
PHYS 20602 Handout 3

Handout Contents

• Golden Equations from Lectures 5 to 8

• The Stern-Gerlach Experiment

• Examples for Lectures 9 to 12 (with hints at end)

• Answers to examples from Handout 2

Golden Equations for Lectures 5 to 8

Â|v〉 = |Av〉 ⇒ 〈Av| = 〈v|Â† for all |v〉
Hermitian: Â = Â†

Unitary: Û † = Û−1

Â|ai〉 = ai|ai〉

The Stern-Gerlach Experiment

The experiment that revealed the quantisation of spin was done by Otto Stern and
Walther Gerlach in Frankfurt in 1921. See handout IQM9 from last term’s PHYS
20101 for a basic description, or the first part of Chapter 1 of Townsend’s book for more
details. Richard Feynman invented a classic series of thought-experiments that use
variants on the Stern-Gerlach experiment (SGE) to reveal the weirdness of quantum
mechanics while keeping the maths extremely simple: this is the model for the rest
of Townsend’s first chapter, and some of the material at the start of Section 2 of this
course comes from there.

The SGE changes the direction of particles according to the component of the magnetic
moment, µ, that is aligned with its magnetic field; in simple cases (e.g. silver atoms)
µ is aligned with spin. Feynman’s idea was to pass a beam of atoms through several
SGE one after another, and look at the effect of changing the relative directions of
their magnets. You can try this for yourself by playing with one or both of the on-line
SG simulators linked from the course web site...strongly recommended!
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Examples

Lecture 9 Wave mechanics vs. matrix mechanics?

1. Revision of key concepts from PHYS2010:
Let operator Ĥ describe the energy of a one-particle system, which has
eigenvaluesE1, E2, . . . (all different), corresponding to eigenfunctions φ1(x), φ2(x), . . ..
At some instant the wavefunction of the system is a superposition:

ψ(x) = c1 φ1(x) + c2 φ2(x).

(a) Evaluate Ĥψ(x).

(b) Write down the physical dimensions of each of Ĥ, E1, c1, φ1(x), ψ(x),x.
(Warning: think hard about the wave functions!).

(c) If a measurement of the energy is made, what are the possible values
that might be found, and what are the probabilities of each result?

(d) If a measurement of position is made, write down the formula for the
probability that the particle is within 1 nm of the centre of the coor-
dinate system.

2. Two observables for a particle with state space V 3(C) are represented in a
certain basis by the operators:

Lx
−→ ~√

2





0 1 0
1 0 1
0 1 0



 ; Lz
−→ ~





1 0 0
0 0 0
0 0 −1





(a) What are the possible values one can obtain if Lz is measured?

(b) Take the state in which Lz = ~. In this state, what are 〈Lx〉, 〈L2
x〉, and

∆Lx?

(c) Find the normalised eigenstates and the eigenvalues of Lx in the Lz

basis.

(d) If the particle is in the state with Lz = −~, and Lx is measured, what
are the possible outcomes and their probabilities?

(e) Consider the state

|ψ〉 −→Lz





1/2
1/2

1/
√

2



 ,

i.e. this is the representation in the Lz basis. If L2
x is measured in this

state and a result ~
2 is obtained, what is the state after the measure-

ment? How probable was this result? If Lz is then measured, what are
the outcomes and respective probabilities?
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(f) A particle is in a state for which the probabilities are Prob(Lz = ~) =
1/4, Prob(Lz = 0) = 1/2, Prob(Lz = −~) = 1/4. Convince yourself
that the most general normalised state with this property is

|ψ〉 =
eiδ1

2
|Lz = ~〉 +

eiδ2

√
2
|Lz = 0〉 +

eiδ3

2
|Lz = −~〉.

In the lectures I said that if |ψ〉 is a normalised state then eiθ|ψ〉 rep-
resents the same physical state. Does this mean that the factors eiδi

multiplying the Lz eigenstates are irrelevant? Check by calculating
Prob(Lx = 0).

Lecture 10

1. Show that

ex = lim
N→∞

[

1 +
x

N

]N

,

by comparing the Maclaurin series expansions for the two functions.

2. From the abstract Schrödinger equation and the definition of the time evo-
lution operator Û(t0, t), show that

(a)

i~
dÛ(t0, t)

dt
= Ĥ(t) Û(t0, t)

(b)

i~
dÛ(t0, t)

dt0
= −Ĥ(t0) Û(t0, t)

(c) Hence, if Û(t0, t) = Û(t− t0) (e.g. for a closed system) then show that
Ĥ(t) = Ĥ(t0), i.e. Ĥ is independent of time.

