Wide-field VLBI Techniques: A Beginner’s Guide

John Morgan, ICRAR, Curtin University, Perth

10th EVN Symposium
Manchester
Tuesday 21st September 2010
Overview

1. Wide-field VLBI
 - VLBI Sensitivity
 - Correlation
 - Imaging

2. UV Shifting
 - Transforming correlated data
 - Using the baseline vectors
 - Using correlator delay model

3. Using Wide-field VLBI

4. Future Work
 - Future Work
 - Conclusions
I would like to acknowledge useful discussions and material help from many people.

⇒ Adam Deller

⇒ Walter Brisken

Also many others including (in no particular order) Franco Mantovani, Steven Tingay, Walter Alef, Helge Rottman, Enno Middelberg, Richard Porcas
A simple ‘figure of merit’

For an interferometer with dishes of diameter d separated by D the primary beam Θ and resolution θ are given by

$$\theta \approx \frac{\lambda}{D}, \Theta \approx 1.22 \cdot \frac{\lambda}{d} \quad (1)$$

So the number of resolution units across the primary beam is

$$\frac{\Theta}{\theta} = \frac{D}{d} \Rightarrow n_{\text{pixel}} \sim \left(\frac{D}{d}\right)^2 \quad (2)$$

n.b. for imaging purposes the true number of pixels will be $\sim 10 \times$ bigger
Image size of different arrays

<table>
<thead>
<tr>
<th>Array</th>
<th>d (m)</th>
<th>D (km)</th>
<th>D/d</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLA</td>
<td>25</td>
<td>36</td>
<td>1440</td>
</tr>
<tr>
<td>MERLIN</td>
<td>32</td>
<td>217</td>
<td>8680</td>
</tr>
<tr>
<td>EVN</td>
<td>100</td>
<td>10180</td>
<td>101800</td>
</tr>
<tr>
<td>VLBA</td>
<td>25</td>
<td>8611</td>
<td>344440</td>
</tr>
</tbody>
</table>

n.b. All arrays in longest-baseline/smallest-antenna configuration
Three Caveats

Widefield VLBI techniques are only useful if:

⇒ There are enough bright sources on the sky that more than one will fall within the primary beam

⇒ It is possible to correlate with sufficient resolution to cover the large area

⇒ There are appropriate techniques to handle the resulting large datasets
Caveat 1: Density of Detectable Sources

⇒ This depends on the sensitivity of VLBI
⇒ However even a decade ago it was possible to detect multiple sources
⇒ Sensitivity (and therefore density of detectable sources on the sky) is increasing all the time
Caveat 2: Offset source visibility phases in time/frequency

⇒ The size of the image that can be made is determined by how much averaging is done of the data
 → The number of channels
 → The integration time
How to generate the Wide-field Dataset

⇒ Generating high-resolution datasets was a problem for hardware correlators
 → It was this which limited the field of view for Wide-field VLBI until recently
⇒ With software correlators such as DiFX (Deller et al. 2007) the time penalty is acceptable.
 → Greater CPU resources required for greater number of channels
⇒ The main problem is the output data volume
 → ∼ TB for a typical VLBA observation
Caveat 3: Wide-field Imaging

Direct wide-field imaging

Very quickly becomes slow

⇒ Will quickly fill computer memory
⇒ Non-coplanar effects to handle
⇒ parallel algorithms are in development

Correlating with different phase centres

⇒ Ties up correlator (and media)

Correlating, transforming and averaging

⇒ Correlate to create one large dataset
⇒ Use this to generate several smaller datasets
Transforming correlated data

⇒ Transform one dataset into the other.
⇒ Then the data can be averaged
⇒ Repeat for every region of interest
Geometry

The correlator has already shifted the datastreams so that the two antennas are on a baseline perpendicular to the original phase centre:

Consider a phase centre offset from this position
Correlating, Transforming and Averaging

- We start with the correlated data
- Calculate a new delay for
 - each baseline
 - each time integration
- Apply a phase shift to each datum
 - time dependent
 - frequency dependent
How to calculate the delay?

This is what the baseline vectors are for!

