

Resolved radio continuum studies with the VLA and e-MERLIN of IC10

Elias Brinks Centre for Astrophysics Research University of Hertfordshire

Date: 10th April 2014

E-MERLIN Science Meeting, Manchester

Collaborators

Ged Kitchener & Jonathan Westcott (Hertfordshire)

Volker Heesen (Southampton)

Rob Beswick & Pierre-Emmanuel Belles (Manchester)

LITTLE THINGS consortium

LeMMINGs

Content

- Motivation
- * Multi-band, multi-configuration VLA observations of IC10
- * First e-MERLIN results on IC10

Content

- Motivation
- * Multi-band, multi-configuration VLA observations of IC10
- First e-MERLIN results on IC10

Poster by Jonathan Westcott

Motivation

- * Star formation (SF) drives galaxy evolution
- * UV/optical tracers suffer uncertainty due to extinction
- MIR extinction correction or FIR SF tracers require high resolution satellite observations
- refurbished e-MERLIN & VLA, plus SKA precursors, have boosted radio continuum (RC) capabilities
- thermal RC (33GHz; Murphy et al. 2012) is a virtually extinction-free proxy for the SFR, but at T~10⁴ K is weak.
- * instead, explore synchrotron-dominated 1.5-6 GHz regime

Motivation

- (non-thermal) RC has potential to be a dust-free star formation rate (SFR) probe via RC-SFR (Condon) and the RC-FIR relation
 - * Heesen et al. (2014): RC-SFR study in spirals
 - Kitchener PhD: RC-SFR & RC-FIR relation of dwarfs with VLA (~40 dIrr galaxies)
 - Case study: IC10 multi-band, multi-configuration spatially resolved VLA study (Heesen et al. 2011)
 - * Westcott MSc: IC10 20cm e-MERLIN study, head count of SNR and (ultra-)compact HII regions → SFR

- * RA, Dec = 0^h20^m17.3^s, +59^o18'14"
- * l,b = 118.°96, -3.°33
- D = 0.7 1.0 Mpc (member of M31 sub-group)
- * ISM dominated by HI/H α shells
- non-thermal radio continuum
 bubble (Yang & Skillman 1993)

B-band on HI map

- * Heesen et al. 2011, ApJ Lett., 739, L23
- * ~4 hr, Full Stokes, C-array, 2 GHz @ C-band (6.2 GHz)
- * 5 μ Jy rms @ I, Q, & U (expected thermal noise 4 μ Jy)
- ~2000:1 dynamic range
- * MS-MFS mapping (Rau & Cornwell 2011)
- * 9.4" x 7.3" resolution (~ 47 x 36 pc)

- No galaxy-wide Bfield
- Compression by shock waves?

Polarised intensity and magnetic field orientation overlaid on the fractional polarisation (grey scale) at 15" resolution. Polarised intensity contours are at 3, 6, 10, and 20 \times 7 µJy beam⁻¹. in-band spectral index on 6cm

RC-FIR & RC-SFR relations

- RC-FIR slope 1.05 ±0.08 (large spirals 0.99±0.01, Yun et al. 2001)
- dispersion 0.25 dex
- factor of 2 below Yun et al. (2001)
- * RC-FIR "conspiracy"

- * RC-SFR slope 1.21 ±0.09
- dispersion 0.2 dex
- * deviates from Condon-relation below SFR < 0.1 M $_{\odot}$ yr⁻¹
- both thermal & synchrotron are down

3cm D-array

Contours: 3cm D-config Grey-scale: Halpha

L-band C+D-array on $H\alpha$

Measuring Cosmic Ray aging

 Power-law "injection" spectrum breaks at v_{brk}(t)

 $v_{\rm brk} = 2.52 \times 10^3 \frac{[B/10\,\mu\rm{G}]}{([B/10\,\mu\rm{G}]^2 + [B_{\rm CMB}/10\,\mu\rm{G}]^2)^2 [\tau/Myr]^2} \,\rm{GHz}$

- Above v_{brk}, spectrum depends on model assumptions (e.g. pitch angle scattering): Jaffe & Perola 1973, Kardashev 1962 & Pacholczyk 1970
- More complex models exist (e.g. Tribble 1993)
- But radio spectral ages have a number of limitations....

Non-thermal superbubble

L-Band e-MERLIN observations of IC10 [LeMMINGs] Feb & Nov 2013 $\sigma \leq 30 \mu$ Jy

RIGHT ASCENSION (J2000)

0

L-Band e-MERLIN observations of IC10 [LeMMINGs] Feb & Nov 2013 $\sigma \leq 30 \mu$ Jy

First e-MERLIN IC10 Results

- * ~ dozen sources related to IC10 (morphology; spatial correlation)
- ratio SNR/HII about 50/50
- Work in progress:
 - * will be looking for variability between Feb & Nov 2013 epochs
 - proper ID using ancillary data
 - create SNR luminosity function
 - * investigate Σ -D relation for SNR

Summary: IC10

- * Radio continuum correlates with H α ; RC is 30–50% thermal
- Radio continuum falls 2–3x below RC–SFR relation (truncated IMF? loss of CR electrons)
- Non-thermal bubble:
 - Fractional polarisation 10–20%
 - * shock origin?
 - spectral age ~2-3 Myr
- * e-MERLIN finds ~dozen compact sources, 50% SNR, 50% HII region

The End