i British
BE5) Geological Survey

1835 NATURAL ENVIRONMENT RESEARCH COUNCIL

Application and Research Facility:

Status and Plans
Alan W P Thomson3

and

Patrick Alken?8, Ciaran Beggan3, Arnaud Chulliat?, Eelco Doornbos*, Rune Floberghagen>,
Eigil A Friis-Christensen?, Brian Hamilton3, Gauthier Hulot?, Jose van den 1Jssel*, Alexei V
Kuvshinov®, Vincent Lesur’, Hermann Luhr’, Susan Macmillan3, Stefan Maus?8, Nils Olsen?,
Poul Erik H Olsen?, Jaeheung Park’, Gernot Plank®, Patricia Ritter’, Martin Rother’, Terence
J. Sabakal®, Claudia Stolle!, Erwan Thebault?, Lars Tagffner-Clausen?, Jakub Velimsky!?,
Pieter N Visser*

IDTU Space, Technical University of Denmark, Copenhagen, Denmark.
2|IPGP, Paris, France. 3BGS, Edinburgh, United Kingdom. “DEOS, Delft, Netherlands.
SESRIN, ESA, Frascati, Italy. °ETH, Zurich, Switzerland. ‘GFZ, Potsdam, Germany.
SNOAA, Boulder, CO, United States. °ESTEC, ESA, Noordwijk, Netherlands. 1°GSFC,
Greenbelt, MD, United States. 11CUP, Prague, Czech Republic.

© NERC Al rights reserved Manchester NAM-MIST 27th March 2012



Geomagnetic Field Sources
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215t Century Satellites
Measuring All Sources of
Earth s Magnetic Field

Drsted

Launched on 23t February 1999

Polar orbit, 650-850 km altitude

all local times within 790 days (2.2 years)

— Currently only occasional scalar data

e CHAMP
Launched on 15% July 2000
low altitude (<300 - 450 km)
all local times within 130 days

— De-orbited September 2011

e SAC-C
Launched on 21t November 2000
700 km altitude, fixed local time 1030/2230
(no vector data due to payload failure)

single-satellite missions,

no explicit advantage of multi-point
observations in space




Swarm History

® 1998: First Proposal for ESA Earth Explorer Opportunity Mission
— Consortium of 16 European institutes led by DTU Space ‘
— Consists of 6 “drsted-type” satellites in two orbital planes swarm
— Proposal ranked no 4 out of 27

2002: Second proposal

— 4 “CHAMP-type” satellites // F i\
o 2002-2004: Phase A swarm
— End-to-End Mission simulation
— Reduction to 3 satellites: 2 lower flying side-by-side \\
plus one at higher altitude B
“mature ... technology and payload (Qdrsted and
... and innovative” CHAMP)

constellation aspect and SCL
May 2004: selection by ESA for full implementation “¥ s

Launch: 17t July 2012



Constellation of Three Satellites

* >4 years operational phase

e Altitude of lower pair down to 300 km
(or lower) for “zoom” on crustal signal

e Altitude of 3 satellite: 530 km o[

® 24 hours LT coverage within 7-10
months

* |nclination difference: drift of orbital
planes

launch after 1.5 yr after 3 yrs after 4.5 yrs
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Each Swarm Satellite: Heritage from @rsted
and CHAMP

Vector magnetometer

Swarm C

Scalar magnetometer

Triple-head star sensor
Electric field instrument

Accelerometer

GPS receiver




Swarm Science Topics

Core Field and Temporal Variations

— Determination of space-time structure of core field and
Its changes

Lithospheric Magnetisation
— Determination of the small-scale crustal field

Electrical Conductivity of the Mantle
— Global 1D conductivity model
— Lateral variations of conductivity

Earth’'s Electrodynamic Environment
— lonospheric, magnetospheric and field-aligned currents
— F-region plasma bubbles, ionospheric profiling (TEC)

(Space Weather Applications)



SCARF — Structure & Purpose

®* ESA has established a “Satellite Constellation Application and
Research Facility” (SCARF), as a consortium of several research
institutions to produce high quality science (‘Level-2’) products

— To aid exploitation of Swarm data stream

— To help scientific community exploit Swarm during the mission
by providing reference field models and products

® |evel-2 products, delivered through the Level-2 Processing System
(L2PS) will include

— models of the core, lithospheric, ionospheric and
magnetospheric fields

— derived parameters such as mantle conductivity, thermospheric
mass density and winds, field-aligned currents, an ionospheric
plasma bubble index, the ionospheric total electron content and
the dayside equatorial zonal electrical field

