Stars and Galaxies

Coursework Sheet 7 - Feedback

1. Formula for temperature of a dust grain at a distance d from a star of luminosity L is

$$
T=\left(\frac{L}{16 \pi \sigma d^{2}}\right)^{\frac{1}{4}} \quad(1 \mathrm{mark})
$$

For $10^{-4} \mathrm{pc}$ from a 10^{6} solar luminosity star then

$$
T=\left(\frac{10^{6} \times 4 \times 10^{26}}{16 \pi 5.8 \times 10^{-8}\left(10^{-4} \times 3.1 \times 10^{16}\right)^{2}}\right)^{\frac{1}{4}}=1900 \mathrm{~K} \quad(1 \mathrm{mark})
$$

Peak wavelength is given by Wien's displacement law

$$
\lambda_{\max }=\frac{3 \times 10^{-3}}{T}=\frac{3 \times 10^{-3}}{1900}=1.6 \times 10^{-6} \mathrm{~m}
$$

i.e. $1.6 \mu \mathrm{~m}$ or the near-infrared region of the spectrum. (1 mark)

For $1 \mathrm{pc} T=19 \mathrm{~K}$ (1 mark)
and $\lambda_{\text {max }}=160 \mu \mathrm{~m}$ in the far-infrared. (1 mark)
Hence, grains close to hot stars emit strongly in the near- to midinfrared region whilst grains along way from stars have a typical temperature of a few tens of K and emit in the far-infrared. Recall that the typical distance between stars in a Galaxy is a few parcsecs. If grains get any hotter than about 2000 K then they are destroyed by sublimation into the gas phase. Hence there is no hot dust emission at wavelengths shorter than the near-infrared.
2. We need to calculate the volume that results in a mass equivalent to the 10 solar masses initially ejected. This is given by
$V=\frac{M}{\rho} \quad$ (1mark)
The mass density, $\rho\left(\mathrm{kg} \mathrm{m}^{-3}\right)$, is related to the number density, n (particles m^{-3}), by the mass of a particle, in this case the hydrogen atom, m_{H}. Hence,
$V=\frac{M}{m_{H} n}=\frac{10 \times 2 \times 10^{30}}{1.7 \times 10^{-27} \times 10^{6}}=1 \times 10^{52} \mathrm{~m}^{-3}$
The radius of a sphere of this volume is
$r=\left(\frac{3 V}{4 \pi}\right)^{\frac{1}{3}}=\left(\frac{3 \times 10^{52}}{4 \pi}\right)^{\frac{1}{3}}=1 \times 10^{17} \mathrm{~m}=4 \mathrm{pc} \quad$ (1 mark)
3. The rotation speed of the Sun around the Galaxy is $220 \mathrm{~km} \mathrm{~s}^{-1}$. If the spiral pattern speed is only about half of that then the pattern speed is $110 \mathrm{~km} \mathrm{~s}^{-1}$. (1 mark)
Therefore the time taken to pass through a spiral arm is
$t=\frac{d}{v}=\frac{3.1 \times 10^{19}}{110 \times 10^{3}}=3 \times 10^{14} s=1 \times 10^{7}$ years (1 mark)
Note this is similar to the main sequence lifetime for massive stars and hence they only exist in spiral arms.