3. Let




E0 0 A
0 E1 0
A 0 E0





with E1 6= E0, represent the Hamiltonian for a three-state system in the
“crispies” representation, where the basis states are:

|snap〉 −→
crispies





1
0
0



 ; |soggy〉 −→
crispies





0
1
0



 ; |pop〉 −→
crispies





0
0
1



 .

.

19



(a) If the state of the system at time t = 0 is |soggy〉, what is the state at
time t?

(b) If the starting state is |snap〉, what happens?

Lecture 11

1. To show that probability amplitudes must be complex numbers in general:

(a) By considering Stern-Gerlach experiments as discussed in the lectures,
but with axes oriented along (z and y) or (x and y) instead of (z and
x), convince yourself that a ket which is “spin-up” in the y direction
must be of the form

|+y〉 =
eiγ+

√
2
|+z〉 +

eiγ−

√
2
|−z〉

where γ+ and γ− are yet-to-be determined phases; also that

|〈+y|+x〉|2 =
1

2
.

Here |+z〉 is spin-up along the z axis etc, i.e. what we usually call |↑〉,
as we have run out of arrow symbols now we have to include y as well!

(b) By combining 〈+y| with |+x〉 = (|+z〉 + |−z〉)/
√

2, show that

|〈+y|+x〉|2 =
1

2
(1 + cos(γ+ − γ−)),

Hence show that 〈+z|+y〉 and 〈−z|+y〉 cannot both be real numbers.

2. From their effects on the basis states |↑〉 and |↓〉, show that for a system
with angular momentum ~/2:

(a) the z-spin operator can be written:

Ŝz = (~/2)(P̂↑ − P̂↓),

where P̂↑ and P̂↓ are the projectors onto the spin-up and spin-down
states respectively.

(b) the spin ladder operators can be written:

Ŝ+ = ~|↑〉〈↓ | and Ŝ− = ~|↓〉〈↑ |
3. Given the formula for ladder operators:

Ĵ±|j,m〉 = c±(j,m)|j,m± 1〉,
with

c±(j,m) =
√

j(j + 1) −m(m± 1) ~,

find the 5 × 5 matrices for J+ and J− for the case j = 2; hence construct
Jx and Jy (this is easier than it sounds as only one diagonal is non zero in
each of J±).
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Lecture 12

1. Consider a direct product space V1⊗2 = V1 ⊗ V2. Let the product-space
operator equivalent to Ω1 (on V1, as indicated by subscript) be Ω1⊗2

1 =
Ω1 ⊗ I, and so on. Show that

(a) (Ω ⊗ Γ) (Θ ⊗ Λ) = (ΩΘ) ⊗ (ΓΛ);

(b) A⊗ I +B ⊗ I = (A+B) ⊗ I;

(c) Operators on the factor spaces commute, i.e. [Ω1⊗2
1 ,Λ1⊗2

2 ] = 0;

(d) If [Ω1,Λ1] = Γ1 on V1, then [Ω1⊗2
1 ,Λ1⊗2

1 ] = Γ1⊗2
1 ;

(e)
(

Ω1⊗2
1 + Ω1⊗2

2

)2
= (Ω2

1) ⊗ I + I ⊗ (Ω2
2) + 2Ω1 ⊗ Ω2.

HINTS:

Lecture 9: 2a You don’t need to solve any equations to answer this! Lecture 10: 3. You have to find
the eigenvalues and eigenvectors of the Hamiltonian matrix. Then express the original basis vectors
as superpositions of energy eigenvectors. Then you can use the simple rule for how energy eigenstates
change with time to work out how the states change. Lecture 12: 1(a) and (b): Consider the action
of the operator on a simple direct product ket |v〉 ⊗ |w〉. Argue using linearity that if two operators
have the same effect on all simple product kets, they will have the same effect on any arbitrary ket in
V1⊗2 (note that most such kets are not simple direct products). If two operators have the same effect
on all kets, they are equal.
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Answers to Handout 2

Lecture 5

1.

|a〉 =
∑

i

|i〉〈i|a〉 = Î|a〉

|a〉 is an arbitrary ket. Integer i indexes the dimensions of the vector space. The
set {|i〉}N

i=1 is an orthonormal basis. Î is the identity operator. This equation
says that (i) an arbitrary ket can be expanded in terms of an orthonormal basis,
with coefficient (or coordinate) of the ith basis vector being 〈i|a〉; (ii) It identifies
the identity operator with the sum over the projectors onto all the basis vectors,
i.e.

