Resolving Key Questions in Extragalactic Jet Physics

Robert Laing (ESO)

on behalf of Martin Hardcastle (U Herts) and the rest of the Legacy Team

Outline

- Why study jets?
 - Jets and compact objects
 - Particle accelerators electrons, cosmic rays, photons
 - Feedback
- The story so far
 - Relativistic flow
 - Weak jets and deceleration
 - Powerful jets
- Why e-MERLIN?
 - Transverse resolution
 - What starts deceleration?
 - How fast are powerful jets?
- Initial results

Crab pulsar

Radio Galaxy Centaurus A

Jets

Young stellar object HH47

Gamma Ray Burst

More jets

Planetary Nebula M2-9

Jets as particle accelerators: Cen A

10²⁰ eV protons (or maybe not)

Auger (Abraham et al. 2007)

10¹³ eV photons

Feedback in galaxies, groups and clusters

Fanaroff-Riley (FR) classes and jet flavours

3C31

RL et al.

3C133 Floyd et al.

FRII – high power, narrow jets, hot-spots

3C296 Leahy & Perley RL et al.

FRI – low power, broad jets, no hot-spots

Relativistic effects in jets

- $n(E)dE \propto E^{-(2\alpha+1)}dE$ Energy spectrum
 - $S(\nu) = D^{2+\alpha}S_0(\nu)$ Doppler boosting
 - $D = [\gamma(1-\beta\cos\theta)]^{-1}$

 $S_j/S_{cj} = \left(rac{1+eta\cos heta}{1-eta\cos heta}
ight)^{2+lpha}$

 $\sin\theta_0 = D\sin\theta$

Jet/counter-jet ratio

Doppler factor

Aberration

Assume intrinsic symmetry Model geometry, velocity field, emissivity and ${f B}$ Use linear polarization to decouple β and θ

Superluminal _____

3C279: v_{app} = 30c

Decelerating, relativistic jets

Radio Galaxy 3C31 (RL et al. 2008)

Consistency tests

Asymmetries in Faraday rotation: near side shows lower RM dispersion. Symmetrical for $\theta > 55^{\circ}$; asymmetrical at smaller inclinations.

Fractional core flux density anticorrelated with θ in the expected way.

Velocity Field

Magnetic Field Geometry

Particle Acceleration

Radio/X-ray (Worrall et al. 2007)

Spectrum and speed

Spectrum becomes flatter with increasing distance from AGN Opposite to effect of synchrotron losses Velocity-dependent particle acceleration

Laing & Bridle (2013)

The onset of deceleration

New questions

- Why is the sudden brightening followed by deceleration?
 - Jets become overpressured, expand rapidly, form shocks?
 - Growth of unstable Kelvin-Helmholtz modes?
 - Initial deceleration due to mass lost from stars in the jet volume (probably only at low power)?
 - All or none of the above?
- What is the velocity upstream of the flaring point?
 - Fast spine+thin, slow surface layer?
 - Acceleration in steep pressure gradient?
- Need higher resolution, particularly transverse to the jet axis
 - Jet-crossing features
 - Velocity profile

→ e-MERLIN

Powerful Jets

- Much less known
 - Fainter and narrower than the low-power jets
 - Often very asymmetrical, so counter-jets are very dim
- Key questions
 - Relativistic on kpc scales, but how fast?
 - Integrated jet sidedness ratios suggest $\beta \approx 0.6 0.7$ (slower than the fast parts of low-power jets!), but may be misleading
 - If X-rays from extended quasar jets are due to beamed inverse Compton scattering of CMB photons, then the jets must have Γ ~ 10 spines, with the radio coming from much slower (Γ ~ 2) shear layers.
 - Too hard to resolve (often even detect) counter-jets, with one exception – Cygnus A
 - What can we learn from main (approaching) jets only?

The exception: Cygnus A

Radio contours (0.4 arcsec, 5GHz)

Chandra colour (Michael Wise)

Jets (lobe subtracted)

Beamed inverse Compton X-rays?

