

2PAD Digital System

Architecture

Chris Shenton – JBCA - Nov 2009

MCCT-SKADS Technical Workshop Nov 2009

1

- Demonstration of a functional fully digital beamformer
 - Small scale useable instrument "2-PAD"
- Develop metrics to describe the primary characteristics of various technology platforms on which such beamformers can be built.
 - What are these characteristics?
 - Processing Capacity
 - Power Consumption
 - Cost

- Scalability
- As a function of (Bandwidth, Sensitivity, No of Beams, Beam Quality)
- Feed upward to SKA system design team to allow objective design decision making

2PAD Design Aims (Digital System)

- Provide a modular platform for exploration of digital systems architectures for SKA
- Major Subsystems

- Multi Channel Digitiser
 - 128 Channels @ 1GHz Sampling (500MHz Bandwidth)
- Clock Distribution Subsystem
 - LVPECL 2 Level Clock Tree
- Channeliser
- Beamformer
 - Real Time Hardware
 - Quasi Real Time Software
- Back-end data processing
 - High(ish) end Multi Core Server
- Management Subsystem
- Infrastructure
 - Cooling
 - RFI Safe Enclosure
 - Power Supply

Technology Options

Candidate Technologies

HPC Clusters

- Commodity Hardware, easy access to technology, Upgradeable, Standards based Networking, Mature(ish) programming environment.
- IO Bandwidth limitations, inter-processor bandwidth bottlenecks, power requirements, space & infrastructure requirements.
- Multi-Core processors (inc DSP/GPU/NP)
 - Semi-commodity hardware, maturing software tools, Accessible technology.
 - Immature technology, 'difficult' programming environment, space & infrastructure requirements, limited IO interconnect options.
- FPGA based reconfigurable computers
 - Can be optimised, medium power, medium cost, highly flexible. Good IO options.
 - Medium NRE Costs, medium power, medium cost. Specialist programming for high quality results.
- ASIC based dedicated processors
 - Optimised, lowest power, lowest cost (if volume is big enough)
 - Design effort, High NRE, Poor Flexibility.

Technology Summary

	Infrastructure	Power	Flexibility	NRE Cost	Unit Cost	Performance
	Requirements					(per Watt)
НРС	High	High	High	Medium	High	Low
Specialised	Medium	High-Medium	High	Medium	Medium	Medium
Processors						
(MC,GPU,ALU						
Array)						
FPGA	Low	Medium	High	Medium	Medium	Medium-High
ASIC	Low	Low	Low	High	Low	High

Architectural Features

What are the features which drive the system characteristics?

- Processing Elements
 - ALU's
 - Dedicated Hardware Resources (Multipliers, Adders etc)
 - Microcoded Engines or Unrolled Pipelined Datapaths
- Inter-element Communications
 - Shared Memory
 - Point to Point Connections
 - Datapath Duplication & Fanout
 - Switched Interconnects (Fabrics)
- · 10

MANCHESTER

- Off Chip communications

- We need to understand the effect of various optimisations in terms of quality of results.
- Can we make significant simplifications to the processing to reduce power and area? Without compromising the performance of the instrument.
- Process technology do we really need to be at the bleeding edge? Is Moore's Law always the answer?
- What does flexibility cost and how much can we afford?
- T_{svs} trade-offs as a function of hardware simplification.
- Data Quantisation, scaling, 2ⁿ Co-efficient Quantisation.
- Can we sacrifice T_{sys} in order to meet power & cost requirements?
- Can we live with sub-optimal BERR performance across interfaces?
- Requirements for the clock distribution at various levels of the system hierarchy.
- Clock tree's are potentially very power hungry.

2-PAD Simplified System Overview

2-PAD Slightly Less Simplified Overview

Digitizer

- 3 Main Elements;
 - DAQ Board Dual Channel ADC + FPGA
 - Mid-Plane
 - Clock Distribution
 - Signal Conditioning Module

- Midplane based 3U 19" EuroCard Cardframe
 - Power & Clock Distribution via midplane
 - Instrument Management Network via midplane
 - Standard Prefab Commercial Metalwork
 - Nominally 10 Slots (8 DAQ, Shelf Clock, Optional System Clock)

ADC Performance

- Characterisation of the ADC and DAQ 'front end'
- Tests carried out using RF signal generator including Signal Conditioning Module in signal path.
- Linearity and S/N figures for the DAQ/SCM combination under development... We need to understand how much we are degrading the analogue signal 'quality' through the digitiser.

A Few Words About Clock Distribution

- Lots of it required for an array based system
- Very power hungry

- Hierarchical But jitter is additive so what's the budget?
 - 1024 Sampled Channels needs 2¹⁰ Clock Endpoints
 - Typical LVPECL Clock Buffer 1:4
 - 5 Level Clock Hierarchy
 - 20 ps per level jitter
 - 100 ps Jitter
- Total Jitter will escalate rapidly with high 2ⁿ clock trees

Progress in SKADS

- Digitiser subsystem implemented and characterised
 - Work continuing in area of optimised frequency channelization
 - Bringup of more acquisition channels
 - Clock subsystem implemented and characterised
 - Fine grain control of acquisition timing & deskew
- Instrument Management Subsystem implemented and in use.
 - Supports TCL scripting

- Speedup of interface planned
- Data transport using standards based approach
 - currently XGMII over CX4 (simplification from original Aurora design)
 - Support for 10GbE via iBOB... Work to implement native Tx Only 10GbE in progress.
- Software beamformer based on IBM Cyclops multi core processor
 - Hardware not at JBO but still available remotely at IBM location
 - Not Real Time but still meaningful
- Hardware beamformer & channelizer built using CASPER Hardware (See KZA talk)

2PAD into PrepSKA

- Modular approach allows "plug and play" of alternative implementations...
 - ... we can plug things together...
 - ... and play with it...

- Inherent capability provides 'room' for meaningful exploration of RTL structures (essential for ASIC migration)
 - Channelisation
 - Beamforming (Casper, Uniboard, COTS, Other)
 - Non-Imaging processors (Uniboard)
 - RFI mitigation techniques (Uniboard)
 - Power Analysis at RTL Level
 - RTL prototyping
- Continuation of multi core software techniques in collaboration with IBM based on knowledge acquired during SKADS
 - Can use 2PAD Digitiser subsystem to acquire high quality data sets for offline processing using software techniques
 - Can model quasi-real time behaviour using block data approach
- Interface into eMerlin
 - Validation of phase transfer activities in AA context.
 - Understanding of the wider system timing hierarchy

- There is not a single "RIGHT" answer.
- The movement of data (both intra-chip and inter-chip) is at least as significant as the raw number of processing elements.
- The retained "Quality" of the data through the processing hierarchy has a cost (e.g. how hierarchical can a system be before beam quality is compromised to an unacceptable level).
- What is the cost of flexibility? Where do we need it, and where can we achieve flexibility by other means, for example dynamic co-efficient insertion.
- We are moving away from opinion based arguments towards generating the evidence we need to inform the SKA design decisions and to enable us to design a system meeting the scientific requirements.
- 2-PAD and its derivatives will enable us to begin quantifying these factors.