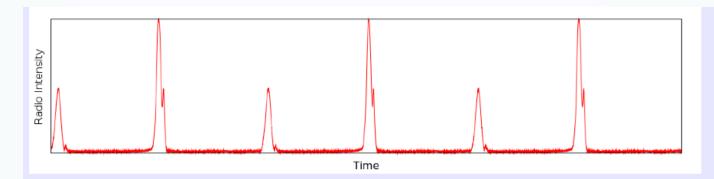
Spectral Analysis of Timing Noise in NANOGrav pulsars

Delphine Perrodin Franklin & Marshall College Lancaster, Pennsylvania, USA

YERAC 2011

Outline


- Pulsar timing residuals
- Autocorrelation of timing residuals
- White noise vs Red noise
- Sources of timing noise
- Why study timing noise?
- Complications
- Cholesky method

The International Pulsar Timing Array

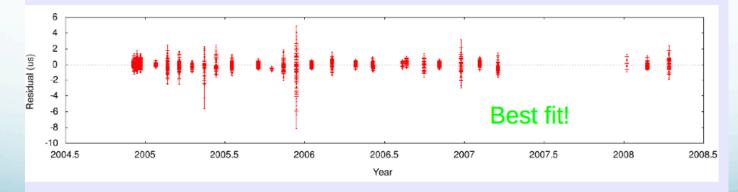
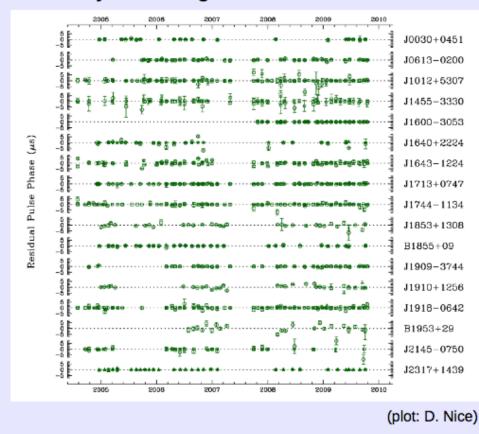


Image source, clockwse from upper left: http://www.gb.nrao.edu/; http://www.astron.nl/; http://www.mpifr-bonn.mpg.de/english/index.html; http://gmrt.ncra.tifr.res.in/; http://www.fickr.com/photos/shami_chatterjee/455275921/; http://www.sti.naf.#/; http://


"Timing residuals" = Data – model pulse arrival times

Credit: Paul Demorest

NANOGrav residual data

NANOGrav 5-year timing results overview:

NANOGrav residual data

Source	Per-channel	χ^2	Daily	Hi-freq	
	RMS, μs		RMS, μs	RMS, μs	
J1713+0747	0.106	1.48	0.030	0.041	
J1909–3744	0.181	1.95	0.038	0.047	
B1855 + 09	0.395	2.19	0.111	0.101	
J0030 + 0451	0.604	1.44	0.148	0.328	
J1600–3053	1.293	1.45	0.163	0.141	
J0613-0200	0.781	1.21	0.178	0.519	
J1744–1134	0.617	3.58	0.198	0.229	
J2145-0750	1.252	1.97	0.202	0.494	
J1918–0642	1.271	1.21	0.203	0.211	
J2317+1439	0.496	3.03	0.251	0.155	
J1853 + 1308	1.028	1.06	0.254	0.271	
J1012+5307	1.327	1.40	0.276	0.345	
J1640 + 2224	0.562	4.36	0.409	0.601	
J1910 + 1256	1.394	2.09	0.708	0.710	
J1455–3330	4.010	1.01	0.787	1.080	
B1953 + 29	3.981	0.98	1.437	1.879	
J1643–1224	2.892	2.78	1.467	1.887	

Credit: Paul Demorest

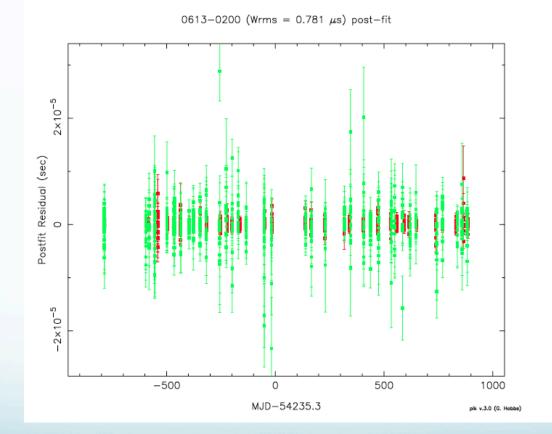
Are the timing residuals correlated?