If X-ray emission is beamed inverse Compton scattering of CMB, then $\Gamma \sim 10$ (Tavecchio et al.; Celotti et al.)

Radio emission likely to be slower?

.... but this idea doesn't work in 3C273 (Meyer & Georganopoulos)

Chandra image of X-ray emission from radio quasar 4C19.44 (Schwartz 2008)

Speeds in Powerful Jets

- Transverse profiles of I and linear polarization
 - At lower inclinations, jets appear more centrally peaked (we see more of the spine)
 - Use fractional core flux f as an indicator of orientation
 - Look at transverse profiles at different f
 - End-on sources like 3C273 should provide a good test ...
 - ... but are really hard to image
- Again, we need resolution better than 0.1 arcsec

→ e-MERLIN

Legacy Proposal

- Two representative sub-samples of flux-limited 3CRR sample
 - Wealth of multifrequency data
 - Legacy value
- Weak (FRI) radio sources with twin jets, z < 0.06
 - 10 sources, L band
- Powerful (FRII) sources
 - 11, L and C bands
- 375 hours allocated
 - Image fidelity/dynamic range (need noise-limited imaging)
 - Accurate polarization calibration
 - Wide-band MFS (including polarization; RM synthesis)
 - Combination with (J)VLA, initially in different spectral configurations

First Steps

- Commissioning observation
 - 3C31, L band
 - Parallel hands only; no linear polarization
 - No Lovell yet
 - Processing@home, so needed to install software
- Reduction
 - Mostly following Cookbook to a first approximation; lots of help from Anita
 - Most difficult step was flagging the phase reference and getting good gain solutions: point source calibrator and target were much easier
 - Imaging with ROBUST \approx 0 and multi-scale CLEAN (3 scales)

Results so far

e-MERLIN, 6 IF's averaged 0.125 arcsec FWHM

(RL et al. 2008)

Initial Image

- rms 23 µJy/beam (thermal noise 12 µJy/beam)
 - thermal noise may be underestimated because flagging not fully taken into account in estimate
- Artefacts: these are mostly multiplicative rather than additive
 - Symmetry suggests mostly amplitude errors remaining
- Peak 56 mJy/beam
 - ~75 mJy/beam from 1.5-arcsec resolution VLA observations at the same frequency
 - Need to check flux transfer, but some of this could be either variability or resolution
- Another obvious limitation is short-spacing coverage (large-scale ripple parallel to jet axis)
 - Need to add in VLA data (although the bandwidth is very different)
 - Weights?
 - Cross-calibration?

What did I learn that wasn't in the Cookbook?

- Installation of pipeline and SERPent autoflagger
 - Painless, with the exception of the Obit build: better to distribute Parseltongue binaries
- SERPent
 - Default parameters caused some overflagging on calibrator data
 - Works well on bandpass-calibrated target data (parameters tweaked)
- Imaging
 - For our purposes: robust = 0 works well; need multi-scale CLEAN
- Next steps
 - MFS imaging (CASA, with AIPS IMAGR in spectral mode as a check)
 - Most efficient way of tracking down remaining calibration errors and RFI?
 - Accuracy of flux transfer?

P. Alexander	Cavendish Laboratory, Cambridge	S. Garrington	JBCA, University of Manchester
M. Birkinshaw	University of Bristol	D. Guidetti	INAF - IRA, Bologna/ESO
A.H. Bridle	NRAO	M.J. Hardcastle	University of Hertfordshire
I.W.A. Browne	JBCA, University of Manchester	R.A. Laing	ESO
WD. Cotton	NRAO	I.P. Leahy	IBCA University of Manchester
J.H. Croston	University of Hertfordshire	R. Morganti	ASTRON
F. Dulwich	University of Oxford	P. Parma	INAF - IRA, Bologna
D.A. Evans	Harvard/CfA	J.M. Riley	Cavendish Laboratory, Cambridge
D. Gabuzda	University College Cork	D.M. Worrall	University of Bristol