Build-up of Coronal Magnetic Gradients from Observed Photospheric Flows
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Overview Observations \
The build-up of magnetic gradients in the Sun’s We demonstrate the method on a 12 hour |

atmosphere may be inferred directly from photospheric sequence of (horizontal) photospheric velocities
velocity data. derived from Hinode/SOT magnetograms.

" Magnetic field connectivity measures such as the = Taken 12t/13t December 2006 at 2-minute cadence. 100
“squashing factor” [2] can be computed directly from a

sequence of footpoint motions. » Photospheric velocities were derived with the Fourier
Local Correlation Tracking method (FLCT, [3]).
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= Avoids the need to extrapolate a 3D magnetic field.

» Optimum parameters were determined by an
autocorrelation analysis (for details see [4]).

= Consistent with perfectly ideal evolution.
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» Limitation: cannot determine initial mapping, only that

resulting from subsequent footpoint motions. = Mean flow speed: ca. 0.1 km st

We selected a unipolar plage region 12.4Mm x 12.4Mm,
P PEgS & = Lower than granular flows: maybe due to

rotational 11o0w).

X (arcsec) underestimate speeds.
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The field line mapping Is found by integrating

trajectories/particle paths. A simple analytical model of 2D convection = \We model photospheric convection with a

P _ demonstrates the origin of the observed superposition of random convective “plumes”
Observed velocity field is interpolated with a local , pattern, and predicts how it would change with  and random “vortices” (similar to [8]).

tricubic method [5] (linear interpolation does not higher-resolution observations of faster flows.

give smooth enough trajectories), » New pattern chosen after “coherence time
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Helmholtz decomposition Reconstructed magnetic field

To understand the origin of the FTLE/Q For future investigation, we construct a 3D magnetic
pattern we decompose Vv into irrotational field with the observed mapping (only defined up to an Diverging flow: network of Rotational flow: LCS Combined flow:
and solenoidal components. ideal deformation and an arbitrary initial B, distribution). thin LCS ridges (the usual ridges more diffuse matches
v=V¢+V x (ve,) granular network corresponds | and space-filling observations
(1) Set field lines of B to the to a plot of oin final frame, (efficient mixing and
trajectories, with z not initial frame as here). “infilling” of LCS)

Vo V x (ve.) | V) - corresponding to time.
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(2) Adjust amplitude B(x, vy, z) to
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(a) make B divergence-free
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: . " _ , , Contour slices show resulting
= Components are determined by solving e At B, at different z (initial

the Poisson equation V?¢ =V v g distribution is a uniform field
with a fast-Poisson solver [7]. o of strength 88G).
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