

SKA-based receivers for eMerlin

Mike Jones Angela Taylor, Kris Zarb Adami & Jamie Leech University of Oxford Chris Shenton Adaptive Array Systems Ltd

- UK SKA development funding for:
- •Cryogenic receivers for SKA-Mid
- •Low-power cryogenics
- •Digital data acquisition and signal processing for SKA-Low

... and many other things

- This boost for technology development in UK provides opportunity for eMerlin upgrades & development:
- •SKA-compatible hardware
- •Highest-performance systems available
- •Maintains UK technical lead

SKA-mid receivers

- SKA-Mid in 5(ish) bands in 3 packages:
- Band 1: 350 1050 MHz (Chalmers)
- Band 2: 950 1750 MHz (EMSS)
- Band 3,4,5: 1.65 3 GHz

(Oxford)

Parter KA-Mid Band 5 – design optimisation

- Octave bands give much better performance than wide (> 2:1) bands
- Proposing Band 5a, 5b (and potentially 5c) in ~octave bands
- Multi feeds per cryostat with efficient cryogenics

- Need high-performance feedhorns covering large bandwidth
- Hard to go above 2:1 for low *f*-ratio optics
- 2:1 band feeds and LNAs available
 - e.g.

xford

hysics

- 4 8 GHz
- 8–16 GHz
- 'Conventional' LNAs now at 0.5 K/GHz
- Quantum-limited LNAs now on horizon (superconducting parametric amplifiers)

4 – 8.5 GHz feedhorn/OMT for Goonhilly

6 – 20 GHz LNA (LNF)

Many differences between SKA and eMerlin:

SKA – single optical design, low *f*-number (Gregorian), many copies (133 + spares)

eMerlin – many antenna design, high and low *f*numbers (PF and Cassegrain), few copies (7-8) BUT

SKA means mass production of cryogenic receivers at scale unprecedented in UK – complete refit of eMerlin would be small perturbation on this.

Contiguous coverage from L to K band in ~octaves is completely doable.

SKA context:

- •eMerlin digitizes 16 RF channels of 500/2000 MHz bandwidth
- •SKA-Low will digitize 262,000 RF channels of 500 MHz bandwidth
- Solutions for SKA-Low will do eMerlin trivially
- •FX correlator scales as $(N_{ant} \cdot \log (N_{ch}) + N_{ant}^2)B$
- •For eMerlin this would be *O*(100 Gop/s)
- One SKA-Low processor module has O(10,000 Gop/s)
 SKA-Low will have >8000 of these...

RF inputs

SKA Tile Processor Module

Quad 1.25 GS/s 14-bit ADCs JESD204B interface

40G Ethernet QSFP+

Altera Arria 10/Stratix 10 FPGA

ADC boards interchangable e.g. 2.5 GS/s 12-bit, 26 GS/s 3.5 bit, also DAC boards

Progress in digital backends...

	FPGA	Gop/s	ADC total BW (Gb/s)	RF channels	Freq channels
Roach 1 (CBASS S) (2010)	1 x Xilinx Virtex 5	320	32	4 x 0.5 GHz	64
SKA TPM (2016)	2 x Altera Arria 10	10,000	480	32 x 0.5 GHz	16M
TPM v2 (2018)	2 x Altera Stratix 10	56,000	800	8 x 10 GHz	4096

Conclusions

- Big SKA-led developments in UK in RF, digital hardware, (hopefully) leading to manufacture in UK
- Contiguous coverage from L to K or Ka band with excellent noise performance perfectly possible
- Digital hardware will allow full correlation/beamforming across whole bar and a second second

• All this is a ~small addition to UK SKA1 build phase.

