

A man

m

1110101

Type III burst time characteristics at LOFAR frequencies.

Hamish Reid, Eduard Kontar hamish.reid@glasgow.ac.uk

Solar electron beams propagate through the heliosphere and can be detected in-situ and via their electromagnetic emission. Theory was proposed by Ginzburg & Zhelezniakov 1958.

- Type III bursts frequency-time evolution can provide a wealth of information about solar electron beams.
- The peak radio flux has been used to provide bulk speed estimates but what about the rise and decay?
- Can we use these to estimate how different parts of the electron beam (e.g. front and back) move through the corona?
- Reid and Kontar 2018, A&A, http://arxiv.org/abs/1802.01507

- The time profile of type III radio bursts has been studied by numerous authors *e.g. Hughes & Harkness 1963;* Aubier & Boischot 1972; Evans et al. 1973; Alvarez & Haddock 1973a; Barrow & Achong 1975; Poquerusse 1977; McLean & Labrum 1985; Tsybko 1989; Melnik et al. 2011
- Typically attributed to an exciter function followed by an exponential decay.

Type III time profile

Aubier & Boischot 1972

Type III time profile

- Langmuir wave collisional time estimate temperature.
- Studies (e.g. Evans et al. 1973; Alvarez & Haddock 1973a; Takakura et al. 1975; Poquerusse et al. 1984; Ratcliffe et al. 2014) found incorrect temperature, particularly at 1 AU.
- Scattering from source-observer (e.g. Kontar et al 2017).
- Density inhomogeneity....

- Large scale density inhomogeneities (expanding solar wind, length scales > Mm) refract Langmuir waves to lower phase velocities - Landau damped. e.g Kontar 2001
- Energy is depleted from the the beam-plasma system e.g. Reid & Kontar 2010, 2013.
- Density inhomogeneity timescale is similar to the HWHM from radio emission (Ratcliffe et al 2014).

Type III drift rate

 Drift rate varies as a power-law over many orders of magnitude e.g.
Alvarez and Haddock 1973, Achong & Barrow 1975; Melnik et al. 2011

$$\frac{\mathrm{d}f}{\mathrm{d}t} = -0.01 f^{1.84}, \quad \mathrm{MHz} \,\mathrm{s}^{-1}$$

- We selected 31 type III bursts between April-Sept 2015.
- Frequency range within 70-30 MHz.
- Time resolution of 0.1 sec, integrated from 0.01 sec.
- Freq resolution of 0.195 MHz integrated from 12 kHZ.

Time profile

• Tried Exponential and Gaussian fit for the time profile.

$$I(t) = A \exp\left(-\frac{|t-t_0|}{\tau}\right), \quad \tau = \begin{cases} \tau_r, & \text{if } t \le t_0\\ \tau_d, & \text{if } t > t_0 \end{cases}$$
$$I(t) = A \exp\left(-\frac{(t-t_0)^2}{2\tau^2}\right), \quad \tau = \begin{cases} \tau_r, & \text{if } t \le t_0\\ \tau_d, & \text{if } t > t_0 \end{cases}$$

Drift and Bandwidth

- Rise time t_r at $t < t_0$ from HWHM, $\tau_r \sqrt{2\log(2)}$
- Decay time t_d at t > t_0 from HWHM $\tau_d \sqrt{2\log(2)}$
- Duration t_D is found using FWHM.
- Drift rate is change in rise, peak and decay time as a function of frequency.
- The bandwidth is found from the frequency width between the HWHM at different frequencies.
- Mean is calculated from weighted fun

Decay time

Rise time

Asymmetry

Duration

- Width in frequency space at a central (peak) frequency.
- Approximately straight line through $\frac{\Delta f}{f}$.

Drift rate

• Drift rate was found using the rise, peak and decay times.

$$\frac{\partial f}{\partial t} = -A \left(\frac{f}{30 \text{ MHz}} \right)^{\alpha}$$

Time	A	α
rise	3.1 ± 0.2	-1.75 ± 0.11
peak	3.8 ± 0.2	-1.63 ± 0.13
decay	1.9 ± 0.1	-1.80 ± 0.11

Drift rate vs duration

- Correlation between mean drift rate and mean duration.
- Taking the mean removes frequency dependent effects.
- Faster drift rates lead to smaller durations.

Velocity [c]

front

middle

back

Electron beam velocities

Use drift rates to estimate velocities assuming Parker 1958 density model.

Mean

0.20

0.17

0.15

For velocity, typically front > middle > back

0.06

0.05

0.04

- Correlation (0.73) in peak velocity vs mean duration.
- Faster electron beams create radio with shorter durations.

- Length velocity is correlated with peak velocity.
- Faster electron beams have a larger spread between the front and back velocities.

Electron density model

PARKER DENSITY MODEL

- Density model is important.
- Not conclusive whether velocity varies as a function of distance.

DULK DENSITY MODEL

Gaussian Beam

GAS DYNAMIC (e.g. Kontar et al 1998)

> QUASILINEAR SIMULATIONS

Power-law Beam

 \bullet

FREE STREAMING ELECTRONS

SIMULATED ELECTRONS Initial power-law electron beam can capture the change in duration as a function of frequency.

SIMULATED LANGMUIR WAVES

 Using v_{front} and v_{back} from LOFAR obs, we can estimate velocities using free-streaming, gas-dynamic and sims.

- Rise, decay and durations decrease with increasing frequency, showing an asymmetric time profile between 30-70 MHz.
- Type III drift rates from rise times were higher in magnitude than decay times and all drift rates were smaller than AH73.
- Beam speed estimates of 0.2, 0.17, 0.15 c for front, middle, back.
- Different speeds naturally explain beam elongation through the solar system; faster beams expand faster.
- Initial power-law electron beams can explain the increase in duration with decreasing frequency.
- Reid and Kontar 2018, A&A, http://arxiv.org/abs/1802.01507