— CAT-1 (SCAREF: scientist-in-the-loop) and CAT-2 (ESRIN:
automated)



The Partners of SCARF

&

Prime Contractor (DTU)

Consultant

NASA

NOAA

Swarm Constellation Application and Research Facility

SCARF Development Phase: October 2010 - March 2013
SCARF Exploitation Phase: 2013 - 2018 (5 years)



Cat-1 Magnetic Data Processing (performed by SCARF)
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Cat-1 Processing of POD and Thermospheric Winds
(performed by SCARF)
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\ —] |
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Milestones of SCARF Development Phase

oro**

Version 1
, Design

Ac:c;aptance Review 2 (AR2):
October 2012

Acceptance Review 1 (AR1):
May 2012

Critical Design Review (PDR):
October 2011

Version 0
- Design
‘!il

Architectural ' \
Design
5 4
Development
Activities
PDR
‘ ~ Preliminary Design Review (PDR): January 2011

KO
Kick-Off (KO): October 2010




The Comprehensive Inversion Chain

The Comprehensive Inversion takes Level-1b data (time series of magnetic CO m p re h e nS Ive
field measurements) and estimates simultaneosly the following L2 products: M Od e I . DT U

-MCO: Corefield upto degree n= 20, temporal resolution order-5 splines,

6 months knot separation
-MLI: S p aC e

Lithosphericfield upto n=150

-MMI: lonospheric field in quasi-dipole frame, up to n = 60; m = 12, : : : :
semi-annual and quarter-daily periodicity; induced contributions : \ MLI :
accounted for by pre-defined conductivity of 3D mantle + oceans MLl rererence modet

-MMA: Magnetospheric field up to n = 3; m = 1, 1 hour bins; ,
induced field up ton,m =6, 6 hour bins 107 l\ ]

-MSW: Instrument alignmentparameters (Euler angles), 30 days bins [

/1
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Dedicated Core: GFZ Potsdam
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-/\i module interoperability }_

DCO: Four subtasks:

Quaternion based
Euler Angle estimation
developed on CHAMP

vector magnetic field data

Unixoid O  Unixoid platform: file

system and open source
database (PostgreSQL).
[ Top level functionality
and interfacing by perl
scripts, partly derived
from CHAMP utilities.
(W} Pure computational parts
derived from GRIMM
inversion family (library
module compatibility.)

Modules + Libs

Short, recent period covered (One turn in LT)
Simplified SHA time description (linear)
Lower computational requirements

All available data period (at least one year)
Full complexity (order 6 splines for time description)

High computational requirements



Lithosphere: IPGP, Paris

The chain relies on regional basis functions to solve for the inverse problem

* Models iteratively and
piecewise the magnetic field of
the lithosphere

* Focuses on small structures
using a moving window of
regional functions

» Treats the noise regionally

* Represents the field regionally
with a manageable number
parameters: the chain is
comparatively fast to compute

e Subtract main and
magnetospheric field and
carefully select quiet-time
magnetic data to isolate ~
lithospheric field y




IPGP test: check iterative modelling on global scale

Verify that the piecewise modelling of the data produces the correct global map
showing lithospheric field structures.

Input data: Four years of decimated data
contining lithospheric field only falling
within a set of spherical caps covering the

Earth J

30°

Visual inspection of the output
local models estimated on a regular

grid is consistent with the input

global lithospheric field model




IPGP test: check iterative modelling on global scale

Verify that the piecewise modelling of the data produces the correct global map
showing lithospheric field structures.

Input data: Four years of decimated data
contining lithospheric field only falling
within a set of spherical caps covering the,,
Earth

Residuals between input data and
estimated model show a standard
deviation of about 0.15 nT (level of

noise of TDS-1 data




Neutral Atmosphere — DEOS, Delft
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Step 2: Density determination

* Accelerometer
* High-accuracy GPS-receiver for

calibration
Densit ® Star cameras for attitude
. dﬁ;ﬁ'\gm\ Observed deterrplnatlon
\"‘\" * Satellite outer surfaces

XS;’C
&

Relative velocity

% Orbit + corotation + wind
S/C /



(Cross)wind speed, zonal component (m/s)

Step 2: Density determination

CHAMP
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lonosphere: IPGP, Paris