∑

|i〉〈i| = Î.

[

〈b|Â
]

(|a〉) = 〈b|
(

Â|a〉
)

≡ 〈b|Â|a〉

|a〉, 〈b| and Â are an arbitrary ket, bra and linear operator, respectively. This
says that the matrix element 〈b|Â|a〉 can be read either as the action of bra 〈b|
on the ket resulting from working Â to the right on ket |a〉, or as the action on
ket |a〉 of the bra produced by working Â to the left on bra 〈b|—either approach
is guaranteed to give the same numerical answer.

〈a|B̂|b〉 = (〈a|1〉, 〈a|2〉)
(

〈1|B̂|1〉 〈1|B̂|2〉
〈2|B̂|1〉 〈2|B̂|2〉

)(

〈1|b〉
〈2|b〉

)

≡ [a]T∗[B][b]

〈a| and |b〉 are an arbitrary bra and ket respectively in a 2-dimensional vector
space, and B̂ is an operator in that space. {|1〉, |2〉} is an orthonormal basis
in the space and 〈1|, 〈2| are the bras corresponding to the basis kets. This
equation shows how to evaluate an abstract “matrix element” such as 〈a|B̂|b〉 by
evaluating the matrix representations of bras, operators and kets in a particular
basis, so the final number can be found by matrix multiplication. It also reminds
you of our square-bracket notation to show when we are talking about ‘concrete’
matrices (dependent on a particular basis) versus the basis-independent abstract
Dirac notation.

2. Let Û1, Û2 be unitary operators, and V̂ = Û1Û2. Then V̂ †V̂ = (Û1Û2)
†(Û1Û2) =

Û †
2 Û

†
1 Û1Û2 = Û †

2 ÎÛ2 = Û †
2 Û2 = Î. Therefore V̂ is unitary.

3. (i) According to the question we start with an N × N matrix (say [U ]) whose
columns are orthonormal vectors. Note that this implies we are dealing with
an N -dimensional vector space. Since there are N columns, there are N such
vectors, and any N orthonormal vectors in an N -D space form a basis; let’s call
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this one {|yi〉}; call the original basis {|xi〉}. Our matrix components, and hence
the components of |yi〉, are

Uji ≡ 〈xj|Û |xi〉 = [yi]j = 〈xj|yi〉.

(notice that, as always, the column index (here i) comes second). The rows are
〈xj|yi〉 for fixed j, i.e. the complex conjugate of the components of |xj〉 in the
|yi〉 basis. These are indeed orthonormal:

∑

i

〈xj|yi〉∗〈xk|yi〉 =
∑

i

〈xk|yi〉〈yi|xj〉 = 〈xk|Î|xj〉 = 〈xk|xj〉 = δkj.

An identical argument applies if we start with orthonormal rows and wish to
prove that the columns are orthonormal.

(ii) To prove [U ] is unitary:

[U †U ]ik =
∑

j

(Uij)
†Ujk =

∑

j

U∗
jiUjk =

∑

j

〈xj|yi〉∗〈xj|yk〉 =
∑

j

〈yi|xj〉〈xj|yk〉 = δik.

Lecture 6

1. (a) (ÛÂÛ †)† = (Û †)†Â†Û † = ÛÂÛ † therefore ÛÂÛ † is Hermitian. Similarly
(Û †ÂÛ)† = Û †Â†(Û †)† = Û †ÂÛ .

(b) To show {|bi〉} are an orthonormal basis in V N , we require that (i) they are
orthonormal:

〈bi|bj〉 = 〈ai|Û Û †|aj〉 = 〈ai|Î|aj〉 = 〈ai|aj〉 = δij QED

(ii) there are N members: True, since from (i) there is one |bi〉 for each |ai〉,
and {|ai〉} is a basis). QED.

(c) det([U ][A][U ]†) = det([U ]) det([A]) det([U ]†), since the determinant of a
product is the product of determinants. But from Theorem 1.9 we know
that det([U ]) det([U ]†) = 1, so det([U ][A][U ]†) = det([A]) QED.

NB considered as a passive transform, unitary transforms like ÛÂÛ † change
the ortho-normal basis in which the operator Â is represented; in this case
from {|ai〉} to {|bi〉}, since

〈ai|ÛÂÛ †|aj〉 = 〈bi|Â|bj〉.

