic staff, and students (to come)

Exploring the Universe with the world's largest radio telescope