Explore Astronomy

Astronomy Picture of the Day
« October 2014
December 2014 »


The Night Sky November 2014

Compiled by Ian Morison


This page, updated monthly, will let you know some of the things that you can look out for in the night sky.  It lists the phases of the Moon, where you will see the naked-eye planets and describes some of the prominent constellations in the night sky during the month.


Cambridge University Press has recently published two book by the author.

An Amateurs Guide to Observing and Imaging the Heavens

is a handbook to bridge the gap between the beginner's books on amateur astronomy and the books which cover a single topic in great detail.   Stephen James O'Meara and Damian Peach have both given it excellent reviews.

'A Journey through the Universe'

covering our current understanding of the Universe (up to June this year) was published on the 25th of September.   Martin Rees has written a very nice review of it.


Image of the Month

Helix Nebula

The Helix Planetary Nebula

Image: Blanco Telescope and HST: C.R.O'Dell and ESA, NASA.

A planetary nebula is the remnant of stars similar in mass to our Sun.   The core of the stars has collapsed down to about the size of the Earth and is called a 'White Dwarf'.   The outer parts of the star have blown off into space including the elements such as carbon and oxygen which were created in the star as it went through its red giant phase.   The Helix nebula lies in the constellation Aquarius at a distance of 700 light years and is the nearest planetary nebula to the Earth.   It spans 3 light years across.

Highlights of the Month


November 1st - 8th - 45 minutes before sunrise: Mercury above Spica in Virgo.

Mercury
Mercury and Spica in Virgo
Image: Stellarium/IM

Before dawn on the 1st, Mercury will lie just over 5 degrees above and a little to the left of Spica in Virgo.   One will need a good low horizon in the East-Southeast and possibly the use of binoculars.   Over the next few days it drops down towards the horizon to the lower left of Spica.


November 4th - 17:00 to 18:00 UT: The Moon skims above Uranus.

Jupiter
Uranus below the Moon
Image: Stellarium/IM

On the evening of the 4th, there is a chance to spot Uranus just below and a touch to the right of the 93% illuminated waxing gibbous Moon.   Uranus is just ~2 arcminutes (this will vary across the UK somewhat) below the Moon's limb at 17:00, but in the twilight may be very difficult to spot - a telescope will be a very great help - but as it darkens over the next 45 minutes or so it should become easier to find as the Moon passes away to the east.   By 17:30 the separation will have increased to ~6 arc minutes and, by 18:00, 19 arc minutes.   In the darkening skies, Uranus should then be easier to see.   The disk, at 3.3 arc seconds across, is tiny, but its turquise colour should be easy to spot.


November 14th - 1 hour before sunrise: Jupiter near the third-quarter Moon.

Jupiter
Jupiter close to a third quartre Moon
Image: Stellarium/IM

Before dawn on the 14th, Jupiter will lie ~7 degrees to the left of the third quarter Moon


November 14th - 1 hour after sunset: Mars above the 'teapot' of Sagittarius.

Mars
Mars in Sagittarius
Image: Stellarium/IM

After sunset on the 14th, given a good low horizon in the Southwest and possibly aided by binoculars, Mars will (if clear) be seen lying just above the handle of the 'teapot' in Sagittarius.


November 17th/18th - after midnight : The Leonid Meteor Shower

Leonid meteor
A Leonid crossing the Sword of Orion

Every year, on the nights of November 16/17th and 17/18th, the Earth passed close to the trails of cometry debris from Comet Temple-Tuttle which produce the annual Leonid Meteor shower.  The wonderful image shows one of the 2001 Leonids burning up in the atmosphere as it crossed the constellation of Orion.  The good news is that, this year, the meteor shower occurs near to the time of new Moon, so its light will not hinder our view, but the less good news is that the meteor shoer is much weaker than around the turn of the millennium and perhaps only a dozen meteors will be seen per hour.   The best time to observe them will be after midnight as our hemisphere is facing the stream of cometary debris.   The dust particles that are swept up by the Earth are released as Comet Temple-Tuttle rounds the Sun every 33 years.   As implied by the name, the radiant of the shower - from where the meteors appear to radiate from - lies within the head or Sickle of the constellation Leo the Lion.