SEASON=0,UT=12Z

« Spherical harmonic —_— nduced
models of the ionospheric
magnetic field at ground
and satellite altitudes, for
all UT and seasons of a
given year, up to degree
45 in quasi-dipole
coordinates

e The models account for Total
the F10.7 variability

* Primary (ionospheric) and
induced fields are
separated using the 3D
mantle conductivity model
calculated during the
mission

Vg



Applications of DIFI models

Investigation of the ionospheric 15
dynamics (time variability of

lonospheric currents at mid- to /

low latitudes, relationships with >
other parameters such as winds o}
and electric fields)

Removal of ionospheric fields in [
magnetic satellite data (in order 5|
to investigate other sources)

20k
Remove of the geomagnetic 25) :
daily variation in ground data - ;

—+—— primary
—+— induced H
total

(observatories, repeat stations,
magnetic surveys)

15

P
L

20



-MMA Ext Z SM (nT) Est (nT)

Est + MMA Ext Z SM (nT)

Rapid Magnetospheric Model: BGS, Edinburgh
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~MMA Ext Z SM (nT)

-150

Rapid Magnetospheric Model:

Correlation coefficient: 0.9823
Gradient: 0.96149
y cut—off (nT): 4.6184
RMS diff (nT): 6.8654
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Mantle Conductivity Products (1-D):
ETH and CUP

» Global C-responses (in period range between a few hours and a few
months)

» Global 1-D electrical conductivity model of the Earth’s mantle
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Mantle Conductivity Products (3-D):
ETH and CUP

* Maps of C-responses
« 3-D model of the Earth’s mantle recovered by frequency domain (FD) approach
» 3-D model of the Earth’s mantle recovered by time domain (TD) approach

Nolossmtsisbileobibinsiab
Time series of ALL inducing True model
and induced coefficients
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Quick Look of Level 1b Data: BGS, Edinburgh

TDS-1 satellite A magnetic data for 30-Jul-1998

TDS-1 satellite F magnetic data locations for 30-Jul-1998
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Quick Look of Level 1b Data: BGS, Edinburgh




Validation of Level 2 Products: BGS

* MCO: Eight different figures are
produced

— Spectra; degree correlation; MS
diff per degree; spatial plots; diff

per degree ...
®* Some examples here
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Cat-2 Products Suite: PDGS, ESRIN

Cat-2 Data Processing (performed at PDGS)
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Oval of intense field-aligned currents Optical auroral oval

180°W

=\ ‘I

Field-Aligned Currents
-determines radial and field-aligned
currents at the polar region, which
are closely related with the aurora.

J, [wA/m?] http://spacescience.spaceref.com/ne
whome/headlines/ssl|_report/uvi.gif

lonospheric Bubble Index
-determines magnetic field

. 9'9? fluctuations associated with plasma
- —/LUE . . . . .

~ _1nE irregularities in the nighttime
310 equatorial ionosphere.

- confirmed with electron density
measurements of EFI instrument

e

Total Electron Content

Electran Count

- determines total ionospheric
SNy electron content that delays GPS
signals.

http://www.althos.com/Sample_Diagrams/ag_GPS_Satellite_lonospheric_Delay_low_res.jpg



Dayside Eastward Electric Field: IPGP

* Drives strong currents in the
lonosphere

o Causes plasma to be lifted
hundreds of kilometers to the
upper ionosphere

* Important ionospheric parameter
for modeling/prediction of space
weather

 Difficult to measure directly on a
global scale

* This Level 2 product estimates
the equatorial electric field (EEF)
from Swarm magnetometer
measurements for each orbit

Figure 3 - Applelon Anomaly scheme.



British
Geological Survey

NATURAL ENVIRONMENT RESEARCH COUNCIL

Conclusions

* The Swarm Constellation Application and Research Facility (SCARF), is a
consortium of European research institutions with international support

® Level-2 products from SCARF (CAT-1) and the L2PS (CAT-2) will include
— core, lithospheric, ionospheric and magnetospheric fields

— derived parameters: mantle conductivity, thermospheric mass density & winds,
field-aligned currents, ionospheric plasma bubble index, ionospheric total
electron content and dayside equatorial zonal electrical field

* The facility is expected to be operational for a period of 5 years after the
launch of Swarm, scheduled for 17t July 2012

® All products will be available through the Swarm Payload Data Ground
Segment (PDGS), located at ESA Centre for Earth Observation in Frascati

®* Products will aid the scientific community, e.g. by isolating ‘unwanted’
magnetic and other signals to improve modelling and physical
Interpretation of ‘wanted’ signals

© NERC All rights reserved Manchester NAM-MIST 27th March 2012
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