Multi-frequency VLBI studies of the OVV quasar NRAO 530

Ru-Sen Lu1,2

in collaboration with

T. P. Krichbaum 1 \& J. A. Zensus 1

1. Max-Planck-Institut für Radioastronomie, Germany
2. Shanghai Astronomical Observatory, China
Introduction

kpc scale:
- A core jet structure in P.A. -50°, double lobes in the E-W direction

pc scale:
- Oscillating jet consists of a number of emission components north to the core

A well know OVV:
- $z = 0.902$, 1 mas \rightarrow 7.8 pc
- Erratic and strong broad-band variability
- $\beta_{\text{app}} \approx 10^{-40}$ c

Morphology:
- **kpc scale:**
 - A core jet structure in P.A. -50°, double lobes in the E-W direction

- **pc scale:**
 - Oscillating jet consists of a number of emission components north to the core
Data collection

- Main calibrator in 2007 Sgr A* observing campaign:
 - 2007/5/15-24
 - 22 GHz (10 days)
 - 43 GHz (10 days)
 - 86 GHz (10 days)

 See my poster for other results from this campaign

- Mojave 15 GHz (1999-2009, 17 epochs)
component identification: an example

Jet components

Core

15 GHz, 2007
Spectra and spectral evolution

- Core identification: the compact component at the south end
- $B \approx 76 \cdot \delta$ mG based on SSA
- systematic change of α along the jet

Core separation
Core location \(r_{\text{core}} \) varies with \(\nu \):
\[
r_{\text{core}} \propto \nu^{-1/kr}
\]

\((K_r \text{ is related to the electron energy distribution, B-field, and the electron number density})\)

Synchrotron self-absorption, \(K_r = 1 \)
ν-dependent positions of components

Epoch: 2007.4

<table>
<thead>
<tr>
<th>Id.</th>
<th>$\Delta r_{22/43}$ [mas]</th>
<th>$\Delta r_{43/86}$ [mas]</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>-0.17±0.02</td>
<td>-0.09±0.03</td>
</tr>
<tr>
<td>e</td>
<td>-0.12±0.03</td>
<td>…</td>
</tr>
<tr>
<td>f</td>
<td>-0.14±0.04</td>
<td>…</td>
</tr>
</tbody>
</table>

- Two-dimensional shift for component f (>4σ for P.A.)
Inter-day Variability: flux density

- Outer jet components
- Inner jet components

- The probability for variability for most components is low
- $m < 4\%$ for the core, and $m < 20\%$ for the jet
Jet kinematics at 15 GHz

Physical parameters:
- apparent speeds β_{app}: 2-26 c
- inter-day variability < 170 c
- $\Gamma_{\text{min}} = \delta_{\text{min}} = 14.1$
- $\theta_{\text{cri}} = 4.1^\circ$ (for comp. f)

Core separation vs. time
Jet kinematics at 15 GHz

P.A. swing for comp. d, e, h, and i

P.A. keeps nearly constant for comp. f, g, j

P.A. vs. time
Morphology evolution: jet wobbling

- Visible only in the innermost regions
- Similar to many others, like NRAO150, BL Lac etc.
Summary

➢ One-sided core-jet structure with spectral evolution

➢ 2-D position shifts along the jet, some of which are probably due to the core-shift

➢ Variations of flux density and structure on daily time-scales:
 flux density: \(m < 4\% \) for the core and \(m < 20\% \) for the jet;
 jet speeds < 170 c

➢ evolving jet ridge line, a consequence of 3-D motion
Thank you!