VLBI Observations of Spacecraft with EVN Radio Telescopes

Dmitry Duev1,2, G. Molera Calvés3, S.V. Pogrebenko1, G. Cimó1, L.I. Gurvits1,4, A. Keimpema1, T. Bocanegra Bahamon1,4

1Joint Institute for VLBI in Europe, The Netherlands, e-mail: duev@jive.nl
2Lomonosov Moscow State University, Russia
3Aalto University, Metsähovi Radio Observatory, Finland
4Technical University of Delft, The Netherlands

YERAC-2011, Jodrell Bank Observatory, University of Manchester, UK
18-20 July 2011
Overview

• PRIDE overview
• Results of VLBI observations of ESA’s Venus Express (VEX) spacecraft and GNSS satellites
• Conclusions and outlook
Generic PRIDE configuration

Planetary Radio Interferometry and Doppler Experiment

Background sources

Orbiter(s)

VLBI network and 2-way tracking stations

Celestial body – target

PRIDE: a multi-purpose, multi-disciplinary enhancement of mission science return, based on the phase-referencing VLBI technology and science

Dmitry Duev. YERAC-2011, University of Manchester/Jodrell Bank Observatory, UK. 19.07.2011
Science with PRIDE

VLBI estimates of the S/C state vector

- Ultra-precise celestial mechanics of planetary systems;
 - measurements of tidal accelerations of the satellites may be possible

- Geodynamics, internal structure and composition;
 - Powerful constraints on the interior structure of the moons can be obtained from the joint analysis of topography and gravity field data.

- Shape and gravimetry;
 - multiple flybys can be used to define the low order gravity field parameters.

- Electric properties of icy satellite surfaces and their environments;
 - PRIDE will bring in multi-antenna detections enabling “stereoscopic” view on the phenomena under study.

- Anomalous accelerations of deep space probes and other *fundamental physics effects*.

“Cruise” science plus mission diagnostics (“health check”)

Direct to Earth (DtE) radio link
Science with PRIDE

VLBI estimates of the S/C state vector

• Ultra-precise celestial mechanics of planetary systems; measurements of tidal accelerations of the satellites may be possible

• Geodynamics, internal structure and composition; powerful constraints on the interior structure of the moons can be obtained from the joint analysis of topography and gravity field data.

• Shape and gravimetry; multiple flybys can be used to define the low order gravity field parameters.

• Electric properties of icy satellite surfaces and their environments; PRIDE will bring in multi-antenna detections enabling "stereoscopic" view on the phenomena under study.

• Anomalous accelerations of deep space probes and other fundamental physics effects.

PRIDE (prospective) customers:

Mercury: ESA-JAXA BepiColombo, 2014
Venus: VEX, CNES EVE and RSA Venera-D, >2018?
Moon: ESA NEXT and Chinese Chang’E-2
Jupiter + Europa, Ganymede, Callisto
 ESA-NASA Europa-Jupiter System Mission (EJSM), 2020?
Saturn + Titan, Enceladus
 ESA-NASA-JAXA Titan Saturn System Mission (TSSM), 2022?

“Cruise” science plus mission diagnostics ("health check")

Direct to Earth (DtE) radio link

Dmitry Duev. YERAC-2011, University of Manchester/Jodrell Bank Observatory, UK. 19.07.2011
Block-diagram of data processing and analysis

Raw observational data
- Reference Source coordinates
- Broad-band correlation of the reference source with the far-field delay model
 - Residual group delay and phase
 - Delay/phase corrections
 - Group and phase delay of the S/C signal with resolved 2π ambiguity
- Broad-band correlation of the S/C data band with the near-field delay model
 - Residual group delay and phase
- Narrow-band correlation of the S/C carrier and ranging tones with the near-field delay model
 - Residual phases of the carrier and ranging tones
- A priori state vectors of the S/C
- Reconstruction of the apparent state vectors of the S/C

Dmitry Duev. YERAC-2011, University of Manchester/Jodrell Bank Observatory, UK. 19.07.2011
Near-field delay model

Geometry of VLBI observations of spacecraft in the Barycentric celestial reference frame

Dmitry Duev. YERAC-2011, University of Manchester/Jodrell Bank Observatory, UK. 19.07.2011
Near-field delay model

Geometry of VLBI observations of spacecraft in the Barycentric celestial reference frame

Gravitating Body

Solar System Barycentre

+ Don’t forget about clock offsets/rates, charged media and troposphere!

