Stars and Galaxies

Coursework Sheet 6 - Feedback

1. A star like the Sun which has an intrinsic colour of $\mathrm{B}-\mathrm{V}=+0.6$ is observed to have a colour $\mathrm{B}-\mathrm{V}=+1.5$ and an apparent magnitude $\mathrm{m}_{\mathrm{V}}=23.5$. What is the visual extinction to this object and how far away in the Galaxy is it assuming the absolute magnitude of the Sun is $\mathrm{M}_{\mathrm{V}}=+4.8$.

The star appears redder due to interstellar reddening and the colour excess is given by

$$
\begin{align*}
\mathrm{E}(\mathrm{~B}-\mathrm{V}) & =(\mathrm{B}-\mathrm{V})_{\text {observed }}-(\mathrm{B}-\mathrm{V})_{\text {intrinsic }} \\
& =1.5-0.6=0.9 \tag{1mark}
\end{align*}
$$

Total visual extinction is given by

$$
\begin{align*}
& \mathrm{A}_{\mathrm{V}} \sim 3 \mathrm{E}(\mathrm{~B}-\mathrm{V}) \\
& \quad=3 \times 0.9=2.7 \text { magnitudes } \tag{1mark}
\end{align*}
$$

Distance is obtained from the equation
$\mathrm{m}_{\mathrm{v}}-\mathrm{M}_{\mathrm{V}}=5 \log \mathrm{~d}-5+\mathrm{A}_{\mathrm{V}}$
$5 \log \mathrm{~d}=\mathrm{m}_{\mathrm{V}}-\mathrm{M}_{\mathrm{V}}+5-\mathrm{A}_{\mathrm{V}}=23.5-4.8+5-2.7=21$
$\mathrm{d}=10^{21 / 5}=15800 \mathrm{pc}=15.8 \mathrm{kpc}$
Remember distance has to be in parsecs in this equation. Note this distance is on the far side of our Galaxy.
2. A region of our Galaxy has $\mathrm{A}_{\mathrm{V}}=10$. How many times fainter in the V -band are the objects here than they would otherwise be if there was no extinction? The extinction in the K -band in the near-infrared at a wavelength of 2 microns is only $1 / 8^{\text {th }}$ of what it is at V . How many times fainter are they at this waveband.

Use Pogson's relation to relate a difference in magnitudes to a factor in brightness

$$
\begin{aligned}
& A_{V}=2.5 \log \left(\frac{f_{\text {intrinsic }}}{f_{\text {observed }}}\right) \\
& \log \left(\frac{f_{\text {intrinsic }}}{f_{\text {observed }}}\right)=\frac{10}{2.5}=4 \\
& \frac{f_{\text {intrinsic }}}{f_{\text {observed }}}=10^{4}
\end{aligned}
$$

i.e. the object is 10000 times fainter than it would have been if the dust was not obscuring the object.
$A_{K} \approx \frac{1}{8} A_{V}=\frac{10}{8}=1.25$
Therefore in K - band
$\log \left(\frac{f_{\text {intrinsic }}}{f_{\text {observed }}}\right)=\frac{1.25}{2.5}=0.5$
$\frac{f_{\text {intrinsic }}}{f_{\text {observed }}}=10^{0.5}=3.2$
i.e. the object is only about 3 times fainter than it would have been at nearinfrared wavebands.
3. The mass density of the dust component within the ISM is 1% that of the total for the gas and the dust, i.e.
$\rho_{\text {Dust }}=0.01 \rho_{I S M}=2 \times 10^{-23} \mathrm{~kg} \mathrm{~m}^{-3}$
This mass density of dust is made up individual grains each of which have a mass of
$m_{\text {grain }}=\rho_{\text {grain }} V=\rho_{\text {grain }} \frac{4}{3} \pi R_{\text {grain }}^{3}$
$=3 \times 10^{3} \times \frac{4}{3} \pi\left(0.05 \times 10^{-6}\right)^{3}=2 \times 10^{-18} \mathrm{~kg}$
The mass density of interstellar dust can then be written as
$\rho_{\text {Dust }}=n_{d} m_{\text {grain }}$
\therefore
$n_{d}=\frac{\rho_{\text {Dust }}}{m_{\text {grain }}}=\frac{2 \times 10^{-23}}{2 \times 10^{-18}}=10^{-5} \mathrm{~m}^{-3}$
This can be compared to the number density of gas particles - let us assume pure hydrogen so that

$$
n_{g a s}=\frac{\rho_{g a s}}{m_{g a s}}=\frac{2 \times 10^{-21}}{2 \times 10^{-27}}=10^{6} \mathrm{~m}^{-3}
$$

Hence, there is only about one dust grain for every 10^{11} gas particles.