Residual (ms)

54044.089435873136551 -0.0018164628493641641436 54044.090130776945745 -0.0018199607840530716779 54044.090825680814575 -0.0018183061811999605721 54044.091520528383526 -0.0018155078738482632365 54044.092215432230436 -0.0018157471801402454965 54044.092910336108684 -0.0018132788409635254637 54044.093605183643156 -0.0018134595268065353304 54044.094300087480185 -0.001814552473309981613 54044.094994991339053 -0.0018137585708685278125 54044.095687642665851 -0.0018136071309974953137 54044.096382546533118 -0.0018120875881923725662 54044.09707745041473 -0.0018093285632315358352 54044.097772354259284 -0.0018097713802649205304 54092,92233343031689 0,00035644731039197293804 54092.92302827777306 0.00034950081873088501217 54092,92372312527203 0,00034625220756559240447 54092.924418029180064 0.00035129352320060902988 54092.925112876770228 0.00035592412603733835473 54092.925807724170209 0.00034412284260613678193 54092,926502571801255 0,00035228557046705851313 54092.927197419369701 0.0003550397605947598151 54092,927892323351383 0,00036644424233834594414 54092,928587170740517 0,00035370582682625731469 54092.929282018401906 0.00036449025267239360587 54092.929976865708504 0.00034462067118614673143

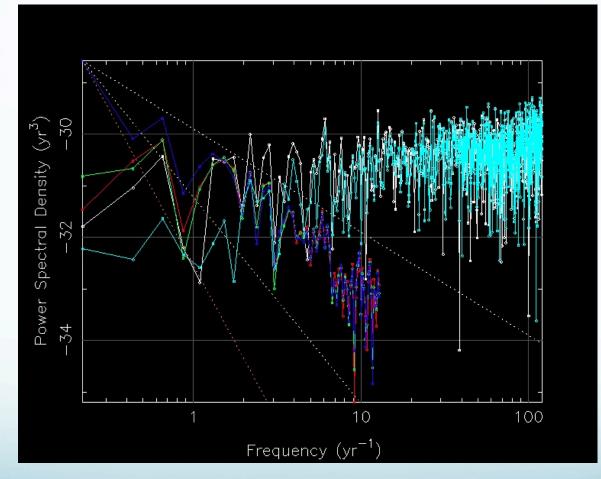
TIME (MJD)

Autocorrelation:

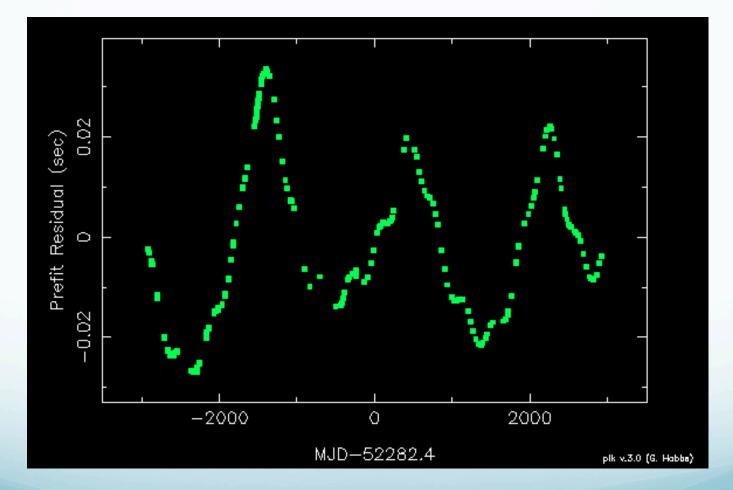

$$\hat{R}(k) = \frac{1}{(n-k)\sigma^2} \sum_{t=1}^{n-k} (X_t - \mu) (X_{t+k} - \mu)$$

Consistent with zero: White noise

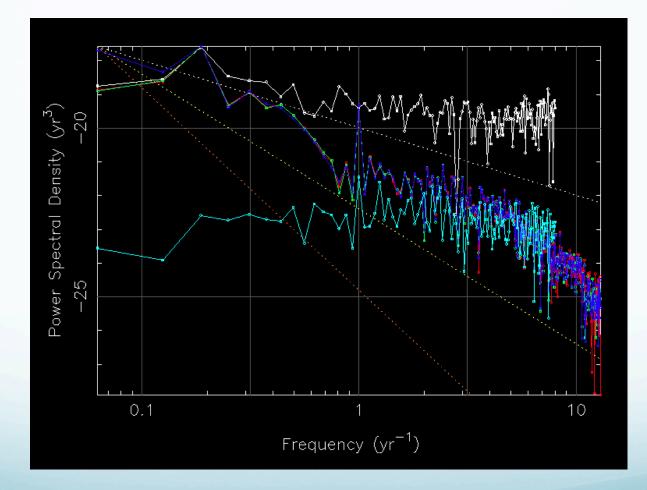
Positive correlation: Red noise


Negative correlation: Blue noise

White noise


Timing residual for J0613-0200 (NANOGrav data)

White noise


Power spectrum of residuals for J0613-0200 (NANOGrav data) Use of TEMPO2 SpectralModel plugin

Red noise

Timing residual for J1539-5626, credit: Meng Yu and PPTA

Red noise

Power spectrum of residual for J1539-5626, credit: Meng Yu and PPTA

Sources of timing noise

Intrinsic to pulsar

- Superfluid interior affecting rotation and spin period
- Free precession
- Variations in outside magnetosphere affecting torque --> random walk in pulse frequency or phase, or discrete jumps
- Pulse shape variations
- Unknown orbital companions

Extrinsic

- Clock errors
- Uncorrected DM variations
- Gravitational waves!

