# Heating of braided coronal loops



David Pontin, Antonia Wilmot-Smith, Gunnar Hornig (University of Dundee)

> Anthony Yeates (University of Durham)



Aim: investigate how the pattern of braiding by photospheric footpoint motions affects heating of coronal loops

#### The model magnetic fields



|          |                                       |     |                                       |   |    |   |    |   | 4 T |   |       |                |   |          |      |   |    |                             |
|----------|---------------------------------------|-----|---------------------------------------|---|----|---|----|---|-----|---|-------|----------------|---|----------|------|---|----|-----------------------------|
|          |                                       |     |                                       |   |    |   |    |   | •   |   |       |                |   |          |      |   |    |                             |
|          |                                       |     |                                       |   |    |   |    |   | 3 - |   |       |                |   |          |      |   |    |                             |
|          |                                       |     |                                       |   |    |   |    |   |     |   |       |                |   |          |      |   |    |                             |
|          |                                       | •   | •                                     | • |    |   |    | v | 2 - |   |       | •              | • |          |      |   |    |                             |
|          |                                       |     | •                                     |   |    |   |    | , | ~   |   |       | •              | • |          |      |   |    |                             |
|          |                                       |     |                                       |   |    |   |    |   | , ] |   |       |                |   |          |      |   |    |                             |
|          |                                       |     |                                       |   |    |   | _  |   | 1 - |   |       |                |   |          |      |   |    |                             |
|          | •                                     |     |                                       |   | •  |   | •  |   | 1   |   | •     |                |   |          |      |   |    |                             |
|          | •                                     |     |                                       |   | _  |   |    |   |     |   |       |                |   |          |      |   |    |                             |
| -4       |                                       | -3  |                                       |   | -2 |   | -1 |   | 0   | • |       | 1              |   | -2       | <br> | 3 |    | 4                           |
| -4       |                                       | -3  |                                       |   | -2 | - | -1 |   | 0   |   |       | 1.             |   | :2<br>.x |      | 3 | -  | 4                           |
| -4       |                                       | -3  |                                       |   | -2 |   | -1 | , |     |   |       | 1              | • | -        |      | 3 |    | 4                           |
| -4       |                                       | -3  | · ·                                   |   | -2 |   |    |   | -1  |   |       | 1              | • | -        |      | 3 |    | 4                           |
| -4       | · · · · · · · · · · · · · · · · · · · | -3  |                                       |   | -  | - |    |   | -1  |   |       | 1              | • | x        | -    |   | -1 | 4                           |
| -4       | · · · · · · · · · · · · · · · · · · · | -3  |                                       |   | -  |   |    |   | -1- |   |       | 1              | • | <i>x</i> |      |   |    | 4                           |
| -4<br>-4 |                                       | -3  | · · ·                                 |   | -  |   |    |   | -1- |   |       | 1 <sup>•</sup> | • | <i>x</i> |      |   |    | 4                           |
| 4<br>    | · · · · · · · · · · · · · · · · · · · | ·-3 | · · · · · · · · · · · · · · · · · · · |   | -  |   |    |   | -1- |   | · · · | 1'             | • | <i>x</i> |      |   |    | -4<br>-<br>-<br>-<br>-<br>- |









Achieved in practice by adding regions of twist to uniform B

-12

Aspect ratio of loops is  $\approx 1:10$ 

Conservative approach: free energy only 3% above potential

## Simulation setup

- Take field E3 or S3 and first perform an <u>ideal</u> relaxation
- Then transfer to resistive MHD code: *J×B*≈0, and initialise with a uniform background plasma







- Following an initial instability current peaks sharply in both cases
- Peak current falls off quickly for S3
- Magnetic field 'unbraids'. E.g. E3 -











# Energy / heating

- To investigate heating, make an appropriate dimensionalisation
- Parameters:
  - \* B=10G
  - \* n=10<sup>15</sup> m<sup>-3</sup>
  - \* L=I Mm
  - $* T=2.3 \times 10^{6} K$
  - \* Loop dimensions: 6×6×48 Mm

 $* t_0 = 1.45s$ 

### Energy / heating





- Approx twice as much energy released for E3
- More spatially homogeneous heating for E3
- Temperature rise is modest, but so is initial free energy

#### Structure of final magnetic field

Plots: mean value of  $J \cdot B/B \cdot B$  along field lines



#### Reynolds number comparison for E3

|**J**| at z=0

η=10-3





# Summary

- Resistive relaxation: <u>B</u> field is unbraided (E3) / untwisted (S3). Involves reconnection at multiple <u>J</u> sheets.
- Although "amount" of photospheric driving in the same, relaxation is more efficient for E3:
  - \* Current sheets fill the volume more effectively
  - \* More energy is released
  - \* Homogeneous heating of the loop
- In other words, <u>amount and distribution</u> of energy release dependent on <u>pattern</u> of driving flow.
- This can be measured by computing the "topological entropy" of the photospheric flow
- Energy release constrained by structure of <u>B</u> (periodic orbits)

#### Thanks for listening

#### References:

- Wilmot-Smith, A.L., Pontin, D.I., Yeates, A.R. and Hornig, G. Heating of braided coronal loops, A&A, 536, A67 (2011)
- Pontin, D.I., Wilmot-Smith, A.L., Hornig, G., Galsgaard, K., Dynamics of Braided Coronal Loops - II. Cascade to multiple small scale events, A&A, 525, A57 (2011)
- Yeates, A.R., Hornig, G. and Wilmot-Smith, A.L. Topological Constraints on Magnetic Relaxation, Phys. Rev. Lett., 105, 085002 (2010)
- Wilmot-Smith, A.L., Pontin, D.I., Hornig, G., Dynamics of Braided Coronal Loops
   I. Loss of Equilibrium, A&A, 516, A5 (2010)