How warm is the molecular gas in active environments?

Stefanie Muehle, JIVE

Collaborators: C. Henkel (MPIfR), T. de Maio (U. of Colorado), E. Seaquist (U. of Toronto)

The 10th EVN Symposium “VLBI and the new generation of radio arrays”, Manchester, 21 September 2010
The cycle of interstellar matter in the Milky Way, stars form out of collapsing clouds of cold, dense molecular gas.

~63% H₂
~36% He
~1% other molecules + dust

is that true for all galaxies?
Starbursts: just scaled-up star formation?

- M82 (NASA, ESA, The Hubble Heritage Team) (Thompson et al. 2006)
- non-standard conversion $I_{\text{CO}(1-0)} \rightarrow N_{\text{H}_2}$
- non-standard initial mass function? (Klessen et al. 2007 + obs.)
- evidence for warm molecular gas (e.g. Mauersberger et al. 2003)
Emission from molecular gas clouds

The fundamental dilemma: Photon trapping

- Molecular excitation

\[n_i \sum_{j=1}^{k} A_{ij} + B_{ij} u_{ij} + C_{ij} = \sum_{j=1}^{k} n_j (B_{ji} u_{ji} + C_{ji}) \]

- Radiative transfer

\[\frac{dI_\nu}{d\tau_\nu} = -I_\nu + S_\nu \]

⇒ make a (simple) model, e.g.

large velocity gradient (LVG) model: \(T_{\text{kin}}, n_{\text{H}_2}, abu_{\text{mol}}/\text{grad}(v) \)
Why formaldehyde (H_2CO)?

- many gas tracers suffer from a T-n degeneracy

measured line ratios:

$\text{CO}(2-1)/\text{CO}(1-0) = 0.9$

$\text{CO}(3-2)/\text{CO}(2-1) = 0.7$

$\text{CO}(3-2)/\text{CO}(1-0) = 0.6$

$^{12}\text{CO}(1-0)/^{13}\text{CO}(1-0)$
Why formaldehyde (H$_2$CO)?

- H$_2$CO is sensitive to temperature \textit{and} density.
 many gas tracers suffer from a T-n degeneracy.
Why formaldehyde (H$_2$CO)?

- H$_2$CO is sensitive to temperature *and* density. Many gas tracers suffer from a T-n degeneracy.
- H$_2$CO has a rich spectrum.

![Diagram of H$_2$CO energy levels](image)
Why formaldehyde (H$_2$CO)?

- H$_2$CO is sensitive to temperature and density. Many gas tracers suffer from a T-n degeneracy.
- H$_2$CO has a rich spectrum. Multiple lines in the same bandpass avoids:
 - calibration issues
 - different beam widths
 - pointing uncertainties
- Limited line blending.

H$_2$CO lines at 218GHz
Why formaldehyde (H_2CO)?

- H_2CO is sensitive to temperature \textit{and} density
 - many gas tracers suffer from a T-n degeneracy
- H_2CO has a rich spectrum
 - multiple lines in the same bandpass avoids
 - calibration issues
 - different beam widths
 - pointing uncertainties
- limited line blending
- constant abundance in a variety of environments
 - $[\text{H}_2\text{CO}]/[\text{H}_2] \sim 10^{-10}$ in MW
 - (e.g. Johnstone et al. 2003)
Why formaldehyde (H$_2$CO)?

- H$_2$CO is sensitive to temperature and density.

The Galactic thermometer: NH$_3$

\[
\frac{[\text{NH}_3]}{[\text{H}_2]} \sim 10^{-5} \ldots 10^{-8} \text{ in MW}
\]

M82: $T_{\text{rot}} \sim 29$ K?

(Mauersberger et al. 2003)
Selected H_2CO transitions

- $3_{03}-2_{02}$ (218.2 GHz)
- $3_{22}-2_{21}$ (218.5 GHz)
- $3_{21}-2_{20}$ (218.8 GHz)
- $2_{02}-1_{01}$ (145.6 GHz)
H$_2$CO at 218 GHz: dependent lines

H$_2$CO\((3_{03}-2_{02}) \)
H$_2$CO\((3_{22}-2_{21}) \)
H$_2$CO\((3_{21}-2_{20}) \)

v = 132 km/s, w = 111 km/s
H$_2$CO at 146 GHz: blended lines

- H$_2$CO(2$_{02}$-1$_{01}$)
- HC$_3$N(16-15)

$\nu = 132$ km/s
$w = 111$ km/s

<table>
<thead>
<tr>
<th></th>
<th>3_{21}-2$_{20}$</th>
<th>3_{22}-2$_{21}$</th>
<th>3_{03}-2$_{02}$</th>
<th>2${02}$-1${01}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν_0 (GHz)</td>
<td>218.76</td>
<td>218.48</td>
<td>218.22</td>
<td>145.60</td>
</tr>
<tr>
<td>Int. (K km/s)</td>
<td>0.53(0.14)</td>
<td>1.09(0.15)</td>
<td>2.09(0.16)</td>
<td>2.76(0.10)</td>
</tr>
</tbody>
</table>
From data to properties: LVG analysis

\[\frac{N(\text{H}_2\text{CO}(3_{03}-2_{02}))/\Delta v}{N(\text{H}_2\text{CO}(3_{03}-2_{02}))} = \frac{N(\text{H}_2\text{CO}(3_{03}-2_{02}))/\Delta v}{N(\text{H}_2\text{CO}(3_{03}-2_{02}))} \]

\[\frac{N(\text{H}_2\text{CO}(3_{03}-2_{02}))/\Delta v}{N(\text{H}_2\text{CO}(3_{03}-2_{02}))} = \frac{N(\text{H}_2\text{CO}(3_{03}-2_{02}))/\Delta v}{N(\text{H}_2\text{CO}(3_{03}-2_{02}))} \]

\[\Rightarrow T_{\text{kin}}, n_{\text{H}_2}, N_{\text{H}_2\text{CO}}/\Delta v \text{ or } X_{\text{H}_2\text{CO}}/\text{grad}v, M_{\text{mol}} \ldots \]
First results: M82

- prototype of a starburst galaxy
- high IR luminosity
- galactic wind
- dense molecular gas concentrated towards the centre
- an “evolved” starburst?