Source: Hobbs et al.

Why care about timing noise?

Want more information about timing residuals: timing noise (uncorrelated + correlated) in order to:

- Accurately estimate pulsar parameters. If red pulsar, parameter errors can be underestimated.
- Useful when trying to make sense of (and combine) observations at different frequencies and different observatories
- Identify/understand the sources of timing noise
- Quantify amount of red noise and use as input in gravitational wave detection pipelines, want to distinguish timing noise from gravitational wave signature
- Construct optimal filter: when adding various pulsar signals together, need to know how much to weigh them in sum – depends on noise each pulsar has.

Complications

- Issues with non-uniform time sampling when computing power spectrum
- → Use of the (Cholesky) Generalized Least-Squares method to compute power spectrum
- Cholesky method takes covariance matrix into account
- Timing noise is different at different frequencies and at different observatories. Why?

Cholesky method

- Study of timing noise in pulsar residuals: how to quantify the amount of red noise?
- Pulsar data non-uniformally sampled, cannot simply do Fourier analysis.
- Lomb-Scargle not adequate for steep spectra and not good for irregular spacing.
- Use Cholesky transformation with the TEMPO2 "spectralModel" plugin (W. Coles & G. Hobbs)
- Cholesky method separates out low-frequency (red noise) from high-frequency (white noise) components of spectrum. Unlike ordinary least-squares, Cholesky uses the covariance matrix during least-squares minimizing.

Sample fit for autocorrelation function

Example of what fits look like:

$$C(d) = Ce^{-d/\tau}$$
$$C = 1.96 \times 10^{-12} yr^{2}$$
$$\tau = 35 days$$

But in a lot of cases C1 is a small negative number. Should be consistent with white noise (i.e. C1=0) within error bars.

Negative number possibly due to overshoot by quadratic removal.

Results

Pulsar	Freq (MHz)	Obs	τ (days)	$C(yr^2)$	$\delta C (yr^2)$	corr	Prob (%)
J0030+0451	400	AO	170	0		-0.105	20.3
J0030+0451	1400	AO	26	-2.39E-13		0.079	10.9
J0613-0200	800	GBT	-	-		-0.009	84.4
J0613-0200	1400	GBT	55	1.22E-13		-0.204	0.04
J1012+5307	800	GBT	80	1E-12		0.024	51.2
J1012+5307	1400	GBT	12	-6.07E-13		-0.020	51.4
J1455-3330	800	GBT	4	-1.08E-12		0.093	3.7
J1455-3330	1400	GBT	16	5.22E-11		0.103	0.53
J1600-3053	800	GBT	160	-3.07E-14		-0.076	24.1
J1600-3053	1400	GBT	17	7E-13		0.0006	99.2
J1640+2224	400	AO	29	-2.82E-14		-0.034	55.8
J1640 + 2224	1400	AO	18	-3.60E-12		0.126	1.58
J1744-1134	800	GBT	27	3.3E-13		0.022	52.3
J1744-1134	1400	GBT	26	-1.75E-13		0.030	33.7
J1853+1308	1400	AO	48	-1.47E-12		-0.151	0.06
B1953+29	1400	AO	60	1.11E-12		0.110	12.2
B1855+09	400	AO	-	_		-0.114	9.5
B1855+09	1400	AO	73	-1.34E-13		0.145	0.27
J1909-3744	800	GBT	-	-		-0.170	2.66
J1909-3744	1400	GBT	153	-3.40E-14		-0.354	0.02
J1918-0642	800	GBT	-	-		0.045	28.1
J1918-0642	1400	GBT	8	5.79E-12		0.020	58.1
J2145-0750	800	GBT	-	-		-0.055	32.3
J2145-0750	1400	GBT	175	-4E-13		-0.038	45.9
J1713+0747	1400	GBT	23	3.25E-14		0.011	1.45
J1713+0747	1400	AO	450	-1E-15		-0.047	7.1
J1713+0747	800	GBT	-	-		-0.169	0.06
J1713+0747	2300	AO	35	7.97E-14		0.00036	48.9

Summary

- Millisecond pulsars used in PTA for GW detection exhibit white noise and red noise
- Need to quantify red noise when fitting for pulsar parameters + looking for GW
- Dependence on radio frequency and observatory. Need to better understand source of red noise in our observations