Around the third week of November (with no Moon in the sky): find M31 - The Andromeda Galaxy - and perhaps M33 in Triangulum

M31
How to find M31
Image: Stellarium/IM

In the evening, the galaxy M31 in Andromeda is visible in the south The chart provides two ways of finding it:

1) Find the square of Pegasus.  Start at the top left star of the square - Alpha Andromedae - and move two stars to the left and up a bit.  Then turn 90 degrees to the right, move up to one reasonably bright star and continue a similar distance in the same direction.  You should easily spot M31 with binoculars and, if there is a dark sky, you can even see it with your unaided eye.   The photons that are falling on your retina left Andromeda well over two million years ago!

2) You can also find M31 by following the "arrow" made by the three rightmost bright stars of Cassiopeia down to the lower right as shown on the chart.

Around new Moon (22nd November) - and away from towns and cities - you may also be able to spot M33, the third largest galaxy after M31 and our own galaxy in our Local Group of galaxies.   It is a face on spiral and its surface brightness is pretty low so a dark, transparent sky will be needed to spot it using binoculars (8x40 or, preferably, 10x50).   Follow the two stars back from M31 and continue in the same direction sweeping slowly as you go.   It looks like a piece of tissue paper stuck on the sky just a bit brighter than the sky background.   Good Hunting!


November 25th and 26th - 1 hour after sunset: Mars close to a thin crescent Moon

Mars
Mars close to a crescent Moon
Image: Stellarium/IM

After sunset on the 14th, given a good low horizon in the Southwest and possibly aided by binoculars, Mars will (if clear) be seen lying up to the left of the 'teapots' handle in Sagittarius.   On the 25th, it will be ~10 degrees to the left of a thin, 3 day old, crescent Moon and on the 25th it will lie some 7 degrees below a fuller crescent Moon.


a

Learn the Mare on the Moon.

Mare on the Moon
Mare on the Moon
Image:Ian Morison

Why not use the annotated image of the full Moon to learn the locations of the Moon's Mare.  You can see some of them with your unaided eye and binoculars will enable you to spot them all.


NGC 891 imaged with the Faulkes Telescope

NGC 891
Edge-on galaxy NGC 891
Image: Danial Duggan
Faulkes Telescope North.

Galaxy NGC 891, imaged by Daniel Duggan.
This image was taken using the Faulkes Telescope North by Daniel Duggan - for some time a member of the Faulkes telescope team.   NGC 891 is an edge-on spiral lying in the constellation Andromeda at a distance of 27 million light years.   We think that this is very much as our own galaxy might look when seen edge-on.

Learn more about the Faulkes Telescopes and how schools can use them: Faulkes Telescope"











Observe the International Space Station

The International Space Station
The International Space Station and Jules Verne passing behind the Lovell Telescope on April 1st 2008.
Image by Andrew Greenwood

Use the link below to find when the space station will be visible in the next few days. In general, the space station can be seen either in the hour or so before dawn or the hour or so after sunset - this is because it is dark and yet the Sun is not too far below the horizon so that it can light up the space station. As the orbit only just gets up the the latitude of the UK it will usually be seen to the south, and is only visible for a minute or so at each sighting. Note that as it is in low-earth orbit the sighting details vary quite considerably across the UK. The NASA website linked to below gives details for several cities in the UK. (Across the world too for foreign visitors to this web page.)

Note: I observed the ISS three times recently and was amazed as to how bright it has become.

Find details of sighting possibilities from your location from: Location Index

See where the space station is now: Current Position


The Moon

3rd Quarter Moon
The Moon at 3rd Quarter. Image, by Ian Morison, taken with a 150mm Maksutov-Newtonian and Canon G7.
Just below the crator Plato seen near the top of the image is the mountain "Mons Piton".   It casts a long shadow across the maria from which one can calculate its height - about 6800ft or 2250m.
`
new moon first quarter full moon last quarter
November 22nd November 29th November 6th November 14th

Some Lunar Images by Ian Morison, Jodrell Bank Observatory: Lunar Images

A World Record Lunar Image

World record Lunar Image
The 9 day old Moon.

To mark International Year of Astronomy, a team of British astronomers have made the largest lunar image in history and gained a place in the Guinness Book of Records! The whole image comprises 87.4 megapixels with a Moon diameter of 9550 pixels. This allows details as small as 1km across to be discerned! The superb quality of the image is shown by the detail below of Plato and the Alpine Valley. Craterlets are seen on the floor of Plato and the rille along the centre of the Alpine valley is clearly visible. The image quality is staggering! The team of Damian Peach, Pete lawrence, Dave Tyler, Bruce Kingsley, Nick Smith, Nick Howes, Trevor Little, David Mason, Mark and Lee Irvine with technical support from Ninian Boyle captured the video sequences from which 288 individual mozaic panes were produced. These were then stitched together to form the lunar image.

