Stars and Galaxies

Coursework Sheet 4 - Feedback

1. To obtain the sum of the masses of the two stars we can use Newton's form of Kepler's third law
$M_{1}+M_{2}=\frac{4 \pi^{2} a^{3}}{G P^{2}}$
This formula contains G and all the quantities must therefore be in SI units, i.e. masses in kg , separation in m and period in seconds. To find the separation of the two stars in metres we need to convert the angular separation of the two stars which is $\theta=3+1=4$ arcseconds into a physical separation as follows
$a=\theta d=\frac{4}{206265} \cdot 5 \cdot 3 \cdot 110^{16}=3 \cdot 0 \cdot 10^{12} \mathrm{~m}$
Hence,
$M_{1}+M_{2}=\frac{4 \pi^{2}\left(3.0 .10^{12}\right)^{3}}{6.7 .10^{-11} .\left(30 \times 3.15 .10^{7}\right)^{2}}=1.8 .10^{31} \mathrm{~kg}=8.9 \mathrm{M}_{\odot}$
Now the ratio of the masses is given by the centre of mass of the system:
$\frac{M_{2}}{M_{1}}=\frac{a_{1}}{a_{2}}=\frac{1}{3}$
so
$M_{1}=3 M_{2}$
$4 M_{2}=8.9 \mathrm{M}_{\odot}$
and
$M_{2}=2.2 \mathrm{M}_{\odot}$
$M_{1}=6.7 \mathrm{M}_{\odot}$
Alternatively you can use the form of Kepler's third law in solar system units:
$M_{1}+M_{2}=\frac{a^{3}}{P^{2}}$
where masses are in M_{\odot}, separation is in AU and period is in years. The separation of the two stars in AU can be found using the definition of the parsec, i.e.
$a / A U=\theta / v d / p c=4 \times 5=20 \mathrm{AU}$
Binaries with solar-type stars will have a sum of their masses of about $2 \mathrm{M}_{\odot}$ and a human lifetime is of order 100 years (let's be optimistic) or 3.10^{9} s. Using Kepler's third law again this gives a separation of $4 \cdot 0 \cdot 10^{12} \mathrm{~m}=26$ AU. Hence, for typical ground-based telescope angular resolutions of about 1 arcsecond we can resolve these binaries out to distances of only 26 pc , i.e. not many can be resolved.
2. For double-lined spectroscopic binaries we need the form of Kepler's third law which includes radial velocities, i.e.
$M_{1}+M_{2}=\frac{P}{2 \pi G}\left(\frac{v_{r 1}+v_{r 2}}{\sin i}\right)^{3}$
$=\frac{8.3600}{2 \pi 6 \cdot 7 \cdot 10^{-11}}\left(\frac{(150+350) \cdot 10^{3}}{\sin 90^{\circ}}\right)^{3}$
$=8.6 .10^{30} \mathrm{~kg}$
$=4.3 \mathrm{M}_{\odot}$
(2 marks)
Again this contains G and so all variables have to be in SI units: masses in kg, period in seconds and velocities in ms^{-1}.
Ratio of the masses is found from the ratio of the velocity amplitudes:
$\frac{M_{2}}{M_{1}}=\frac{v_{r 1}}{v_{r 2}}=\frac{150}{350}$
$M_{1}=\frac{7}{3} M_{2}$
$\frac{10}{3} M_{2}=4.3 \mathrm{M}_{\odot}$
$M_{2}=1.3 \mathrm{M}_{\odot}$
$M_{1}=3.0 \mathrm{M}_{\odot}$
To prove that we were viewing a system nearly edge-on, i.e. $i \sim 90^{\circ}$, we need to look for eclipses of one star by the other as they pass in front of each other thereby dimming the brightness of the system.
