Disclosing the morphology of compact Galactic planetary nebulae

Letizia Stanghellini

*National Optical Astronomy Observatory, 950 N. Cherry Ave., Tucson, AZ 85719, USA*

R.A. Shaw, E. Villaver

We present preliminary results of a 200-orbit *HST/WFC3* survey of compact Galactic planetary nebulae, aimed at filling the blanks in the morphological studies, and in particular to study the early onset of morphology. Planetary nebulae smaller than 4″ are usually younger than \(~5000\) yr, thus the early stages of their evolution is conveniently studied therein. Both broad- and narrow-band imagery has been employed to disclose both nebular and central star characteristics. We found that early morphology is represented by the known main types, including bipolar and quadrupolar PNe. Statistics, images, and correlations with dust properties of the nebulae analyzed via *Spitzer* spectra are presented in this paper.
Letizia Stanghellini (NOAO), Richard A. Shaw (NOAO), & Eva Villaver (UAM)

Abstract

We present preliminary results of a 130-target HST Snapshot survey of compact (<5") Galactic planetary nebulae, to explore the early onset of morphology. Planetary nebulae smaller than 5" are usually younger than ~5000 yr. Both broad and narrow band imagery has been employed to reveal nebular and central star characteristics. We find that early morphology is largely represented by known types, including bipolar and quadrupolar PNe, but some types stand out. Images and statistics are presented here in preliminary form. Peculiarities and differences between this and the general Galactic PN samples are underlined.

Ground-based vs. HST images of compact PNe

• All HST images in the poster are to scale (apparent)
• All PNe were unresolved or barely resolved in ground-based image

Very elliptical PNe, ansae, flyers, asymmetries

Extremely asymmetric PNe, Bipolar PNe, Quadrupolar, Point-Symmetric

Prominent among compact PNe are multiple excited shells, attached, show post-AGB wind structure. Most of these would be lost in evolved/expanded PNe. Most are round or elliptical.

Central stars are visible in ~90% of PNe, which is a much larger fraction than in ground-based images of Galactic PNe, and is a result of higher angular resolution and UV sensitivity. The central stars are still very bright in young PNe, and most of our PNe are younger than a few thousand years from ejection.

A PN image catalog with morphology, sizes, and peculiarities is in preparation. We are also working on the morphology-central star-dust connection (Spitzer/IRS spectra are available for most targets).

Supported by NASA through grant HST-GO-11657.01