EXPReS and NEXPReS

The future of European VLBI

Arpad Szomoru, JIVE

Research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° RI-261525
Introduction

- Future of VLBI = e-VLBI
 - Recognized SKA pathfinder
- Future radio-astronomy = SKA
 - VLBI has complementary science case on an intermediate time scale

- EXPReS has demonstrated all VLBI can be e-VLBI
 - Competitive in bandwidth and resolution, robust, economic, fast

- e-VLBI is producing new science
 - And is an operational facility

- NEXPReS is funded to take next step
 - Buffering is needed in order to do all e-VLBI
2002: first contact with DANTE and NRENs:
EVN as application of GÉANT backbone
Move towards e-VLBI

- Transmission via internet
 - Made possible by PC-based recording units
 - Started with a pilot in 2004
- And was boosted with EXPReS (2006)
 - Retrofit correlator to work real-time
 - Help solve last mile problem at telescopes
 - Work with NRENs on robust connectivity
 - Push to 1024 Mbps limit
 - Bring in the big telescopes

- Now an operational facility
 - Guaranteed 10 x 24h per year
 - Many ways to get into e-VLBI:
 - Fast response
 - Triggered proposals
 - Short requests <2hr
 - Target of Opportunities
 - Or just because you feel like it..

Express Production Real-time e-VLBI Service

10th EVN Symposium, Manchester, United Kingdom, September 2010
Some of our original concerns. Would:

- we be able to connect enough telescopes fast enough?
- the bandwidth be high enough?
- e-VLBI be as reliable as non-e?
- long-haul intercontinental data transport be sustainable?
- it produce new science?
- it be cost effective?
- we be able to accommodate all types of projects?

...eventually...
First European transfer tests
Steady improvements
Demos leading to actual user experiments
Long-haul high-bandwidth data transport

- Up to 375 ms RTT
- TCP on old linux kernels completely inadequate
- Parallel TCP, TCP tuning defeat fairness principle
- UDP logical choice, but can be hostile to other users
- Preferred use of “private” networks (lightpaths, VPN, dark fibre)
- Good agreements, and communications, needed with providers when using open networks
Beyond 1 Gbps

- Current maximum data rate in VLBI 1024 Mbps (1030 including headers)
- Does not fit on 1 Gbps
- Dropping packets possible, but not optimal
- Dropping channels works, but loss of sensitivity
- Lightpaths come in “quanta” of 150 Mbps, Ethernet does not

- One solution: Round Robin distribution of data over two connections using bonding, both halves through separate VPNs
- Used on Westerbork-Dwingeloo CDWM connection (much cheaper than upgrading to 10 Gbps)
- Also used for connecting Merlin telescopes over two 1 Gbps lightpaths
- With multicast + Elliptical Robin, up to 5 Merlin telescopes simultaneously (Merlincast)
How about new science?

Demonstrated capability of initiating new observations based on e-EVN results within a day/days.

The EVN has never seen this many ToO projects!
SN2007gr

- Nearby type Ic supernova
- e-VLBI within 20 days
- First direct detection of relativistic expansion in a supernova
- Link with Gamma Ray burst

Paragi et al., Nature 2010, 463.516

Accepted for publication one day before EXPReS final review!!
A success story...

- Only made possible by the enthusiasm and hard work of a great many people, telescope operators and technicians, support scientists, project engineers, VLBI friends...
Current limitations

- Correlator passes are a problem
 - Not a perfect correlator
 - Partly remedied by software correlator
- Not all telescopes connected
 - Noto, Urumqi
 - Newly added Russian telescopes
 - Global baselines with VLBA
- Reliable operations
 - Of all components in the chain
- Could be addressed by simultaneous recording!
 - And get the best of both worlds!
- Correlate in real time what you can,
- Correlate later what you need
Novel EXplorations Pushing Robust e-VLBI Services
NEXPReS: EXPReS follow-up

- Main objective to introduce transparent caching
 - Bring increased sensitivity, flexibility and robustness of real-time VLBI to all EVN experiments
 - Deploy a high-speed, flexible caching system
 - allow transparent re-transmissions and/or re-correlation
 - Remove distinction between VLBI and e-VLBI operations
 - Continue collaboration with NRENs
 - Explore common technology questions with LOFAR, SKA

- 15 partners (cf. 19 in EXPReS)
 - Of which 3 will not receive funds from EC
 - Good mix from astronomy-networking-HPC communities
 - High level of partner-contributed effort

- Project has started July 1, 2010
 - Had to fit project within 3.5 M€ envelope (3.8 requested)
 - Relatively painless

- Continuity for e-VLBI operations
 - Will allow us to keep key expertise, personnel
 - And assures continued connectivity in collaboration with SURFnet
NEXPReS structure

