1. 2010 Exam Q1(d): An electron in a hydrogen atom is in an excited state with $l=2$. What are the possible values of its total angular momentum quantum number j ? List the possible values of m_{j} and the degeneracy of each.
2. 2010 Exam Q3 In a 2-electron system, the total spin has x-component

$$
\hat{S}_{x}=\hat{S}_{1 x} \otimes \hat{I}+\hat{I} \otimes \hat{S}_{2 x}
$$

(a) Evaluate the results of applying \hat{S}_{x} to each of the "direct product" basis vectors, i.e.

$$
|1\rangle=|\uparrow\rangle|\uparrow\rangle ; \quad|2\rangle=|\uparrow\rangle|\downarrow\rangle ; \quad|3\rangle=|\downarrow\rangle|\uparrow\rangle ; \quad|4\rangle=|\downarrow\rangle|\downarrow\rangle .
$$

where $|\uparrow\rangle$ and $|\downarrow\rangle$ are the spin-up and spin-down eigenstates of \hat{S}_{z}.
(The x-Pauli matrix $\sigma_{x}=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right)$).
Hence show that the matrix representing \hat{S}_{x} in the direct product basis is

$$
\frac{\hbar}{2}\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right)
$$

(b) An alternative basis:

$$
\begin{aligned}
|\mathrm{I}\rangle=(|1\rangle+|2\rangle+|3\rangle+|4\rangle) / 2 ; & |\mathrm{II}\rangle=(|1\rangle-|4\rangle) / \sqrt{2} \\
|\mathrm{III}\rangle=(|1\rangle-|2\rangle-|3\rangle+|4\rangle) / 2 ; & |\mathrm{IV}\rangle=(|2\rangle-|3\rangle) / \sqrt{2}
\end{aligned}
$$

consists of eignevectors of S_{x}. Evaluate the matrix representation of \hat{S}_{x} in this basis by using the matrix of eigenvectors to perform a unitary transform from the direct product basis. Verify that the transformed matrix is diagonal and hence find the eigenvalues associated with each eigenvector. [10 marks]
(c) Is this the only possible eigenbasis for \hat{S}_{x} ? Briefly explain why. [3 marks]
(d) What is different between the state $|\mathrm{IV}\rangle$ and the other three eigenkets? What are the possible value(s) that a measurement of S_{y} might yield for this state?
3. 2010 Exam Q4(d) The normalized ground state wave function of the simple harmonic oscillator is

$$
\langle x \mid 0\rangle=K \exp \left(-\frac{m \omega x^{2}}{2 \hbar}\right)
$$

where K is a normalizing factor. Using the operator \hat{a}^{\dagger}, or otherwise, find the wave function for the first excited state (you need not find the normalisation factor).

Hint: \hat{a} (not \hat{a}^{\dagger}) is given by

$$
\hat{a}=\sqrt{\frac{m \omega}{2 \hbar}}\left(\hat{x}+\frac{i \hat{p}}{m \omega}\right) .
$$

1. Possible values of total angular momentum $\mathbf{J}=\hat{\mathbf{L}}+\hat{\mathbf{S}}: J^{2}=j(j+1) \hbar^{2}, L^{2}=$ $l(l+1) \hbar^{2}, S^{2}=s(s+1) \hbar^{2} . j, l$, and s are all quantised and positive: l must have integer values; j and s can also have half-integer values. Maximum value of j is $j_{\max }=l+s$, minimum value $j_{\min }=|l-s|$. In between, values decrease in steps of one. Electrons have $s=\frac{1}{2}$, so for $l=2$,

$$
j_{\max }=5 / 2, \quad j_{\min }=3 / 2
$$

and there are no intermediate values.
Possible values of m_{j} run from j to $-j$ in unit steps, hence

j	$5 / 2$	$3 / 2$	degeneracy
	$5 / 2$		1
	$3 / 2$	$3 / 2$	2
m_{j}	$1 / 2$	$1 / 2$	2
	$-1 / 2$	$-1 / 2$	2
	$-3 / 2$	$-3 / 2$	2
	$-5 / 2$		1

2. (a) Recalling that $\hat{S}_{i}=\frac{\hbar}{2} \sigma_{i}$, the given Pauli matrix shows that the effect of the single-particle S_{x} operator is to swap spin-up for spin-down, and vice-versa, and multiply the state vector by $\hbar / 2$. Using the rule:

$$
A \otimes B|a\rangle|b\rangle=(A|a\rangle) \otimes(B|b\rangle)
$$

we have

$$
\begin{aligned}
S_{x}|1\rangle & =\hbar / 2(|\downarrow\rangle|\uparrow\rangle+|\uparrow\rangle|\downarrow\rangle)=\hbar / 2(|3\rangle+|2\rangle) \\
S_{x}|2\rangle & =\hbar / 2(|\downarrow\rangle|\downarrow\rangle+|\uparrow\rangle|\uparrow\rangle)=\hbar / 2(|4\rangle+|1\rangle) \\
S_{x}|3\rangle & =\hbar / 2(|\uparrow\rangle|\uparrow\rangle+|\downarrow\rangle|\downarrow\rangle)=\hbar / 2(|1\rangle+|4\rangle) \\
S_{x}|4\rangle & =\hbar / 2(|\uparrow\rangle|\downarrow\rangle+|\downarrow\rangle|\uparrow\rangle)=\hbar / 2(|2\rangle+|3\rangle)
\end{aligned}
$$

