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The Dark Energy Task Force

Optimisation is essential for (DETF) defined a FoM as the

maximising the science return W,

of a survey A inverse of th_e area c_on_fmed by
Surveys require a huge investment time and the 95% confidence limit contour
money; a given survey will also often be of the Wp-W, error ellipse

the only shot at a certain dataset for a long
period of time.

To do this
Optimisation systematically varies the
parameters of a survey to maximise a they assumed
Figure of Merit (FoM). This is usually done U ACDM model
via Monte-Carlo Markov Chain (MCMC) to be true
methods.

The design of a survey is almost
always motivated by model .
selection. Therefore to assume a 3 >W0
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optimising is misguided

Exposure Time We consider Bayesian model selection, elllise, this uses _the (f:PL parametrisation of the
specifically the Bayes factor B, to formulate dark energy equation of state Wpe-
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an MCMC Optimisation.
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We identify methods for calculating the Bayes factor that can be effectively in calculating our model selection FoMs.
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Fig 6. Time allocation optimisation of SUMIRe - ( max)
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