(NASA, ESA, The Hubble Heritage Team)

(Weiss et al. 2001)
First results: M82

NE

218 GHz

<table>
<thead>
<tr>
<th>Velocity (km/s)</th>
<th>0</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{mb} (mK)</td>
<td>0</td>
<td>20</td>
</tr>
</tbody>
</table>

SW

218 GHz

<table>
<thead>
<tr>
<th>Velocity (km/s)</th>
<th>0</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{mb} (mK)</td>
<td>0</td>
<td>20</td>
</tr>
</tbody>
</table>

146 GHz

<table>
<thead>
<tr>
<th>Velocity (km/s)</th>
<th>0</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{mb} (mK)</td>
<td>0</td>
<td>20</td>
</tr>
</tbody>
</table>
First results: M82

\[\frac{H_2CO(3_{03}-2_{02})}{H_2CO(3_{21}-2_{20})} \quad \frac{H_2CO(2_{02}-1_{01})}{H_2CO(3_{03}-2_{02})} \quad \frac{H_2CO(2_{02}-1_{01})}{H_2CO(3_{21}-2_{20})} \]

\[T_{\text{kin}} \sim 191 \text{ K (NE)} / 209 \text{ K (SW)} \quad n_{H_2} \sim 7 \times 10^3 \text{ cm}^{-3} \]

\[N_{H_2CO}/\Delta v \sim 2 \times 10^{13} \text{ cm}^{-2}/\text{km s}^{-1} \quad M_{\text{mol}} \sim 1.4/1.7 \times 10^8 M_{\odot} \]

\[X_{H_2CO}/\text{grad}v \sim 1 \times 10^{-9} \text{ km}^{-1} \text{ s pc} \]

(Muehle et al. 2007)
First results: NGC 253

- nearby starburst galaxy
- high IR luminosity
- galactic wind
- molecular gas in circum-nuclear disk
- chemical abundances differ from those of M82 ⇒ a younger “twin” of M82?

(Sakamoto et al. 2006)
First results: NGC 253

To be published soon …
A kinetic temperature of ~ 150 K?

- Multi-transition NH$_3$ and CS (Mauersberger et al. 2003):
 $T_{\text{rot}} \sim 50$ K + > 150 K in other starburst galaxies (except M82)

- IR quadrupole H$_2$ transitions (Rigopoulou et al. 2002):
 $T_{\text{kin}} \sim 150$ K in starburst and Seyfert galaxies

- Multi-transition CO, HCN, HCO$^+$ in SB (Greve et al. 2009):
 $T_{\text{kin}} \sim 60...120$ K, $n_{\text{H}_2} \sim 10^4...6$ cm$^{-3}$ (warm component)

- Multi-transition CO in M82 (Mao et al. 2000):
 $T_{\text{kin}} \sim 60...130$ K, $n_{\text{H}_2} \sim 10^{3.3...3.9}$ cm$^{-3}$ (high-excitation lines)

- Multi-transition CO in M82 (Ward et al. 2003):
 $T_{\text{kin}} \sim 14$ K, $n_{\text{H}_2} \sim 10^{3.5}$ cm$^{-3}$
 $T_{\text{kin}} \sim 170$ K, $n_{\text{H}_2} \sim 10^{2.9}$ cm$^{-3}$ (median values)

- High-resolution NH$_3$ in NGC 253 (Ott et al. 2005):
 $T_{\text{kin}} \sim 150...260$ K
Conclusions

- selected H$_2$CO lines powerful diagnostics for starburst galaxies: $T_{\text{kin}}, n_{\text{H}_2}, N_{\text{H}_2\text{CO}}/\Delta v$
- detection of para-H$_2$CO lines up to $K_a=2$
 (M82, NGC 253)

First results:
- circumnuclear ring in M82:
 $T_{\text{kin}} \sim 200 \text{ K}, n_{\text{H}_2} \sim 7 \times 10^3 \text{ cm}^{-3}, M_{\text{mol}} \sim 3 \times 10^8 \text{ M}_{\text{sun}}$
- circumnuclear disk of NGC 253 (prelim. results):
 $T_{\text{kin}} \sim 150 \text{ K}, n_{\text{H}_2} \sim 10^4 \text{ cm}^{-3}$
Open questions

- Which classes of active galaxies exhibit a warm gas phase?
- How extended is the warm phase?
- Relation warm gas/cold gas?
- Correlation with star formation rate, gas content, age of starburst, AGN activity, …
Outlook

ALMA:
- p-\(\text{H}_2\text{CO}\) lines readily detectable
- maps give source sizes, distribution, etc.

e-MERLIN:
- maps of o-\(\text{H}_2\text{CO}\) line at 6 cm
 - o/p ratio, formation temp.
- ammonia lines at 24 GHz
Starbursts:
just scaled-up star formation?

- non-standard conversion $I_{\text{CO}(1-0)} \rightarrow N_{\text{H}_2}$
- non-standard initial mass function? (Klessen et al. 2007 + obs.)
- evidence for warm molecular gas (e.g. Mauersberger et al. 2003)

Caution, gas may be hot!