2 Service Activities
focus on new operational astronomical features:
Higher bandwidth, dynamically cached transport, increasing flexibility of observations

2 Joint Research Activities aiming at innovating future operations
Distributed correlation in astronomy domain
Transparent buffering

2 user community networks continue from EXPReS
Astronomy use and policy
Network providers/telescope operators

2 special Networking Activities
Management & Outreach
Essential for success
Service activities

- **Cloud correlation**
 - Transform complete VLBI observational chain:
 - Scheduling, observing, buffering, real-time - delayed correlation, use of hardware/software correlators
 - Enable modification of observational parameters on the fly
 - Implement 4 Gbps recording/transmitting/playback
 - Implement flexible buffering at stations and correlator
 - Continuous quality and network monitoring, station remote control
 - Automated network-dependent correlation

- **High bandwidth on demand**
 - Permanent, static links are very convenient, but under-used, and limited to 1 Gbps
 - Integrate e-VLBI with existing BoD techniques
 - Investigate on-demand access for large archives
 - Establish international multi-Gbps on-demand services
 - Position EVN to take full advantage of emerging 100 Gbps technology
 - Prepare EVN for real-time 4 and 10 Gbps operations

- Keen interest in networking community, not all NRENs in agreement
Research activities

- Computing in a shared infrastructure
 - Real-time stream processing; disks are slow, keep data on network/in memory
 - Make use of EVN infrastructure, develop generic Grid alternatives
 - Allow additional VLBI observations with (a subset) of the EVN and global VLBI arrays with a minimal impact on scarce resources (disk, manpower)

- High-bandwidth, high capacity networked storage
 - Develop buffering solutions capable of multi-Gbps simultaneous I/O streaming
 - Investigate use of LTAs, allocation of resources

- Both activities:
 - Focus on generic solutions
 - capable of supporting different applications
SFX Software correlator

- Developed at JIVE
 - First used in Huygens descent on Titan
 - Further developed through FABRIC (EXPReS) and SCARIm (NWO) projects

- JIVE/EVN 16 cluster nodes
 - each 2 quad core CPUs: 128 cores
 - Direct 1GE/2GE to Mark5s
 - Test: 9 stations at 512 Mbps
 - 1024 spectral points
 - 1s integration
 - 10 minutes observations
 - Done in 9m20s wall time

- New functionality:
 - Pulsar gating/binning is implemented and tested
 - Preliminary VDIF support implemented
 - Sampler stats are calculated and reported during FTP fringe tests

Data from 2008 NME C band 10 stations
Next Generation Correlator: UniBoard

- Raised considerable budget:
 - RadioNet: UniBoard, NWO: ExBoX, NWO-ShAO collaboration
 - Link to APERTIF correlator project
- Aims at 100-fold more powerful machine
 - 32 station, 10 - 64 Gbps
- Scalable, generic, high-performance FPGA-based computing platform for radio astronomy
 - RadioNet FP7 research activity:
 - Jive: project lead, VLBI correlator
 - Astron: hardware
 - Inaf, Bordeaux: digital receiver
 - Uman, Uorl: pulsar binning, RFI mitigation
 - Kasi: VLBI correlator
 - ShaO, Oxford: VLBI correlator, all-station Lofar correlator
- Much interest from different groups
 - obviously maps well onto current problems (NG EVN, Apertif)
 - Future applications: Apertif beam former, correlator, all-station Lofar correlator
NEXPReS impact on EVN

- Step towards use of real-time high-bandwidth e-VLBI for EVN
 - Must increase interoperability with other VLBI networks
- Raise level of availability
 - Continuous data quality monitoring
 - Continuous network monitoring
 - More remote control, immediate feedback
- Should consider more frequent, more evenly spaced observing sessions
 - Move to VLBI every Friday... eventually
- Introduction of observations with sub-sets of EVN telescopes
 - Semi-automatically generated schedules and control
 - Transient response, multi-epoch campaigns
- High degree of automation in operations
 - Scheduling (network and correlator)
 - Network monitoring
 - Automated pipelines
- Increased use of software correlator
 - Parallel operations soft- and hardware correlators
 - Mixed 1Gbps-4Gbps operations
VLBI in the SKA era

- Unique science case for VLBI during SKA operations
 - Definitely during SKA phase I and II
 - Providing global baselines
 - Located predominantly in Northern hemisphere
 - With a focus on the higher frequencies
- Requires a VLBI technology roadmap
 - And a strong international collaboration
- Will need to set ambitious goals
 - Not just new correlator, also new receptors
- Possible other innovations:
 - Many more telescopes that operate at higher frequencies
 - Maybe stations consisting of small clusters of antennas

- Upgrade of EVN correlator, receiver systems will lead to a massive increase of bandwidth and sensitivity
- Will keep EVN competitive and complementary in the era of SKA