They can be used to calculate the delay at any point in the image:

$$\Delta \phi = \frac{2\pi}{\lambda} (lu + mv)$$ \hspace{1cm} (3)

The correlator delay model takes more into account than simple geometry (Sovers et al. 1998)

DiFX actually calculates the baselines using the full accuracy of the correlator delay model:

$$(u, v, w) = c \left(\frac{\partial \tau}{\partial l}, \frac{\partial \tau}{\partial m}, \tau \right),$$ \hspace{1cm} (4)

These differ by up to 1 part in 10 000 from purely geometrical vectors. (Walter Brisken Priv. Comm.)
How to calculate the delay?

There is still a problem

⇒ There is only one value of u and v for each visibility

We are treating the delay across the wide field as a linear function
CALC 9 generated delays across the wide field

The delay function varies smoothly throughout the sky
No reason to think this isn’t typical
Fractional error of a linear fit

Fit forced through 0 at the origin and 0.3 arcminute point
Similar to the derivation done by DiFX
Error of using a linear fit

⇒ This is the reason for the UV shifting errors noted by others (Lenc et al. 2008; Middelberg et al. 2008)
⇒ it cannot be calibrated out
⇒ It is made whenever using UV data to look at flux away from the phase centre

(though the error may be negligible for shorter shifts)
Accurate UV shifting

By generating a second correlator model for the desired phase centre it should be possible to UV shift accurately.

No need to recorrelate:

⇒ We start with the correlated data
⇒ Replace the phase centre coordinates
⇒ Replace the baseline vectors (UVW)
⇒ Apply the phase shift to each visibility
 → difference in delay between the two models (multiplied by the frequency)
Take into account delay rate

There is still an error of one part in 10^6

\Rightarrow The delay is changing with time

\Rightarrow Need to take into account the change in delay over the shift

Another error which is always present but only measurable for the most extreme wide-field VLBI
Error after a phase shift of 1000000 turns

Residuals and Chi^2 linear fit: y = 0.313256x + -2632.42 \((r^2=0.458702) \)

(Morgan et al. 2010)
Error after a phase shift of 1000000 turns

Residuals and Chi^2 linear fit: y = 0.0505706x + 0.588864 (r^2=0.408585)

(Morgan et al. 2010)
Implementations

This is implemented with full accuracy in:

⇒ difx2fits (not in the standard release)

The latest release of DiFX (2.0) also implements the shifting algorithm with full accuracy

⇒ The extremely high resolution dataset never leaves the computer’s memory

⇒ The PI receives one standard visibility dataset for each requested phase centre

⇒ The computational efficiency is breathtaking!

(Deller et al. 2010)
Correction for smearing:

⇒ Amplitude correction can be calculated fairly accurately from the shift delay

⇒ Larger than simple smearing for DiFX due to triangular weight function (Morgan et al. 2010)

Primary Beam:

⇒ Assume that within a single image the correction is the same

⇒ Adjust the **visibilities** for the primary beam response of the **baseline**
 → time & frequency dependent

(See my poster for more details)
Amplitude Correction and Calibration

Correction for smearing:

⇒ Amplitude correction can be calculated fairly accurately from the shift delay

⇒ Larger than simple smearing for DiFX due to triangular weight function
 (Morgan et al. 2010)

Primary Beam:

⇒ Assume that within a single image the correction is the same

⇒ Adjust the visibilities for the primary beam response of the baseline
 → time & frequency dependent

(See my poster for more details)
Future Work

We can generate a model for any point on the primary beam

What would be better would be to characterise the delay across the entire primary beam

⇒ not just u, v and w but also higher terms

This would allow the calculation of the delay at any point with full accuracy.
Radio Astronomers do it in four dimensions

⇒ Accurate UV shifting at any point during correlation, calibration or imaging

⇒ This four-dimensional (antenna, l, m, t) could then be refined during calibration

→ Phase calibration from multiple source within and outside the primary beam
→ Synergies with low-frequency interferometry?
→ Synergies with new and future widefield interferometers?
⇒ VLBI across the primary beam is now possible
⇒ The density of sources on the sky means that many sources are detectable in an 8-hour observation at L-Band
⇒ I am interested in collaborating on Wide-field VLBI projects
References