UniBoard
bringing radio telescope digital processing to the next level
New techniques open new possibilities: eVLBI

JIVE NGC
(Next Generation Correlator)
- 10 GbE links from Telescopes
- 2 GHz Analog BW
- 32 Dual Polarized Inputs
The RadioNET FP7 UniBoard Research Activity

- RadioNet FP7 is a European program for radio astronomy
- Several joint Research Activities one of which is UniBoard
- UniBoard lead is by Jive (Arpad Szomoru), board design by Astron, firmware design by Jive, Astron and UniBoard users.

Contract no. 227290
Main Applications Driving the UniBoard

The main performance requirements regarding IO, processing and memory come from:

- EVN2015 correlator (JIVE)
- APERTIF beamformer (ASTRON)
- APERTIF correlator (ASTRON)
EVN2015 Correlator
APERTIF Focal Plane Array at WSRT
APERTIF Requirements

• Beamformer:
 - 12 Westerbork 25 m dishes each with a Focal Plane Array
 - 60 dual polarization antennas per telescope
 - 400 MHz RF input bandwidth
 - 300 MHz beam output bandwidth
 - 37 beams

• Correlator:
 - 12 dual polarization FPA telescopes
 - 37 beams, so in total 11000 visibilities
What did we learn from LOFAR

• Don't forget whom you are making systems for!
What did we learn from LOFAR

- Try to reduce the number of interconnections
What did we learn from LOFAR

- Close collaboration with production factory
 - what is needed to produce >1000 boards
 - How do you test produced boards

LOFAR Transient Buffer Board
- > 10,000 pins
- > 2,000 parts
- > 1000 DSP-boards in LOFAR
Design Challenges

Design is a balance between:

- Performance
- Flexibility
- Power consumption
- Development time
- Cost
UniBoard Philosophy

• Continue on the approach we had for LOFAR:
 - High integration density
 - Scalable allowing one, more or many boards

• Use 10Gbe interfaces for data IO

• All FPGAs should have the same capabilities

• Minimize overhead

• Usage of one type of board for multiple applications

• The firmware makes the board application specific

• Model Based Design for more rapid application development
Data Path

1. Delay Compensation
2. Poly fase Filter Bank
3. Transpose
4. Correlator / Beamformer
UniBoard used for a Beamformer Poly Fase Filterbank in Back Nodes (BN)

For Filtering:
- Each BN have 4 8bit interface for ADCs
- Each BN has 2 DDR3 memories
- Multipliers in the FPGAs running at 400MHz
UniBoard used for a Beamformer Transpose on Board

For Transpose:
- Each FN has a 10GbE connection to each BN
UniBoard used for a Beamformer
Beamforming in Front Nodes (FS)

For Beamforming:

- Front nodes have DDR3 interface for intermediate storage
- FPGA with Multipliers running at 400MHz
UniBoard used for a Beamformer
Transpose partly on Backplane

For large systems:

- Each BN has 4 10GbE F.D. interface to backplane
- 10GbE interfaces can be split into 4 lanes running at 3.125Gbps
- Up to 9 board can be interconnected on a backplane
UniBoard with 10GbE IO Extension Card

For smaller systems:

- Instead of a backplane, a interface module can be place. This gives 16 optical/SPF+ interfaces on one side and 16 10GbE CX-4 interfaces on the other side
UniBoard Overview

UniBoard:
- 8 x Altera Stratix IV 40nm FPGA (EP4SGX230KF40)
- 16 x up to 4GByte DDR3 memories
- 16 SFP+ Cage on the input
Main Applications Driving the UniBoard

The main performance requirements regarding IO, processing and memory come from:

- EVN2015 correlator (JIVE)
- APERTIF beamformer (ASTRON)
- APERTIF correlator (ASTRON)
UniBoard for EVN2015 Correlator

- 32 dual polarization antennas, so 2080 visibilities
- 2 GHz RF input bandwidth
UniBoard for APERTIF Beamformer

Diagram showing the flow of signals from the Dish to the Focal Plane Array through X-pol and Y-pol, Coax cables, Receivers, Filterbank, Beam former, and UniBoard. The diagram also illustrates the transitions from ADC samples to BF-subbands, beams, and backplane. The diagram concludes with 10 GbE links to the correlator.
UniBoard for APERTIF Correlator

Full Stokes visibilities of 24 BF-subbands bandwidth and for all beams to the post processing via 1 GbE control links

All beams with each 24 dual pol BF-subbands from 12 telescopes
Challenges

- Data speeds (3.125Gbps / 6.5 Gbps)
- DDR3 interface
- Power
- Fitting the firmware in the Altera devices
- Running at 400MHz clock
- Running the multipliers at full speed
- Storting the data
Used Technologies
FPGA

Altera Stratix IV FPGA

IO
- 2 sides with serial interfaces
- 2 sides for memory

Up to 1288 Multipliers

40nm
- less consumption

Multiple parts can be placed on same footprint
Used Technologies

DDR3

Fast data transfer
Double Data Rate
64 bit ~ 800MT/s

Industry standard
Easy increase of memory size

SODIMM
Small board layout
Reduce the number of interfaces by combining multiple low speed interfaces into a single high-speed interface. SerDes included inside FPGA with signal conditioning.
Used Technologies
SFP+

- Industry standard
- Optical interfaces
- Copper interface with direct attach

Images Tyco Electronics, see
http://www.tycoelectronics.com
UniBoard Status

- Schematic design finished and reviewed
- Board manufacturer selected
- Board layout 50% done
- Test firmware writing ongoing
- Model Based Design started
UniBoard Layout ongoing

- $H \times D \times T = 9HE \times 340 \times 2.4\text{mm}$
- 12 layers PCB