Plato and the Alpine valley
Plato and the Alpine Valley.

Please follow the link to the Lunar World Record website and it would be really great if you could donate to Sir Patrick Moore's chosen charity to either download a full resolution image or purchase a print.



The Planets

 A montage of the Solar System
A montage of the Solar System. JPL / Nasa

Jupiter

Jupiter
A Cassini image of Jupiter . Nasa

Jupiter shining at magnitude -2.1, rises at around 11:30 UT at the beginning of the month lying around 10 degrees up to the right of Regulus in Leo.   The speed of its motion eastwards across the sky is slowing down as, on the 10th of next month, it will begin its retrograde motion westwards across the heavens.   By the end of the month it rises well over an hour earlier at ~9:40 UT with a slight increase in magnitude to -2.3.   It will then be due south and so highest in the sky at an elevation of 53 degrees at around 05:30 UT some two hours before sunrise.   As the Earth moves towards Jupiter, the size of Jupiter's disk increases slightly from 37 to 39 arc seconds so early risers should be able to see the equatorial bands in the atmosphere and the four Gallilean moons as they weave their way around it.


See highlight above.


Saturn

Saturn
The planet Saturn. Cassini - Nasa

Saturn.  This month, on the 18th, Saturn passes behind the Sun so, sadly, will not be visible to us for most of the month.   It might just be visible at the very end of the month rising, on the 30th, about one hour before the Sun.


Mercury

Mercury.
Messenger image of Mercury Nasa

Mercury has a very favourable apparition in the pre-dawn skies at the beginning of the month as it reaches greatest elongation west of the Sun on the 1st when it lies 18 degrees in angle away.   Then, it will have a magnitude of -0.5 and be some 15 degrees above the horizon at sunrise.   On this day, it will measure 7 arcs seconds in angular diameter and have phase of just over 50%.   You will need a good low horizon in the East Southeast to spot it, but it ought to be visible to the unaided eye and, of course, binoculars or a small telescope.   Please do not try to observe it once the Sun has risen!   Following greatest elongation, Mercury drops back towards the horizon with its size dropping to ~5 arc seconds and showing a 90% illuminated gibbous phase by the 15th - towards the end of it current apparition.



See highlight above.



Mars

Mars showing Syrtis major.
A Hubble Space Telescope image of Mars.
Jim Bell et al. AURA / STScI / Nasa

Mars is moving eastwards relative to the stars in the constellation Sagittarius.   It dims from magnitude +0.9 to +1 during the month and the angular size of its disk falls from 5.5 down to 5.2 arc seconds.   It is best observed as darkness falls, low above the south western horizon (so will need to be observed with a low horizon in this direction).   Given its low elevation, it is unlikely that any details will be seen on its salmon-pink suface.   Due to its eastwards movement it sets about two and a half hours after the Sun all month.   Mars passes close to several Messier objects as it traverses Sagittarius: the globular clusters M28 on the 2nd and M22 on the 6th and will be moving towards M75 by the end of the month.



See highlights above.





Venus

Venus
Venus showing some cloud structure

Venus passed behind the Sun on the 26th of October and so we will really have to wait until next month when it will become an evening object.   I suspect that it might just be visible after sunset low in the West-Northwest in the last week of the month.




Radar Image of Venus
Radar image showing surface features



Find more planetary images and details about the Solar System: The Solar System



The Stars

The Evening November Sky

November Sky
The November Sky in the south - early evening

This map shows the constellations seen towards the south in early evening. To the south in early evening moving over to the west as the night progresses is the beautiful region of the Milky Way containing both Cygnus and Lyra. Below is Aquilla. The three bright stars Deneb (in Cygnus), Vega (in Lyra) and Altair (in Aquila) make up the "Summer Triangle". East of Cygnus is the great square of Pegasus - adjacent to Andromeda in which lies M31, the Andromeda Nebula. To the north lies "w" shaped Cassiopeia and Perseus. The constellation Taurus, with its two lovely clusters, the Hyades and Pleiades is rising in the east during the late evening.

The constellations Lyra and Cygnus

Cygnus and Lyra
Lyra and Cygnus

This month the constellations Lyra and Cygnus are seen almost overhead as darkness falls with their bright stars Vega, in Lyra, and Deneb, in Cygnus, making up the "summer triangle" of bright stars with Altair in the constellation Aquila below. (see sky chart above)

Lyra

Lyra is dominated by its brightest star Vega, the fifth brightest star in the sky. It is a blue-white star having a magnitude of 0.03, and lies 26 light years away. It weighs three times more than the Sun and is about 50 times brighter. It is thus burning up its nuclear fuel at a greater rate than the Sun and so will shine for a correspondingly shorter time. Vega is much younger than the Sun, perhaps only a few hundred million years old, and is surrounded by a cold,dark disc of dust in which an embryonic solar system is being formed!