Hence this result shows that the determinant is a property of the abstract
operator and not just of a particular basis-dependent matrix representation.

2. (a) The positive x axis is not a subspace because if you multiply a vector on it
by a negative scalar, e.g. −1i, you get a vector which is not on the positive
axis. Therefore this set is not closed under scalar multiplication, therefore
not a vector space, therefore not a subspace.
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(b) The plane z = 1 in V 3(R) is not a subspace because it is not closed: if we
add two vectors on this plane we get a vector on the plane z = 2, e.g.:

(1, 2, 1) + (3, 0, 1) = (4, 2, 2).

NB: in a vector space, all vectors start from the origin! (This is another
way of saying that the zero vector is unique; therefore all subspaces must
include the zero vector.)

3. We can always create a basis on V N which includes any given vector (except 0):
if the vector is not in a basis already, expand it:

|v〉 =
∑

i

vi|xi〉

then remove any one of the |xi〉 with non-zero coefficients and replace with |v〉 —
we still have a basis (N linearly-independent vectors), i.e. {|v〉, |x1〉, |x2〉 . . . |xN−1〉}.
If this is not already orthonormal we can use Gram-Schmidt, starting with |v〉. It
follows that {|xi〉}N−1

i=1 are an orthonormal set, and all orthogonal to |v〉. There-
fore any vector in the subspace spanned by the {|xi〉} (call it V N−1

⊥ ) is orthogonal
to |v〉. Furthermore, any vector |w〉 orthogonal to |v〉 is in V N−1

⊥ , because any
vector can be written

|w〉 = a0|v〉 +
N−1
∑

i=1

ai|xi〉

using our basis on V N . But if 〈v|w〉 = a0 = 0, we have

|w〉 =
N−1
∑

i=1

ai|xi〉

and therefore in V N−1
⊥ .

4. (a) a∗n〈an| = 〈an|Â†

(b) If Â is Hermitian, Â† = Â, so:

〈aj|Â|ak〉 = 〈aj|
(

Â|ak〉
)

= 〈aj| (ak|ak〉) = ak〈aj|ak〉

〈aj|Â|ak〉 =
(

〈aj|Â
)

|ak〉 =
(

〈aj|Â†
)

|ak〉 = a∗j〈aj|ak〉
ak〈aj|ak〉 = a∗j〈aj|ak〉 ⇒ (ak − a∗j)〈aj|ak〉 = 0

First consider the case when k = j. As noted in the lectures the zero
vector does not count as an eigenket, so 〈aj|aj〉 6= 0. Therefore aj = a∗j ,
i.e. aj ∈ R—eigenvalues are real. Then, for k 6= j, if aj 6= ak then we must
have 〈aj|ak〉 = 0 i.e. eigenkets with different eigenvalues are orthogonal.
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(c) If Â is unitary, Â† = Â−1.

〈aj|Â†Â|ak〉 =
(

〈aj|Â†
)(

Â|ak〉
)

= a∗jak〈aj|ak〉

〈aj|Â†Â|ak〉 = 〈aj|Î|ak〉 = 〈aj|ak〉
Taking k = j, since 〈aj|aj〉 6= 0, we must have a∗jaj = 1, i.e. aj is a complex
number of unit modulus and so can be written as eiθj , with θj ∈ R. If k 6= j
and ak 6= aj then the kets are orthogonal as in the previous case.

Lecture 7

1. (a) Since both matrices are real, they will be symmetric if they are Hermitian.
By inspection, [A] is not and [B] is.

(b) Eigenvalues of [A]:

det(A−aI) =

∣

∣

∣

∣

∣

∣

1 − a 3 1
0 2 − a 0
0 1 4 − a

∣

∣

∣

∣

∣

∣

= (1−a)(2−a)(4−a)−3×0+1×0.

Hence the eigenvalues are 1, 2, 4. Eigenvectors:




1 − an 3 1
0 2 − an 0
0 1 4 − an









x
y
z



 = 0

For a1 = 1 this gives 3y + z = 0, y = 0, y + 3z = 0, hence, y = z = 0
and x = 1 by normalisation. For a2 = 2 we get −x + 3y + z = 0, 0 = 0,
y+ 2z = 0; so y = −2z and x = −5z. For a3 = 4 we get −3x+ 3y+ z = 0,
−2y = 0, y = 0, so z = 3x. The normalised eigenvectors are

[a1] =





1
0
0



 , [a2] =
1√
30





5
2

−1



 , [a3] =
1√
10





1
0
3



 .

