

Heliospheric current sheet and Solar Energetic Particle propagation

Silvia Dalla⁽¹⁾, Markus Battarbee⁽¹⁾

- Mike Marsh⁽²⁾ & Simon Thomas⁽¹⁾
- ⁽¹⁾ Jeremiah Horrocks Institute, University of Central Lancashire, Preston, UK
- ⁽²⁾ Met Office, Exeter, UK

The Heliospheric Current Sheet (HCS)

Meyer-Vernet 2007

В

Ω

Wavy heliospheric current sheet

This work:

- Study the influence of the Heliospheric Current Sheet (HCS) on the propagation of Solar Energetic Particles (SEPs)
- Source locations of SEPs are often close to HCS
- The influence of HCS on (higher energy) Galactic Cosmic Rays (GCRs) is well studied

Current sheet drift

 Burger (1985) calculated the expected drift velocity, averaged over an isotropic population

Heliospheric polarity configurations and particle propagation

-10.0

60

120

180

Patterns of GCR propagation

- During A+ times, protons enter the heliosphere from the poles then move outwards along HCS
- During A- times they drift in along the HCS and exit via the poles

Model SEPs in wavy HCS

 Propagate SEPs using test particle model, with an analytic expression for HCS

 $\mathbf{B} = S(\delta')\mathbf{B}_{\text{Parker}}$

$$S(\delta') = A \left(-1 + 2 S \left(\frac{1}{2} + \frac{2\delta'}{l_{\rm HCS}} \right) \right)$$

$$\delta' = 90^{\circ} - \theta'$$

$$\cos \theta' = \cos \theta_{\rm s} \cos \alpha_{\rm nl}$$

$$+ \sin \theta_{\rm s} \sin \alpha_{\rm nl} \sin \left(n_{\rm nl} (\phi_{\rm s} - \Phi_{\rm nl}(t)) \right)$$

Maps of SEP crossings of 1 AU sphere

With corotation

Corotation subtracted

A+ polarity simulations

Battarbee et al, 2018

A- polarity simulations

Energy spectrograms

Highly inclined HCS

 A^+

A-

Conclusions

- Our simulations show that SEPs can experience efficient current sheet drift and therefore transport in longitude
- Direction of HCS drift is opposite during A+ and Atimes and the SEP spatial distribution near the HCS quite different, for tilt angle 30-40°
- For highly inclined HCS differences between A+ and Aare not so marked