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PDR: Photo Dissociation Region

Regions where the chemistry and physics of the gas and dust is dominated by FUV
photons (< 13.6 eV).

* Most of the mass in the ISM is found in PDRs.
* They are everywhere.

BUT their chemical richness and physics is poorly known.

(Complex) organic molecules have been observed in PDRs with high abundances.
HCO, H,CO, HCOOH, CH30H, ...
* How can these molecules form in such harsh environments?

Complex PDR models and chemical networks need well-defined observations to serve
as basic references.
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Horsehead nebula

A dark nebula: one of the most famous (photographed) objects in the sky.

Template PDR:

* Viewed nearly edge-on (Habart et al.
2005).

e Nearby (~400 pc, 10” <+ 0.02 pc).

o llluminated by the 09.5 star o Ori
~ 3.5 pc away (Radiation field:
Gp = 60 in Draine units).

e Gas density is well constrained
(N ~ 10* — 10° cm~1).

= Reference to chemical models.
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H,CO - Formaldehyde

Guzman et al. accepted for publication A&A

O
Il

H O
o First organic molecule discovered in the ISM (Snyder et al. 1969)
» Triggers formation of more complex molecules (Charnley et al. 1992).
o Accurate probe of the kinetic temperature and density (Mangum & Wootten 1993).

o Rotational lines are easy to detect from ground-base observations.

o It has been observed in HIl regions, hot cores, YSO, molecular clouds, comets,
PDRs..

« Diffuse clouds: ~ 10~° se.g., Liszt & Lucas 1995; Liszt et al. 2006)
o WB33A protostar: ~ 10~ * (Roueff et al. 2006)

» p Ophiuchi A cloud core: ~ 5 x 10~° (Bergman et al. 2011)

» Orion Bar PDR: ~ 10~° — 10~ (Leurini et al. 2010)

e H,CO can be formed both in the gas-phase and on grains surfaces.
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IRAM-30m
* Map of the p-H,CO3p3 — 2¢ line at 218.2 GHz (12" angular resolution).
» Deep integrations of 0-H,CO and p-H,CO lines towards the PDR and Core
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H,CO column density
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H,CO column density
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H,CO chemistry

A, [mag]

Meudon PDR model
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H,CO chemistry

Meudon PDR model A, [mag]
Le Bourlot et al., to be submitted

-3

ny (cm™3)

Grain surface chemistry

o Adsorption, desorption and diffusive
reactions
CO — HCO — H,CO — CH30 — CH30H
e Thermal and non-thermal desorption

o Grains are strongly coupled to the gas
(Taust < 20K)

Abundance, n(x)/ng

Gas-phase vs. grain chemistry ;
[H2COlgran-chem ~ 10°[H2COgasphace (PDR) | 5

= 102k “——— Gas-phase
= Photo-desorption is needed to explain m 20 0

the observed H,CO abundance in the PDR.
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For the first time we investigate the role of grain surface chemistry in the Horsehead
PDR.
o Formaldehyde is found in both the edge of the nebula and in the shielded core
with a similar abundance (~ 2 — 3 x 10~10),
» Both gas-phase only and grain surface chemistry models reproduce the observed
H,CO abundance in the dense core.
Main formation route in the core: gas-phase chemistry.
* In the PDR gas-phase chemistry alone does produce enough H>CO.
H,CO forms on the surface of dust grains. Then, it is photo-desorbed into the
gas-phase.
o These different formation routes are straightened by the different measured
ortho-to-para ratio of H,CO: ~3 in the core and ~2 in the PDR

Photo-desorption of ices is an efficient mechanism to produce
gas-phase H,CO in the Horsehead PDR. J

Next: CH30H
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