Class Example

- How many years before planetary nebula ejecta travelling at $10 \mathrm{kms}^{-1}$ reaches other stars at distances of $\sim 1 \mathrm{pc}$?

$$
\begin{aligned}
& t=\frac{d}{v}=\frac{3 \times 10^{16}}{10 \times 10^{3}} \\
& =3 \times 10^{12} \mathrm{~s}=10^{5} \text { years }
\end{aligned}
$$

- Short compared to MS lifetime of stars

Stellar Masses

- Binary systems
- Kepler's $3^{\text {rd }}$ Law
- Orbits

Mass Determination

- Mass of a star is difficult to infer from stellar spectra
- Instead use gravitational influence in a binary star system
- Most stars are in binary or multiple systems

Class Example

- How far is Sirius B from Sirius A when their separation is 11 " and the distance to the system is 2.6 pc ? Express answer in au.

- How far is Sirius B from Sirius A ?

$$
\begin{array}{ll}
I=\theta d & I(\mathrm{au})=\theta(") d(p c) \\
=\frac{11}{206265} 2.6 \times 3.1 \times 10^{16} & =11 \times 2.6 \\
=4.3 \times 10^{12} \mathrm{~m}=29 \mathrm{au} & =29 \mathrm{au}
\end{array}
$$

https://www.sciencecenter.net/whatsup/03/cm-stars.htm

Binary Systems

- consider two stars with masses M_{1} and M_{2} in circular orbits around their centre of mass (CM)
- radius of each orbit is r_{1} and r_{2} respectively and the total separation is a
- can use Newton' s Laws and circular motion to determine masses

Zeilik Fig 1-14

http://www.astronomy.ohio-state.edu/~pogge/Ast162/Movies/visbin.html

Circular Motion

$$
\begin{aligned}
& F_{1}=\frac{M_{1} v_{1}^{2}}{r_{1}}=\frac{4 \pi^{2} M_{1} r_{1}}{P^{2}} \quad v_{1}=\frac{2 \pi r_{1}}{P} \\
& \text { and }
\end{aligned}
$$

$$
F_{2}=\frac{M_{2} v_{2}^{2}}{r_{2}}=\frac{4 \pi^{2} M_{2} r_{2}}{P^{2}} \quad v_{2}=\frac{2 \pi r_{2}}{P}
$$

where P is the period which is the same for both stars

Centre of Mass

- definition of centre of mass means

$$
M_{1} r_{1}=M_{2} r_{2}
$$

High-mass
star
Low-mass
star
of mass

Newton's Law of Gravity

$$
F_{1}=F_{2}=\frac{G M_{1} M_{2}}{a^{2}}
$$

where

$$
a=r_{1}+r_{2}
$$

Newton's form of Kepler's Third Law

- combining these three equations gives

$$
\begin{aligned}
& \frac{4 \pi^{2} M_{1} r_{1}}{P^{2}}=\frac{G M_{1} M_{2}}{a^{2}} \\
& P^{2}=\frac{4 \pi^{2} a^{2} r_{1}}{G M_{2}}
\end{aligned}
$$

Eliminate r_{1} using

$$
a=r_{1}+r_{2}=r_{1}+\frac{M_{1}}{M_{2}} r_{1}=\left(\frac{M_{1}+M_{2}}{M_{2}}\right) r_{1}
$$

SO

$$
P^{2}=\frac{4 \pi^{2} a^{3}}{G\left(M_{1}+M_{2}\right)}
$$

and

$$
M_{1}+M_{2}=\frac{4 \pi^{2} a^{3}}{G P^{2}}
$$

Class Example

- Use Newton's form of Kepler's Third Law to verify the mass of the Sun

Season designations are for Northern Hemisphere

-What is the mass of the Sun?

$$
\begin{aligned}
& M_{1}+M_{2}=\frac{4 \pi^{2} a^{3}}{G P^{2}} \\
& =\frac{4 \pi^{2}\left(1.5 \times 10^{11}\right)^{3}}{6.7 \times 10^{-11}\left(3.1 \times 10^{7}\right)^{2}} \\
& =2 \times 10^{30} \mathrm{~kg}
\end{aligned}
$$

- Note mass of the Earth << Sun

Kepler's Third Law

- the planets orbiting the Sun follow the relation

$$
P^{2} \propto a^{3}
$$

- can transform into useful units:

$$
(P / y r)^{2}\left(M_{1}+M_{2} / M_{\text {sun }}\right)=(a / a u)^{3}
$$

Real Orbits

- orbits are generally elliptical described by their semi-major axis a and semi-minor axis b

outreach.atnf. csiro.edu
- eccentricity of elliptical orbit is defined by

$$
e=\frac{\sqrt{a^{2}-b^{2}}}{n} \quad e=0 \Rightarrow \text { circular orbit }
$$

https://www.tutorialspoint.com/satellite_communication/s al_mechanics.htm

- Newton' s form of Kepler's third law also applies to elliptical orbits with a the sum of the semi-major axes $\left(a=a_{1}+a_{2}\right)$

Orbital Inclination

- in general the orbital plane of a binary system will be inclined by some angle i to the plane of the sky:
$i=0^{\circ} \quad \Rightarrow$ face on
$i=90^{\circ} \Rightarrow$ edge on

Summary

- Binaries are the only direct way of measuring stellar masses
- Newton's form of Kepler's $3^{\text {rd }}$ law is the starting point for measuring stellar masses

Class Example

- Confirm Kepler's Third law by measuring the slope of this graph

