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Following the developments in SPMHD, we implemented the turbulent transport terms in the induction equation for the 
evolution of the magnetic field in, with the aim to perform realistic modelling of dynamo action in global galaxy simulations. 

Besides the spatial dependent turbulent diffusion β also the α-tensor is included. For a disk setup we could verify our 
numerical results with a known analytical model of Meinel 1990. Further comparisons with grid based numerical simulations 

for disks with a galactic rotation law and an anisotropic α-effect are shown. This allow us to perform global galaxy simulations 
with a subgrid model for dynamo action, which can be linked to upcoming and present day radio observations

Introduction

The full understanding of astrophysical process, require a complete 
development of the astrophysical mechanisms in several scales. Some 
of which are well known, and others not. Such is the case of 
turbulence, which is a small scale process that has an intrinsic 
stochastic behavior,that can reach large scale effects (and vice versa). 

In the case of the MHD equations and dynamo theories, to overcome 
the complexity inherent from this studies, the so-called mean field 
theory  was developed. In this approach, one re-write the MHD 
equations decomposing the velocity and magnetic field into a mean 
field plus a turbulent component. Doing this decomposition we assume 
that the fields follow Reynold's rule of  decomposition (see 
Raedler2000).

In this framework the induction equation can take the form 

where α and β corresponds to statistical properties of the turbulent 
flow, being β the equivalent of a turbulent dissipation. In a general way 
those properties are not scalars, i.e. they are well defined as tensors to 
capture all posible anisotropies.

Additionally is usefull to apply a quenching mechasim, which help us to 
stabilze the dynamo when we reach equipartition, finding the critial α 
characteristic of each problem. We use a simple quenching giben by
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Anisotropic α

To test our implementation into a more useful and realistic case, checking the 
viability of our implementation in more serious environments, in which we must 
use a tensor version of our α (i.e Gressel2009).
 
We test a non isotropic α in the disk configuration similar that the used for the 
Meinel case, but we modify the α values to be defined in cartesian coordinates 
as

Which mean that is only afecting the horizontal plane. We also apply the same 
quenching mechanism as previous tests.

The solution of this problem is know but not found analitically, therefore strictly 
should be tested against other numerical solution. This solution involves the 
continuous periodic change in the m=1 mode of the disk.

Above we show two cuts of the near slightlty above the midplane, made with our 
method in SPH [left plot] and the solution found with an eulerial code [right plot] 
(Elstner2009).
Both simulations started from slighlty differenet initial condition but reach the 
same final configuration. The critical α for the problem is 6.24. Bellow we show 
the α evolution for this setup in the SPH case.

α⃗=[α/√2 ,α/√2 ,0 ]

Conclusion

We sucessfully implemented the turbulent transport terms in the 
induction equation for the evolution of the magnetic field in SPH. 
Besides the spatial dependent turbulent diffusion β also we incude 
the α-tensor. We found as optimal implementation to use the same 
loop, which reduces the amount of memory and calulations.

●We verify our numerical results with a known analytical model of 
Meinel 1990 for a disk setup. We study the dependence of our 
results with resolution and various initial configurations in the 
distribution of the magnetic field, showing a splightly improve with 
resolution and almost no dependence with the initial setup at long 
times.

●We compare with grid based numerical simulations for disks with 
an anisotropic α-effect, which is common in the real cases of 
galactic dynamo. The results either from the critical α and the 
morphology of the field are comparable.

●We setup a simple galactic rotating disk to test the a complete α-ω 
case. The final configuration reaches a stable configuration. 
However more extensive tests, with other α-ω-β configurations have 
to be tested and the long term stability of our results. 

More testing has to be done, but this are steps towards performing 
global galaxy simulations with a subgrid model for dynamo action, 
which can be linked to upcoming and present day radio 
observations.
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Numerical Scheme

We make use of numerical implementationof SPMHD in Gadget-3  (see, 
Dolag2009, Stasyszyn2012). Which has been already used in different 
astrophysical aplications from galaxies (Kotarba2009), star fromation (Bunzle 2010) 
and galaxy clusters (Bonafede 2011), with successful results.

In particular we implement the α term in the same way as the induction ecuation is 
solved, just adding the dynamo term.

We split the β term in two:

We calculate the second term as a diffusion, it in the same way as we shown in 
Bonafede2011, which has been a succesfull tested reducing the errors by using the 
second derivative of the kernel.

The first term is calculated using again the same induction loop, and taking as a 
common factor the derivatives of the kernel, which free us to calculate the rot(B) in 
a previous loop and reduces any numerical noise lowering the number 
computations. Always, we substract the first order errors as explained in Price2011. 

∇×(β∇×B⃗ )=∇ β×∇×B⃗−βΔ B⃗

Meinel test

Meinel1990 show an exact solution for a pure mean field dynamo case, i.e with 
the velocity field equal to zero. The test setup is a cilinder with constant β and 
equal α in the upper and lower parts of the disk, but with different signs. 
Additioanally we use a height of the disk of 2 and a radius of 1, This defines our 
critical α  which has a value of 4.98. We use a glass-like distribution for the 
particle positions, ensuring that particles are not particularly aligned and being a 
better representation of of practical cases and having a constant density field.

First, we set up the magnetic field in the same distribution as the solution found 
by Meinel1990. However we start the simulation with an α twice the critical. This 
will imply that at the beginning, the α terms will increase the magnetic field away 
from the stable solution, and then the quenching should restore the configuration 
and α  towards the critical value. We found that we quickly restore the 
configurtion and find the critical α. Additionally we made a resolution study, 
founding that increasing the resolution we reach a little bit faster the critical 
values. Below we show, a cut at Y=0 and Z=0.5 of these cases for the different 
resolutions compared with the analitical solution, and the evolution of α value.

In the figures above, we can observe the resolution convergence, however the 
final critical α are slighlty lower that the predicted by Meinel. We think this is due 
to the inherent SPH difficulty to properly define boundaries, and therefore the 
volumes that will characterize this value.

Additinally, we show bellow cuts over trought thought the center of the disk of 
different initial configurations that we use to test the capabilities of our 
implementation, always starting with higher initial α

In all the cases we reach the 
analitical solution. Which can be 
seen in the right plot, where we show 
the evolution of the α in this cases. 
We can see the quenching acting 
different in this cases.
 Finally, be test the stability of the 
solutions, to ensure that there are no 
errors that integrate and cause 
instabilities. Therefore we run the 
test 10 times longer, without any 
increase of the errors nor instabilities 
appearing. 

The div(B) errors are always bellow 10E-3, which means that any kind of effects 
due those errors are 10E-3 times smaller than the integrations done by the 
induction equation.

 α-ω Test

We generate the initial conditions for a gravitationaly rotating disk. We define 
the  initial velocity disttribution without any Z dependence as

With Ω value of 100 [1/t] and R0 of 1.5. The disk geometry is 2 in height and 5 
in radius, but we confine the α disk to be between 0.5 and 1.5 in Z direction.

For the turbulent coeficients we use sinusoidal distributions, as a step foreward 
real galaxy simulation. Bellow you can find the a cut trought the center of te disk 
showing the α and β distributions.

In particular we constrain the β to be fix between 0.2 and 2.0. In the case of α 
we still use the same quenching formula, conserving the signs difference and 
the sinusoidal shape.

Above we show the evolution magnetic field energy (left) and the magnetic field 
distribution (right). We begin to observe some characterisc modes from the 
dynamo working, however we must compare more extensively with numerical 
solutions, as done for the anisotropic α case.

uϕ=
r⋅Ω

√1+(r /R0 )2

αη

mailto:fstasys@usm.lmu.de

