The Nature of the Infrared Excess around WD 0950+139

Kate Su
Steward Observatory, University of Arizona, 933 N Cherry Ave, Tucson, AZ 85750, USA

J. Bilikova, Y.-H. Chu, M. Jura, G. Rieke, M. Marengo, K. Misselt, H. Bond, J. Liebert

WD 0950+139 is an intriguing white dwarf because (1) it is the central star ($T_{\text{eff}} = 110,000$ K) of the large (14′ diameter) planetary nebula EGB 6 (Ellis et al. 1984; Liebert et al. 1989); (2) it has strong nebular emission lines (such as [OIII], Liebert et al. 1989) associated with a resolved companion at a separation of 0.18′ (Bond et al. 1993); and (3) it has a NIR excess suggestive of the presence of a dM companion (Zuckerman et al. 1990, Fulbright & Liebert 1993). Our new Spitzer observations of WD 0950+139 further reveal that the infrared excess extends beyond 35 µm, and has temporal variations on a timescale of a year. Furthermore, our recent ground-based Echelle spectroscopic data reveal a double peaked [OIII] line profile indicative of a Keplerian disk structure around the system. In this paper, we will discuss the nature and origin of the infrared excess around WD 0950+139.
The Nature of the Infrared Excess around WD0950+139

Kate Su1, Jana Bilikova2, You-Hua Chu2, M. Jura3, G. Rieke1, M. Marengo4, K. Misselt1, H. E. Bond5, & J. Liebert1

1 Steward Obs./Univ. of Arizona, 2 Univ. of Illinois at Urbana-Champaign, 3 UCLA, 4 Iowa State Univ., 5 STScI

Planetary Nebula EGB 6 = PN G2215+46 3

- EGB 6: a large, faint PN discovered by Bond (see Ellis, Grayson & Bond 1984) in Palomar Shy Survey plates. Ground-based CCD (Zuckerman et al. 1989) and TekAO & Keck II (1995) show a brightness enhancement toward the western side of the nebula, suggesting an interaction with the ISM.

WD0950+139 = CSPN of EGB 6

- A very hot white dwarf with Teff ~108,390 K, logg ~7.39±0.38, M~0.04 Msun at a distance of 645 pc (Liebert et al. 2005).

Ground-based UBV, Sloan ugriz and GALEX fuv (0.15 µm) and nuv (0.23 µm) photometry can be well fitted with a WD model atmosphere of Teff~110,000 K with an interstellar extinction Av of ~0.23 µm and an apparent visual Av of ~0.12 mag (See Figure 2).

At distance of 645 pc, the WD luminosity is 72 Lsun with a radius of 0.023 Rsun (2.55 R⊕).

Our newly obtained Echelle spectrum of WD0950+139 resolved the companion (Figure 3, left) at a separation of 0.18" (~116 AU@645pc).

High-resolution HST images (Bond 2009) showed a signpost of a gaseous rotating disk.

The infrared excess is evident at λ~1-24 µm.

The companion has a luminosity of 0.04 Lsun, and a radius of 0.55 Rsun.

Figure 1 – HST image of WD0950+139 by habits, on the right (1995). North is to the top and east is to the left with a dimension of 16.5 arcsec. The outside shell is projected onto the western left, while the western half of the nebula is not seen due to high extinction.

The source detected in 11.5 µm showing a radius of 64 pc and an apparent visual Av of 0.5 km. The position is a kinematic age ~11,500 y.

The central star, WD0950+139, is marked.

The system is complex: (1) a hot WD, emitting lots of UV photons; (2) the nebula has a kinematic age of ~6x104 yr.

Possible Origins of the IR Excess

- The system is complex: (1) a hot WD, emitting lots of UV photons; (2) the nebula has a kinematic age of ~6x104 yr.

Scenario I (Figure 7)

- The disk is an optically thin upper disk layer (~300 K, the emitting area, 0.6 µm, is too big for a stellar object. A dust disk/cloud is needed.

Scenario II (Figure 8)

- The opaque ring has an inner radius of 0.005 AU (~dust sublimation radius) and an outer radius of 0.5 AU (~the Keplerian radius from the WD). Only small grains can emit efficiently in mid-IR. The thin disk atmosphere is composed of 0.1-10 µm amorphous carbon grains.

EGB 6: a large, faint PN discovered by Bond (see Ellis, Grayson & Bond 1984) in Palomar Shy Survey plates. Ground-based CCD images (Figure 1 below) by Jacoby & van de Steen (1995) show a brightness enhancement toward the western side of the nebula, suggesting an interaction with the ISM.

Figure 2 – The SED of the WD0950+139 mid-IR excess to illustrate ~7 µm Spitzer photometry (IRAC and MIPS 24 µm) and IRS low-resolution spectrum were obtained 1 year ago. The temporal variation is real as the associated errors of these measurements are often smaller to account for the difference.

Figure 3 – HST FOC and WFPC2 PC images of WD0950+139. The FWHM of the line is ~44 km/s with the best extending from ~50 km/s to ~150 km/s.

[O III] lines show a distinct double-peaked profile, which is usually a signpost of a gaseous rotating disk. The separation between the peaks, ~11 km/s, suggests a disk outer radius of 0.5 AU (1.5 AU) if the companion mass is 0.06 (0.2) Msun.

Figure 4 – Echelle spectrum of WD0950+139.

Figure 5 – Spitzer images of WD0950+139 along with the Sloan composite color image. All images are in the same physical dimension with N up and E to the left.

Figure 6 – The infrared excess SED of WD0950+139. The opaque ring has an inner radius of 0.005 AU (~dust sublimation radius) and an outer radius of 0.5 AU (~the Keplerian radius from the WD). Only small grains can emit efficiently in mid-IR. The thin disk atmosphere is composed of 0.1-10 µm amorphous carbon grains.

Figure 7 – SED of Scenario 1.

- The dust disk is around the WD and heated by both the WD and its companion. The emission can be approximated as a combination of an opaque ring heated by the companion and an optically thin upper disk layer heated by the WD. The opaque ring has an inner radius of 0.005 AU (~dust sublimation radius) and an outer radius of 0.5 AU (~the Keplerian radius from the WD). Only small grains can emit efficiently in mid-IR. The thin disk atmosphere is composed of 0.1-10 µm amorphous carbon grains.

Figure 8 – SED of Scenario 2.

- The dust disk is around the WD and heated by both the WD and its companion. The emission can be approximated as a combination of an opaque ring heated by the companion and an optically thin upper disk layer heated by the WD. The opaque ring has an inner radius of 0.005 AU (~dust sublimation radius) and an outer radius of 0.5 AU (~the Keplerian radius from the WD). Only small grains can emit efficiently in mid-IR. The thin disk atmosphere is composed of 0.1-10 µm amorphous carbon grains.