If this is defined on a complex vector space all eigenvectors can be multiplied
by an arbitrary phasor eiφn without changing the normalisation. For a real
vector space this degenerates to the option of multiplying by −1.

Eigenvalues of [B]:

det(B − bI) =

∣

∣

∣

∣

∣

∣

2 − b 1 1
1 −b −1
1 −1 2 − b

∣

∣

∣

∣

∣

∣

= (2 − b)[(−b)(2 − b) − 1] − [(2 − b) + 1] + [−1 − (−b)]
= (2 − b)(b2 − 2b− 1) − (3 − b) − (1 − b)

= (2 − b)(b2 − 2b− 1) − 2(2 − b)

= (2 − b)(b2 − 2b− 3) = (2 − b)(b+ 1)(b− 3)
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so eigenvalues are −1, 2, 3. Solving for the eigenvectors:

(2 − b)x+ y + z = 0

x− by − z = 0

x− y + (2 − b)z = 0

Adding the first and last line we get (3 − b)(x + z) = 0, so x = −z unless
b = 3. For b1 = −1 we have y = z − x = 2z. For b2 = 2 we have
x = y = −z. For b3 = 3 we have from adding the first and second lines
−2y = 0, so x − z = 0. Hence the normalized eigenvectors (up to a phase
factor) are

[b1] =
1√
6





−1
2
1



 , [b2] =
1√
3





1
1

−1



 , [b3] =
1√
2





1
0
1



 .

(c) By inspection, the eigenvectors of [A] are not orthogonal (in fact no pair
of them are orthogonal), as expected for a non-Hermitian matrix. Actually
N × N matrices which are neither Hermitian nor unitary may not even
have N different eigenvectors. As expected for a Hermitian matrix, the
eigenvectors of [B] are orthogonal, for instance

〈b1|b2〉 = (−1 × 1 + 2 × 1 + 1 × (−1))/
√

18 = 0.

(d) This part only applies to [B] as [A] is not Hermitian. The matrix of eigen-
vectors is

[U ] =
1√
6





−1
√

2
√

3

2
√

2 0

1 −
√

2
√

3



 .

[U ]†[B][U ] =
1

6





−1 2 1√
2

√
2 −

√
2√

3 0
√

3









2 1 1
1 0 −1
1 −1 2









−1
√

2
√

3

2
√

2 0

1 −
√

2
√

3





=
1

6





−1 2 1√
2

√
2 −

√
2√

3 0
√

3









1 2
√

2 3
√

3

−2 2
√

2 0

−1 −2
√

2 3
√

3



 =





−1 0 0
0 2 0
0 0 3



 .

2. You should recognise [R] as the standard 2D rotation matrix by an angle φ.
So it must be unitary because its inverse is a rotation by −φ which gives the
transpose of [R], equivalent to the adjoint since all elements are real.
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(i) To check unitarity explicitly:

[R]†[R] =

(

cosφ − sinφ
sinφ cosφ

)(

cosφ sinφ
− sinφ cosφ

)

=

(

cos2 φ+ sin2 φ cosφ sinφ− sinφ cosφ
sinφ cosφ− cosφ sinφ sin2 φ+ cos2 φ

)

=

(

1 0
0 1

)

.

(ii) Eigenvalues: characteristic equation is

det(R− rI) = (cosφ− r)2 + sin2 φ = 1 − 2r cosφ+ r2 = 0

Using the usual solution to quadratic equations:

r =
2 cosφ±

√

4 cos2 φ− 4

2
= cosφ±

√

− sin2 φ = cosφ± i sinφ = e±iφ.

(iii) Eigenvectors: we have x cosφ+y sinφ = (cosφ± i sinφ)x, y cosφ−x sinφ =
(cosφ ± i sinφ)y. The first gives y = ±ix, the second −x = ±iy which is the
same thing. Hence normalized eigenvectors are

|+φ〉 → eiθ+

√
2

(

1
i

)

, |−φ〉 → eiθ−

√
2

(

1
−i

)

.

