Class Example

 How many years before planetary nebula ejecta travelling at 10 kms⁻¹ reaches other stars at distances of ~1 pc?

$$t = \frac{d}{v} = \frac{3 \times 10^{16}}{10 \times 10^{3}}$$

= 3 × 10¹² s = 10⁵ years

• Short compared to MS lifetime of stars

Stellar Masses

- Binary systems
- Kepler's 3rd Law
- Orbits

Mass Determination

- Mass of a star is difficult to infer from stellar spectra
- Instead use gravitational influence in a binary star system
- Most stars are in binary or multiple systems

Class Example

 How far is Sirius B from Sirius A when their separation is 11" and the distance to the system is 2.6 pc? Express answer in au.

• How far is Sirius B from Sirius A?

https://www.sciencecenter.net/whatsup/03/cm-stars.htm

Binary Systems

- consider two stars with masses M₁ and M₂ in circular orbits around their centre of mass (CM)
- radius of each orbit is r₁ and r₂ respectively and the total separation is a
- can use Newton's Laws and circular motion to determine masses

Zeilik Fig 1-14

http://www.astronomy.ohio-state.edu/~pogge/Ast162/Movies/visbin.html

Circular Motion

$$F_{1} = \frac{M_{1}v_{1}^{2}}{r_{1}} = \frac{4\pi^{2}M_{1}r_{1}}{P^{2}} \qquad v_{1} = \frac{2\pi r_{1}}{P}$$

and

$$F_{2} = \frac{M_{2}v_{2}^{2}}{r_{2}} = \frac{4\pi^{2}M_{2}r_{2}}{P^{2}} \qquad v_{2} = \frac{2\pi r_{2}}{P}$$

where *P* is the period which is the same for both stars

Centre of Mass

definition of centre of mass means

$$M_1 r_1 = M_2 r_2$$

Newton's Law of Gravity

$$F_1 = F_2 = \frac{GM_1M_2}{a^2}$$

where

$$a = r_{1} + r_{2}$$

Newton's form of Kepler's Third Law

combining these three equations gives

 $\frac{4\pi^2 M_1 r_1}{P^2} = \frac{G M_1 M_2}{a^2}$ $P^2 = \frac{4\pi^2 a^2 r_1}{GM_2}$ Eliminate *r*₁ using $a = r_1 + r_2 = r_1 + \frac{M_1}{M_2}r_1 = \left(\frac{M_1 + M_2}{M_2}\right)r_1$

and

 $M_{1} + M_{2} = \frac{4\pi^{2}a^{3}}{GP^{2}}$

Class Example

 Use Newton's form of Kepler's Third Law to verify the mass of the Sun

• What is the mass of the Sun?

$$M_{1} + M_{2} = \frac{4\pi^{2}a^{3}}{GP^{2}}$$
$$= \frac{4\pi^{2}(1.5 \times 10^{11})^{3}}{6.7 \times 10^{-11}(3.1 \times 10^{7})^{2}}$$
$$= 2 \times 10^{30} \text{ kg}$$

Note mass of the Earth << Sun

Kepler's Third Law

the planets orbiting the Sun follow the relation

$$P^2 \propto a^3$$

• can transform into useful units:

$$\left(\frac{P}{yr}\right)^{2} \left(\frac{M_{1} + M_{2}}{M_{Sun}}\right) = \left(\frac{a}{au}\right)^{3}$$

Real Orbits

 orbits are generally elliptical described by their semi-major axis a and semi-minor axis b

outreach.atnf. csiro.edu

eccentricity of elliptical orbit is defined by

https://www.tutorialspoint.com/satellite_communication/s al_mechanics.htm Newton's form of Kepler's third law also applies to elliptical orbits with a the sum of the semi-major axes (a=a1+a2)

By User:Zhatt - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=280063

Orbital Inclination

 in general the orbital plane of a binary system will be inclined by some angle *i* to the plane of the sky:

Summary

- Binaries are the only direct way of measuring stellar masses
- Newton's form of Kepler's 3rd law is the starting point for measuring stellar masses

Class Example