There is a lovely double star called Epsilon Lyrae up and to the left of Vega. A pair of binoculars will show them up easily - you might even see them both with your unaided eye. In fact a telescope, provided the atmosphere is calm, shows that each of the two stars that you can see is a double star as well so it is called the double double!

The Double Double
Epsilon Lyra - The Double Double

Between Beta and Gamma Lyra lies a beautiful object called the Ring Nebula. It is the 57th object in the Messier Catalogue and so is also called M57. Such objects are called planetary nebulae as in a telescope they show a disc, rather like a planet. But in fact they are the remnants of stars, similar to our Sun, that have come to the end of their life and have blown off a shell of dust and gas around them. The Ring Nebula looks like a greenish smoke ring in a small telescope, but is not as impressive as it is shown in photographs in which you can also see the faint central "white dwarf" star which is the core of the original star which has collapsed down to about the size of the Earth. Still very hot this shines with a blue-white colour, but is cooling down and will eventually become dark and invisible - a "black dwarf"! Do click on the image below to see the large version - its wonderful!

M57 - The Ring Nebula
M57 - the Ring Nebula
Image: Hubble Space telescope

M56 is an 8th magnitude Globular Cluster visible in binoculars roughly half way between Albireo (the head of the Swan) and Gamma Lyrae. It is 33,000 light years away and has a diameter of about 60 light years. It was first seen by Charles Messier in 1779 and became the 56th entry into his catalogue.

M56 - Globular Cluster
M56 - Globular Cluster

Cygnus

Cygnus, the Swan, is sometimes called the "Northern Cross" as it has a distinctive cross shape, but we normally think of it as a flying Swan. Deneb,the arabic word for "tail", is a 1.3 magnitude star which marks the tail of the swan. It is nearly 2000 light years away and appears so bright only because it gives out around 80,000 times as much light as our Sun. In fact if Deneb where as close as the brightest star in the northern sky, Sirius, it would appear as brilliant as the half moon and the sky would never be really dark when it was above the horizon!

The star, Albireo, which marks the head of the Swan is much fainter, but a beautiful sight in a small telescope. This shows that Albireo is made of two stars, amber and blue-green, which provide a wonderful colour contrast. With magnitudes 3.1 and 5.1 they are regarded as the most beautiful double star that can be seen in the sky.

Alberio
Alberio: Diagram showing the colours and relative brightnesses

Cygnus lies along the line of the Milky Way, the disk of our own Galaxy, and provides a wealth of stars and clusters to observe. Just to the left of the line joining Deneb and Sadr, the star at the centre of the outstretched wings, you may, under very clear dark skys, see a region which is darker than the surroundings. This is called the Cygnus Rift and is caused by the obscuration of light from distant stars by a lane of dust in our local spiral arm. the dust comes from elements such as carbon which have been built up in stars and ejected into space in explosions that give rise to objects such as the planetary nebula M57 described above.

There is a beautiful region of nebulosity up and to the left of Deneb which is visible with binoculars in a very dark and clear sky. Photographs show an outline that looks like North America - hence its name the North America Nebula. Just to its right is a less bright region that looks like a Pelican, with a long beak and dark eye, so not surprisingly this is called the Pelican Nebula. The photograph below shows them well.

The North American Nebula
The North American Nebula

Brocchi's Cluster An easy object to spot with binoculars in Gygnus is "Brocchi's Cluster", often called "The Coathanger",although it appears upside down in the sky! Follow down the neck of the swan to the star Albireo, then sweep down and to its lower left. You should easily spot it against the dark dust lane behind.

The Coathanger
Brocchi's Cluster - The Coathanger

The constellations Pegasus and Andromeda

Pegasus and Andromeda
Pegasus and Andromeda

Pegasus

The Square of Pegasus is in the south during the evening and forms the body of the winged horse. The square is marked by 4 stars of 2nd and 3rd magnitude, with the top left hand one actually forming part of the constellation Andromeda. The sides of the square are almost 15 degrees across, about the width of a clentched fist, but it contains few stars visibe to the naked eye. If you can see 5 then you know that the sky is both dark and transparent! Three stars drop down to the right of the bottom right hand corner of the square marked by Alpha Pegasi, Markab. A brighter star Epsilon Pegasi is then a little up to the right, at 2nd magnitude the brightest star in this part of the sky. A little further up and to the right is the Globular Cluster M15. It is just too faint to be seen with the naked eye, but binoculars show it clearly as a fuzzy patch of light just to the right of a 6th magnitude star.

