- What is the average density of a white dwarf star?

$$
\begin{aligned}
& \bar{\rho}=\frac{M}{V}=\frac{3 M}{4 \pi R^{3}} \\
& =\frac{3 \times 0.6 \times 2 \times 10^{30}}{4 \pi\left(6000 \times 10^{3}\right)^{3}}=1 \times 10^{9} \mathrm{~kg} \mathrm{~m}^{-3}
\end{aligned}
$$

i.e. 100000 times more dense than lead.

Star Clusters

- Colour-magnitude diagrams
- Open Clusters
- Globular Clusters
- Chemical evolution
- Stellar populations

Star Clusters

- Star clusters are a collection of stars that are concentrated in space
- They all formed together out of the same cloud and at the same time

Colour-Magnitude Diagrams

- for star clusters $m_{V}(o r V)$ is equivalent (apart from an offset) to M_{V} since all stars are at the same distance

$$
m_{v}-M_{v}=5 \log d-5
$$

- can also use colour, e.g. B-V as a measure of temperature
- hence colour-magnitude diagrams (CMDs) for star clusters are similar to H-R diagrams

Class Example

- Estimate the difference in distance (in pc) between stars on the near and far side of a cluster that has an angular diameter of 1° at an average distance of 1000 pc ?

i.e. $\sim 2 \%$ error if we assume all the stars are at 1000 pc

Star Clusters

- There are two common types of star cluster
- Open clusters
- Globular clusters

Open Clusters

- Typically have of order 1000 members
- Not gravitationally bound - will disperse over time
- Located in spiral arms of spiral galaxies
- Consist of young, hot, blue main sequence stars

Open cluster NGC 457. Credit: ROBERT GENDLER/SCIENCE PHOTO LIBRARY

Colour-magnitude diagram of the Pleiades open cluster
© ANDREW JAMES (2008) adapted from Raboud, D., Mermilliod, J.-C. A\&A., 329, 101 (1998)

Globular Clusters

- Typically have of order 10^{5} members
- Gravitationally bound
- Found in the Galactic halo
- Consist of old, cool, red, stars

Globular cluster M80. HST

Globular cluster Omega Centauri. HST

Colour-magnitude diagram for the globular cluster M 3.
Buonanno, R.; Corsi, C. E.; Buzzoni, A.; Cacciari, C.; Ferraro, F. R.; Fusi Pecci, F. Astron. Astrophys. 290, 69-103 (1994)

Class Example

- Estimate the average separation (in pc) of stars in a typical globular cluster with 10^{5} members and a radius of 10 pc . Hint: calculate the number of stars per cubic pc first.
- Number density of stars

$$
n=\frac{N}{V}=\frac{N}{\frac{4}{3} \pi R^{3}}=\frac{10^{5}}{\frac{4}{3} \pi 10^{3}}=24{\text { stars } \mathrm{pc}^{-3}}^{-3}
$$

- Typical separation

$$
x \approx \frac{1}{n^{\frac{1}{3}}} \approx \frac{1}{24^{\frac{1}{3}}} \approx 0.3 \mathrm{pc}
$$

- Much closer than in the rest of Galaxy

Chemical Evolution

- The first stars to form were made from material left over from the Big Bang
- This was almost pure hydrogen and helium
- Nucleosynthesis within stars due to fusion of light nuclei produces heavy elements
- These are returned to the interstellar medium via supernovae explosions and planetary nebulae

Supernova remnant

- This enriched material is then the raw material for the next generation of stars
- Hence, successive generations become progressively more enriched in heavy elements or 'metals'
- Can be tracked by measuring the composition via the spectra of stars

The spectrum of this Population I star has stronger absorption lines of metals ... such a star is metal-rich.

Stellar populations

- Stellar populations are divided into two groups
- Population I stars
- young
-10^{7} to 10^{9} years
- metal-rich
$->1 \%$ metals by mass
- ongoing or recent star formation
- e.g. open clusters
- Population II stars
- old
-10^{10} years
- metal-poor
- ~ 0.1\% metals by mass
- no star formation for a long time
- e.g. globular clusters

Summary

- Colour-magnitude diagrams for star clusters enable us to determine their age
- They are a key tool in the study of stellar and galaxy evolution
- Stellar populations are divided into old, metal-poor stars and young, metal-rich stars

Class Example

- The enriched material ejected during the planetary phase is expanding at a typical speed of $10 \mathrm{kms}^{-1}$. How many years before it reaches other stars at distances of $\sim 1 \mathrm{pc}$?

