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Structure of Jupiter and Saturn

Exoplanets: Interior structure and evolutionary models:
Heavy element enrichment
Inflated exoplanets




Internal structure of Jupiter and Saturn
(the standard 3-layer picture)
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Recent picture

®* Small core hypothesis for Jupiter challenged by recent calculations
based on first-principles EOS for H-He mixtures (Militzer et al. 2008)

m based on a 2-layer model: core of rock/H20 and isentropic mantle of

H/He
= Find a core for Jupiter of Mcore = 14-18 M,

e Strong disagreement with another study also based on ab initio EOS
calculations for H, He and H2O (Nettelmann et al. 2008)

m based on a 3-layer model: core of rocks/ice + inner isentropic envelop
(Metallic H, He, Zmet) + outer isentropic envelope (molecular H2, He, Zmol)

= Find a core for Jupiter of Mcore = 0-7 Mgy Mz = 30-30 Mg,




Il) Exoplanet modelling

(Baraffe et al. 06, 08, '10; Leconte et al. 2009, 10, 11)
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II-a) Heavy element enrichment
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= Equations of state of heavy elements

10 M, ---> 10 M,,,,: extreme pressure and temperature regime

Mostly used EOS: ANEOS (Sandia) et SESAME (Los Alamos)
H,O or « ice » (H,0O, CH,, NH,)
Rock (MgSiO,, MgSiO,, etc..)
Fe
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» Distribution of heavy elements in planets

---> Current assumptions (Fortney et al. ; Burrows et al. etc...):
- All heavy elements located in the central core
- Metal-free or solar metallicity H/He envelope

Equivalent to a distribution of Z over the entire planet?

Z=50%

----> « all Z in the core » versus

« H/He/Z mixture in the entire planet »:
up to ~ 30 % effect on R at a given age

Baraffe, Chabrier, Barman 2008, 2010




Bulk composition can provide a signature of the formation
process (e.g. large heavy material content)

A very interesting case:
CoRoT20b

(4 Myup 0.8 Ryup)

Deleuil et al. 2012

Requires too massive

core of heavy material to &
o

explain its radius (maximum
amount of heavy material in
the disk ~ 800 Mearth)

r Wrong estimate of radius?
- Heavy material distributed
all over the planet?

w Pb with EOS used

(could ab-initio EOS improve
that?)
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11-b) Inner structure models: inflated planets

Significant fraction of exoplanets with abnormally large radius

Missing physics in planetary
interior models?

Several suggestions to explain this
puzzle
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a) Atmospheric circulation: Showman & Guillot 2002

----> irradiation from the parent star
creates strong winds

meridional
winds

----- > downward transport of kinetic stellar ]
energy down to the internal adiabat radiation | |

—> Heats the planet and slows down the

contraction

convective

core §
zonal
winds

day night

Atmospheric circulation models (GCM) (Cho, Menou, Showman, efc....)

r Adaptation of the Exeter Met Office climate code to exoplanets (can
extend deeper than standard GCM codes, see poster D. Acreman)

= Study deep circulation pattern

w Effect of circulation on planet spectral sighatures
(link with observations: HST, ECHO )




b) Reduced heat transport: Chabrier & Baraffe 2007

e  Phenomenological approach

* Idea: reduced heat transport in
planetary interior due to
molecular weight gradient

= « layered convection » : system of
convective layers + thiny
diffusive layers
(double diffusive convection or
semiconvection)

Main effect: slow down the

evolution because of reduced heat
transport in the interior

m planets with larger R

- Luminosity at young ages
(< a few Gyr) much lower (testable
with Sphere, Gemini Planet Imager)
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e Double-diffusive convection in Jupiter and Saturn?
(Leconte & Chabrier 2012,A&A, in press)

= Non conventional interior model for J and S
core + inhomogeneous, semiconvective envelope

= Reproduce the gravitational moments J2 and J4
o Jupiter: Mcore= 0 - 0.5 M,
Menv(heavy) = 41 -64 Mg = Ziot = 13% - 20%

o Saturne: Mcore= 12 - 21 M@
Menv(heavy) =10-24 M® = Ztot - 28% - 44(y0

Inhomogeneous models for Jupiter and Saturn are significantly
more enriched in heavy material (30%-60% more) than previously

thought = change our standard picture of “homogeneous” layers




Rosenblum, Garaud, Traxler, Stellmach 2011: 3D numerical simulations
= | ayers can form in low-Pr (< 1) double diffusive convection
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Fig. 5. Volume-rendered visualization of the mean molecular weight perturbation, for

Question: do all layers merge or do the mergers stop and equilibrium layers
form with height << size of system??




¢) Tidal heating
(Bodenheimer et al. 01, Jackson et al. 08: Miller et al. 2009: Leconte et al. 2010)
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w Difficult to explain with tidal effects alone properties of
most inflated planets




The future: (some future developments)

e Improved EOS of H/He and heavy materials (water, silicates, etc) at high
pressure and high temperature
Progress are coming!
" Ongoing and future high-pressure experiments (Livermore, Sandia in the US;
LIL and Laser Megajoule in France)
* First principle numerical methods (DFT, path integral, quantum molecular
dynamics)

e Development of numerical simulations to confirm the existence and stability
of layered convection in planetary interiors (Rosenblum et al. 2011; Mirouh et
al. 2012)

M Planets are not necessarily fully adiabatic and homogeneous
M [mportant impact on our own giant planets!

* Development of dynamical atmospheric models (heating/cooling +
circulation + radiative transfer)

/¥ Solution for abnormally large radii of close-in planets?
M Effect on spectral signatures