Orthogonality:

〈+φ|−φ〉 = ei(θ−−θ+)(1∗ × 1 + i∗ × (−i)) = ei(θ−−θ+)(1 + (−i)2) = 0

(iv) Diagonalisation. Choosing the phases θ+ = θ− = 0,

[U ] =
1√
2

(

1 1
i −i

)

[U ]†[R][U ] =
1

2

(

1 −i
1 i

)(

cosφ sinφ
− sinφ cosφ

)(

1 1
i −i

)

=
1

2

(

1 −i
1 i

)(

cosφ+ i sinφ cosφ− i sinφ
i cosφ− sinφ − sinφ− i cosφ

)

=
1

2

(

2(cosφ+ i sinφ) 0
0 2(cosφ− i sinφ)

)

=

(

eiφ 0
0 e−iφ

)

Lecture 8

1. (i) The characteristic equation is

0 = det(C − cI) =

∣

∣

∣

∣

∣

∣

1 − c 0 1
0 −c 0
1 0 1 − c

∣

∣

∣

∣

∣

∣

= (1 − c)(−c)(1 − c) − 1 × (−c) = c(1 − (1 − c)2)

= c(1 − 1 + 2c− c2) = c2(2 − c),
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hence eigenvalues are 0, 0, 2 as required. (ii) Solving for the eigenvector for
c3 = 2, we have −x + z = 0, 2y = 0, x − z = 0, i.e. y = 0 and x = z (twice).
Hence

|c3〉 → N





1
0
1





where the normalisation constant N is defined by N∗N × 2 = 1, hence N =
eiθ/

√
2 for any θ ∈ R. (iii) Solving for c = 0 we get x+ z = 0, 0 = 0, x+ z = 0,

so x = −z, and y is unconstrained. Hence vectors are of the form

N





f
g

−f





with N2
√

|g|2 + 2|f |2 = 1, as required. (No phase factor, since it is absorbed
into the unknowns f and g). Alternatively, requiring that a vector in the c = 0
subspace be orthogonal to |c3〉 gives

〈c3|v〉 = (1 × x+ 0 × y + 1 × z)/
√

2 = 0

which gives the same result.

2. Commutator:

[C,B] =





1 0 1
0 0 0
1 0 1









2 1 1
1 0 −1
1 −1 2



−





2 1 1
1 0 −1
1 −1 2









1 0 1
0 0 0
1 0 1





=





3 0 3
0 0 0
3 0 3



−





3 0 3
0 0 0
3 0 3



 = 0

Diagonalising [C] using the matrix of eigenvalues for [B] derived in Q8.1 gives

[U ]†[C][U ] =
1

6





−1 2 1√
2

√
2 −

√
2√

3 0
√

3









1 0 1
0 0 0
1 0 1









−1
√

2
√

3

2
√

2 0

1 −
√

2
√

3





=
1

6





−1 2 1√
2

√
2 −

√
2√

3 0
√

3









0 0 2
√

3
0 0 0

0 0 2
√

3



 =





0 0 0
0 0 0
0 0 2





which has the eigenvalues 0, 0, 2 on the diagonal as it should. Hence |c3〉 = |b3〉
and the c = 0 subspace is spanned by |b1〉 and |b2〉.
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3. (a) By definition,

eA+B =
∞
∑

m=0

(A+B)m

m!
.

With [A,B] = 0, we can simplify operator product terms like AaBbAcBd into
Aa+cBb+d (and so on), and so we can use the binomial theorem to get

eA+B =
∞
∑

m=0

m
∑

n=0

m!

n!(m− n)!

Am−nBn

m!
=

∞
∑

m=0

m
∑

n=0

Am−nBn

(m− n)!n!

Meanwhile,

eAeB =

(

∞
∑

m=0

Am

m!

)(

∞
∑

n=0

Bn

n!

)

=
∞
∑

m=0

∞
∑

n=0

AmBn

m!n!

The double sums at the end of our two expressions are in fact equal, since each
counts every pair of positive powers of A and B once and only once, and the
denominators are the same in each case (the first expression effectively sums the
diagonals of the matrix Mij = AiBj/i!j!, then sums the results, while the second
sums the columns, then sums the results).

(b) The adjoint of eiA is

(eiA)† =
∞
∑

n=0

[(iA)n]†

n!
=

∞
∑

n=0

(−iA†)n

n!
= e−iA†

= e−iA.

The second equality uses the rules that (i) complex numbers go to their con-
jugates on taking the adjoint (ii) (An−1A)† = A†(An−2A)† etc to show that
(An)† = (A†)n. At the end we use A = A†, since A is Hermitian. But since A
commutes with any scalar multiple of itself,

e−iAeiA = e−i(A−A) = e0 = I,

where we write I and not 1 since this is an operator equation. Similarly eiAe−iA =
ei(A−A) = I. Hence the adjoint of eiA is its inverse, so it is unitary.
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