The given matrix is the one that leads to these results in matrix notation, where

$$
|1\rangle=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) \quad \text { etc. }
$$

(b) We can change the basis of an operator, here to the "Roman" (R) from the "arabic" (a) basis, by writing:

$$
\left[S_{x}\right]^{(R)}=\left[S^{a R}\right]^{\dagger}\left[S_{x}\right]^{(a)}\left[S^{a R}\right]
$$

where $\left[S^{a R}\right]$ is the "Roman-to-arabic" conversion matrix, i.e. the matrix of eigenvectors, which consists of columns which are the "Roman" eigenvectors in the "arabic" basis (and rows vice-versa):

$$
\begin{aligned}
{\left[S_{x}\right]^{(R)} } & =\left(\begin{array}{rrrr}
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{\sqrt{2}} & 0 & 0 & \frac{-1}{2} \\
\frac{1}{2} & \frac{-1}{2} & \frac{-1}{2} & \frac{1}{2} \\
0 & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & 0
\end{array}\right) \frac{\hbar}{2}\left(\begin{array}{rrrr}
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right)\left(\begin{array}{rrrrr}
\frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} & 0 \\
\frac{1}{2} & 0 & \frac{-1}{2} & \frac{1}{\sqrt{2}} \\
\frac{1}{2} & 0 & \frac{-1}{2} & \frac{-1}{\sqrt{2}} \\
\frac{1}{2} & \frac{-1}{\sqrt{2}} & \frac{1}{2} & 0
\end{array}\right) \\
& =\left(\begin{array}{rrrr}
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{\sqrt{2}} & 0 & 0 & \frac{-1}{2} \\
\frac{1}{2} & \frac{-1}{2} & \frac{-1}{2} & \frac{1}{2} \\
0 & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & 0
\end{array}\right) \frac{\hbar}{2}\left(\begin{array}{rrrr}
1 & 0 & -1 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & -1 & 0
\end{array}\right) \\
& =\frac{\hbar}{2}\left(\begin{array}{rrrr}
2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)=\hbar\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

As required, this is diagonal, and so we can just read the eigenvalues off the diagonal, viz: $|I\rangle: \hbar ;|I I\rangle: 0 ;|I I I\rangle:-\hbar ;|I V\rangle: 0$.
(c) This is not the only possible eigenbasis for \hat{S}_{x}, because the eigenvalue zero is degenerate. Hence any pair of orthogonal vectors in the $S_{x}=0$ eigenspace could be used as part of an \hat{S}_{x} eigenbasis.
(d) State $|I V\rangle$ is the spin-singlet state corresponding to total-spin $S=0$; the other eigenkets are triplet states corresponding to $S=1$, i.e. $S^{2}=2 \hbar^{2}$. The spin-singlet state has the property that it has a zero spin eigenvalue for measurement along any direction, in particular a measurement of S_{y} will definitely yield $S_{y}=0$.
3. From the given expression for \hat{a} you can take the adjoint, recalling that \hat{x} and \hat{p} are Hermitian:

$$
\hat{a}^{\dagger}=\sqrt{\frac{m \omega}{2 \hbar}}\left(\hat{x}-\frac{i \hat{p}}{m \omega}\right)
$$

You should know that $\hat{a}^{\dagger}|n\rangle \propto|n+1\rangle$, and in particular the first excited state can be got from the ground state via $|1\rangle \propto \hat{a}^{\dagger}|0\rangle$ (you may also remember the proportionality constant, $\sqrt{n+1}$, but it's not needed here). In the position representation this becomes

$$
\langle x \mid 1\rangle \propto \sqrt{\frac{m \omega}{2 \hbar}}\left(x-\frac{i}{m \omega} \frac{\hbar}{i} \frac{\partial}{\partial x}\right)\langle x \mid 0\rangle .
$$

So
$\langle x \mid 1\rangle \propto \sqrt{\frac{m \omega}{2 \hbar}}\left(x-\frac{\hbar}{m \omega}\left[\frac{-m \omega 2 x}{2 \hbar}\right]\right) \exp \left[\frac{-m \omega x^{2}}{2 \hbar}\right]=\sqrt{\frac{m \omega}{2 \hbar}} 2 x \exp \left[\frac{-m \omega x^{2}}{2 \hbar}\right]$.
(The constant factors at the front of this expression can be omitted, as they will be absorbed into the normalization constant).