Andromeda

The stars of Andromeda arc up and to the left of the top left star of the square, Sirra or Alpha Andromedae. The most dramatic object in this constellation is M31, the Andromeda Nebula. It is a great spiral galaxy, similar to, but somewhat larger than, our galaxy and lies about 2.5 million light years from us. It can be seen with the naked eye as a faint elliptical glow as long as the sky is reasonably clear and dark. Move up and to the left two stars from Sirra, these are Pi amd Mu Andromedae. Then move your view through a rightangle to the right of Mu by about one field of view of a pair of binoculars and you should be able to see it easily. M31 contains about twice as many stars as our own galaxy, the Milky Way, and together they are the two largest members of our own Local Group of about 3 dozen galaxies.

M 31 - The Andromeda Nebula
M31 - The Andromeda Nebula

M33 in Triangulum

If, using something like 8 by 40 binoculars, you have seen M31 as described above, it might well be worth searching for M33 in Triangulum. Triangulum is

the small faint constellation just below Andromeda. Start on M31, drop down to Mu Andromedae and keep on going in the same direction by the same distance as you have moved from M31 to Mu Andromedae. Under excellent seeing conditions (ie., very dark and clear skies) you should be able to see what looks like a little piece of tissue paper stuck on the sky or a faint cloud. It appears to have uniform brightness and shows no structure. The shape is irregular in outline - by no means oval in shape and covers an area about twice the size of the Moon. It is said that it is just visible to the unaided eye, so it the most distant object in the Universe that the eye can see. The distance is now thought to be 3.0 Million light years - just greater than that of M31.

M33
M33 in triangulum - David Malin

The constellation Taurus

Taurus
Taurus

Taurus is one of the most beautiful constellations and you can almost imagine the Bull charging down to the left towards Orion. His face is delineated by the "V" shaped cluster of stars called the Hyades, his eye is the red giant star Aldebaran and the tips of his horns are shown by the stars beta and zeta Tauri. Although alpha Tauri, Aldebaran, appears to lie amongst the stars of the Hyades cluster it is, in fact, less than half their distance lying 68 light years away from us. It is around 40 times the diameter of our Sun and 100 times as bright.

The Hyades and Pleiades
The Hyiades and Pleiades. Copyright: Alson Wong.

More beautiful images by Alson Wong : Astrophotography by Alson Wong

To the upper right of Taurus lies the open cluster, M45, the Pleiades. Often called the Seven Sisters, it is one of the brightest and closest open clusters. The Pleiades cluster lies at a distance of 400 light years and contains over 3000 stars. The cluster, which is about 13 light years across, is moving towards the star Betelgeuse in Orion. Surrounding the brightest stars are seen blue reflection nebulae caused by reflected light from many small carbon grains. These relfection nebulae look blue as the dust grains scatter blue light more efficiently than red. The grains form part of a molecular cloud through which the cluster is currently passing. (Or, to be more precise, did 400 years ago!)

The Crab Nebula
VLT image of the Crab Nebula

Close to the tip of the left hand horn lies the Crab Nebula, also called M1 as it is the first entry of Charles Messier's catalogue of nebulous objects. Lying 6500 light years from the Sun, it is the remains of a giant star that was seen to explode as a supernova in the year 1056. It may just be glimpsed with binoculars on a very clear dark night and a telescope will show it as a misty blur of light.

The Crab Nebula
Lord Rosse's drawing of M1

Its name "The Crab Nebula" was given to it by the Third Earl of Rosse who observed it with the 72 inch reflector at Birr Castle in County Offaly in central Ireland. As shown in the drawing above, it appeared to him rather lile a spider crab. The 72 inch was the world's largest telelescope for many years. At the heart of the Crab Nebula is a neutron star, the result of the collapse of the original star's core. Although only around 20 km in diameter it weighs more than our Sun and is spinning 30 times a second. Its rotating magnetic field generate beams of light and radio waves which sweep across the sky. As a result, a radio telescope will pick up very regular pulses of radiation and the object is thus also known a Pulsar. Its pulses are monitored each day at Jodrell Bank with a 13m radio telescope.