H₂O Masers in the pre-planetary nebula IRAS 18043–2116

Fonda M. Day

Department of Physics and Astronomy, University of New Mexico, MSC07 4220, 800 Yale Blvd NE, Albuquerque, NM 87131, USA

Y.M. Philstrom, M.J. Claussen, R. Sahai

The post-AGB star IRAS 18043–2116 (OH 009.1–0.4) has long been known to harbor high-velocity H_2O masers. Recent multi-epoch observations using the Very Long Baseline Array allowed for high spatial resolution images of this source. Here we present the results of the first few epochs observed, including the bipolar distribution, and relative proper motions of the H_2O masers. Full analysis of all epochs will yield a distance to IRAS 18043–2116 using trigonometric parallax.

H₂O Masers in the Pre-planetary Nebula

IRAS 18043-2116 F.M. Day¹, Y.M. Pihlström¹, R. Sahai², & M.J. Claussen³ ¹UNM, ³JPL/Caltech, ³NRAO

GB star IRAS 18043-2116 (OH 009.1-0.4) sen known to harbor high-velocity H₂O ecent multi-epoch observations using th Baseline Array (VLBA) allowed for high puttion images of this source. Here we results of the first tew epochs observed ults of the me. ipolar spatial distribution s of the H₂O masers. This '- dienlays maser distribu-'- dienlays maser distribupresence of a collimated jet. Full he masers in all epochs will yield a RAS 18043-2116 using trigonometri

tion of the e to the central object ource within the galaxy Peculiar
Parallar

tions, we must model the motion of bject; the residual, presumably linear otion, should be readily separated

Table 1: Properties of Water Fountain PPNs

11634	2 1943A	119134	OH12.8	195552	119190	110043
240	190	100	55	170	130	400
6000	2400	1120	880		2405	>640
152	945	89	50		100	>50
125	50	40	90		59	
Yes	No	Yes	No	No	No	No
6	5	10	15	70	10-13	9-18
1,2	3,4	5		7		9,10
	11634 240 6000 152 125 Yes 6 1,2	110342 W43A 240 180 6000 2400 152 545 125 50 Yes No 6 5 12 3.4	145342 W43A H9134 240 180 190 6000 2400 1120 152 145 89 125 50 40 Yes No Yes 6 5 10 12 24 5	146342 W43A 119134 04128 240 180 150 55 6000 2460 1120 880 152 145 89 58 125 50 49 90 Yes No Yes No 6 5 10 15 6	HS32 W43A HS33 CH12 A HS534 CH12 A HS534 240 80 55 170 600 240 112 800 170 450 240 1120 800 55 170 112 445 80 58 170 125 50 40 90 Yes No 6 5 100 15 100 12 14 5 6 7 12 34 5 6 7 12 34 5 6 7	11523 942.8 1151.3 6412.8 1162.9 1162.9 240 140 150 55 170 00 600 240 112 880 2405 120 112 445 88 80 90 58 102 101 125 50 40 90 58 100 58 100 45 50 40 90 57 70 19-13 46 5 10 15 6 78 10-3 42 54 50 15 70 19-13 10

IRAS 18043-2116

V_{LSR} (km/s)

Figure 1. Spectral and spatial distribution of H₂O masens in IRAS 18043-2116 in epoch 1 (taken 26 October 2008). The bipolar distribution shows the rodder features (+103 km s⁻¹ to +123 km s⁻¹) lying to the biber features (-36 km s⁻¹ to +78 km s⁻¹) lying to the SE.

Figure 2. Relative motion of masses in three epochs. NW features span the velocity range +103 km s⁺ to +157 km s⁺, SE features span the velocity range -66 km s⁺ to +128 km s⁺. The data were taken 28 Oct. 2008, 25 Jan. 2009, and 20 Mar. 2009.

masers w (2009) be and s

Figure 3. IRAS, MSX, and Spitzer fluxes of IRAS 18043 2116. At least three different dust components, with different temperatures and masses, are required to fit the data.

e(s) repo

Beholtz, D.A., & Marval, K.B., 2007, ApJ, 605, 601 Classen, M.J., Sahla, R., & Morris, M.R. 2001, ApJ, 607, 279 Distance, M.A., 2004, ApJ, 2004, ApJ, 2004, Database, R., 2004, ApJ, 173, 368 Datase, R., 2004, ApJ, 173, 368 Datase, R., 2004, ApJ, 174, 365 Dataset, R.M., Chapman, J.M., & Gheen, A.J., 2004, ApJ, 103, Distance, M.M., 2004, ApJ, 103, 2014 Dataset, R.M., Chapman, J.M., & Gheen, A.J., 2004, ApJ, 103, Distance, ApJ, 2014, Distance, ApJ, 2004, ApJ, 103, Distance, ApJ, 2004, Distance, Di

J.M., Green, A.J., & ApJ, 658, 1095 P., Rowland, P.R., Bor 65, MNRAS, 212, 1

test, H., Sawa, R., S. Mora, M., 2027, ApJ, 693 644 A. K., To, Lindi Nolsan, P., Horn, H., Zhin-Kandar, K., To, Lindi Nolsan, P., Mora, H., Zhi-Sammini, M.N. 2024, AC, 2027 J. Schmitz, M.N., and Langowitz, J. J. Moor, ApJ, Schmitz, W.M., and Langowitz, J. J. Moor, ApJ, R.A. Chapmer, J.M. (eds), Nat. J. Com-Benetiz, W.M., and Langowitz, J. J. Moor, ApJ, Schmitz, W.M., and K. J. 2021, ApJ, 2021, ApJ, ApJ, Allowing L. 2021, ApJ, 2021