The Broadband Emission Properties of AGN Jets

Chang, Chin-Shin1,2,3

Max-Planck-Institut für Radioastronomie

1Member of International Max Planck Research School of Astronomy and Astrophysics
2Member of ESTRELA Network
3Affiliated graduate student of the *Fermi*/LAT Collaboration
Collaborators

Eduardo Ros
Universitat de València, Spain & MPI für Radioastronomie, Germany

Matthias Kadler
Dr. Remeis-Sternwarte & ECAP, Germany
CRESST/NASA GSFC & USRA, USA

Moritz Böck, Joern Wilms, Laura Barragán
Dr. Remeis-Sternwarte & ECAP, Germany

M. F. Aller & H. D. Aller (UMRAO)
University of Michigan, USA

L. Fuhrmann, E. Angelakis & I. Nestoras (F-GAMMA)
MPI für Radioastronomie, Germany

H. Ungerechts (IRAM)
Institut de Radio Astronomie Millimétrique, Spain

The MOJAVE Collaboration and the Fermi Collaboration
The Emission of AGN Jet
The Emission of AGN Jet

Spectral Energy Distribution (SED)

3C 111

Chang et al.

Radio

γ-ray

Chang, Chin-Shin 張靖歆

2010 EVN Symposium, Manchester

2010.09.23
The Emission of AGN Jet

Chang et al.

3C 111

Synchrotron

Inverse Compton (Leptonic)

or

Proton-induced (Hadronic)
The Broadband Emission of AGN

Open questions:

- Where is the emission of AGN jets generated? Parsec-scale jet?
- How does apparent jet speed affect broadband emission properties?
- Does brightness temperature in parsec-scale jet play a role in generating broadband emission?
- What are the mechanisms to produce high-energy emission of blazars: leptonic (SSC, EIC), hadronic (photon-photon), or both?
The Broadband SED Catalog

- We constructed a broadband spectral energy distribution (SED) catalog of 135 MOJAVE sources, which is a radio-selected complete sample consisting of mostly blazars (AGN as seen jet-on)

- The MOJAVE sample has
 - 101 flat-spectrum radio quasars
 - 22 BL Lac objects
 - 8 radio galaxies, 4 unidentified objects

Continuously monitored in the radio band

- Use simultaneous datasets from radio to γ-ray bands
Broadband SED data

- *Swift* observations
 - **[X-ray/Optical]** XRT/UVOT: Dedicated program to observe MOJAVE sources, observations after August 2008

- **[Radio]** UMRAO monitoring (e.g., Aller et al. 2003, ApJ 586, 33)

- **[Radio]** FGAMMA monitoring (Fuhrmann et al. & Angelakis et al. 2010)
Broadband SED data

- Swift observations

- [X-ray/Optical] XRT/UVOT: Dedicated program to observe MOJAVE sources, observations after August 2008

- [Radio] FGAMMA monitoring (Fuhrmann et al. & Angelakis et al. 2010)
Data analysis

- A polynomial model is applied to both humps in all broadband SEDs (as a first approach)

- We estimated the peak positions of the synchrotron and high-energy humps
Distribution and Correlation Study

SED:
- $\nu_{\text{sync}, \text{peak}}$
- $\nu F_{\nu, \text{sync}, \text{peak}}$
- $\nu_{\text{IC}, \text{peak}}$
- $\nu F_{\nu, \text{IC}, \text{peak}}$

Radio (VLBI):
- Flux density
- Spectral index
- β_{app}
- Doppler factor
- Lorentz factor

X-ray:
- Flux
- Luminosity
- Photon index

γ-ray:
- Flux
- Luminosity
- Photon index
Distributions of Synchrotron Peak Values

\(\nu_{\text{sync}} \) \hspace{1cm} \(\nu \nu_{\text{sync}} \)

Preliminary

<table>
<thead>
<tr>
<th>Number of Objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Log \(\nu \) [Hz] (Synchrotron)
Distributions of IC Peak Values

$v IC$

$v Fv IC$

Preliminary

Chang, Chin-Shin 張靖歆 2010 EVN Symposium, Manchester 2010.09.23
Jet apparent speed & SED properties

$\beta_{\text{app}} - vFv_{\text{sync}}$

$\beta_{\text{app}} - v_{\text{IC}}$

Quasars ($N=95$)
- BL Lac Objects ($N=16$)
- Radio Galaxies ($N=6$)

Quasars ($N=84$)
- BL Lac Objects ($N=14$)
- Radio Galaxies ($N=5$)

Preliminary
Summary & Outlook

• We constructed the broadband SED catalog for the radio-selected, statistically-complete MOJAVE sample.

• We applied polynomial fits to the SED, and derived peak positions of the synchrotron and the IC humps.

• The distributions of the peak positions of the synchrotron and the IC humps show different behaviors, and further investigations are needed.

• We see possible relations between the apparent jet speed and $v Fv_{\text{sync}} / v_{\text{IC}}$, and we will confirm this with further detailed statistical analyses.
Summary & Outlook

• A complete study on the statistical properties between parameters of SED, VLBI, and X-rays is in progress.

• Physical modeling on the broadband SED is needed in order to understand the properties of each source.
Thank you
Collaborators

Eduardo Ros
Universitat de València, Spain & MPI für Radioastronomie, Germany

Matthias Kadler
Dr. Remeis-Sternwarte & ECAP, Germany
CRESST/NASA GSFC & USRA, USA

Moritz Böck, Joern Wilms, Laura Barragán
Dr. Remeis-Sternwarte & ECAP, Germany

M. F. Aller & H. D. Aller (UMRAO)
University of Michigan, USA

L. Fuhrmann, E. Angelakis & I. Nestoras (F-GAMMA)
MPI für Radioastronomie, Germany

H. Ungerechts (IRAM)
Institut de Radio Astronomie Millimétrique, Spain

The MOJAVE Collaboration and the Fermi Collaboration