Spacecraft S (T_0, X_0)

Receiver 1 R_1 (T_1, X_1)

Receiver 2 R_2 (T_2, X_2)

B
Why phase-referencing?

VEX phase behaviour on the baseline Onsala – Metsahovi, 25.03.2011, no phase referencing

Dmitry Duev. YERAC-2011, University of Manchester/Jodrell Bank Observatory, UK. 19.07.2011
Why phase-referencing?

![Graph showing spectral power density vs. frequency]

- **Red** – detected phase fluctuations
- **Blue** – scintillation slope fit
- **Light blue** – with system noise added

Kolmogorov spectrum of phase scintillations, Onsala, 25.03.2011

Dmitry Duev. YERAC-2011, University of Manchester/Jodrell Bank Observatory, UK. 19.07.2011
Why phase-referencing?

Kolmogorov spectrum of phase scintillations, Onsala, 25.03.2011

Dmitry Duev. YERAC-2011, University of Manchester/Jodrell Bank Observatory, UK. 19.07.2011
Why phase-referencing?

Kolmogorov spectrum of phase scintillations, Onsala, 25.03.2011

Nodding: $\tau = 180$ s, $f_0 = 1/\tau \approx 5.5$ mHz

Scintillation phase:

$$\left[\int_{f_0}^{f_{\text{max}}} D(f_0) \cdot \left(\frac{f}{f_0} \right)^{\text{slope}} \, df \right]^{1/2}$$
Why phase-referencing?

Nodding: $\tau = 180$ s, $f_0 = 1/\tau \approx 5.5$ mHz

Kolmogorov spectrum of phase scintillations, Onsala, 25.03.2011
Phase-Referencing VLBI Experiment em081c

• Telescopes:
 • *Onsala (SE)*
 • *Metsähovi (FI)*
 • *Hartebeesthoek (ZA)*
 • *Svetloe, Zelenchuk (RU)*
 • *Wettzell (DE)*
 • *Medicina, Matera (IT)*
 • *Yebes (ES)*
 • *St. Croix (US)*

• ESA VEX Spacecraft fringe finder - J2225-0457, calibrator - J2211-1328

• 8.45 - 11.30 UT, 28 March 2011

• Mark5A, 16 MHz bandwidth @ X-band
Phases of the fringe finder, calibrator and VEX + calibrated delay of the VEX spacecraft. Baseline Onsala - Metsahovi, em081c, 28.03.2011

Dmitry Duev. YERAC-2011, University of Manchester/Jodrell Bank Observatory, UK. 19.07.2011
Phases of the fringe finder, calibrator and VEX + calibrated delay of the VEX spacecraft. Baseline Onsala - Metsahovi, em081c, 28.03.2011

\[
\tau_{tropo} = \tau_{\text{zenith}} \cdot mf(zd) \approx \frac{\tau_{\text{zenith}}}{\cos(zd)}
\]

\[
-\frac{\sin(zd_c)}{\cos^2(zd_c)} \Delta zd_{c-v}
\]

Dmitry Duev. YERAC-2011, University of Manchester/Jodrell Bank Observatory, UK. 19.07.2011
Post-fit delay. Baseline Onsala - Metsahovi, em081c, 28.03.2011

Standard deviation: 11 ps
Lateral VEX a-priori coordinate deviations, baselines On-Mh, On-Pu, Mh-Pu. 25.03.2011. No phase referencing.
Test Experiment g100816

- Telescopes
 - *Onsala (SE), Medicina (IT)*
- GLONASS satellites, 16 August 2010
 - *PR21, 12.45 - 13.00 UT*
 - *PR13, 13.30 - 13.45 UT*
- Mark5A, 16 MHz bandwidth @ L-band
- PIs – V. Tornatore (Politecnico di Milano, IT), R. Haas (Chalmers University, SE)
Corrections to the GLONASS PR21 satellite ITRF position,
Baseline Onsala - Medicina, 16.08.2010

Dmitry Duev. YERAC-2011, University of Manchester/Jodrell Bank Observatory, UK. 19.07.2011
Conclusions and Outlook

• Spacecraft positioning with a very high accuracy is achievable with PRIDE

• We attract new users to EVN and JIVE

• A lot of work in the pipeline fine-tuning (including scheduling, tracking, processing and analysis) is still required
We would like to express a sincere gratitude to the personnel of the telescopes which took part in the observations.
Thank you for your attention!