1. For each of the following expressions, say whether it is (or evaluates to) a ket, a bra, a complex number, or an operator:
(i) $\langle\psi| \hat{L}_{z}$, (ii) $|1\rangle\langle 1|$, (iii) $|f\rangle \otimes|h\rangle$, (iv) $\langle\uparrow \mid \leftarrow\rangle$.
2. Given that

$$
|\leftarrow\rangle=\frac{|\uparrow\rangle+|\downarrow\rangle}{\sqrt{2}}
$$

where $\{|\uparrow\rangle,|\downarrow\rangle\}$ are the eigenstates of \hat{S}_{z}, evaluate the 2×2 matrix representing the operator $|\leftarrow\rangle\langle\leftarrow|$ in the S_{z} basis. What kind of operator is this?
3. (i) The following equations are written rather 'loosely': re-write in a form that is fully consistent:

$$
\begin{gathered}
\hat{M}=\hat{S}_{z}{ }^{2}+2 \hbar^{2} \\
\hat{J}=\hat{L}+\hat{S}
\end{gathered}
$$

(ii) In the equation

$$
\hat{L}_{z}|m=0\rangle=0
$$

what does the symbol ' 0 ' on the right-hand side stand for?
4. Part of 2010 Exam Q2: A certain ion in a crystal has a Hamiltonian $\hat{H}=A \hat{L}_{x}^{2}$, where \hat{L}_{x} is the x-component of orbital angular momentum and A is a positive constant. The ion has angular momentum quantum number $l=1$. In the L_{z} representation, this gives

$$
\hat{H} \underset{L_{z}}{\longrightarrow} \frac{A \hbar^{2}}{2}\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

(a) Find all the eigenvalues of \hat{H}, and the normalised eigenvector of the ground state (only).
(b) The ion's state at time $t=0$ is $|m=-1\rangle$. Analyse this into a component in the ground state and a component orthogonal to the ground state, and hence find the state at a later time t.
5. 2009 Exam Q1(c) A hydrogen atom is in the state

$$
|\psi\rangle=N(|1,0,0\rangle+3|2,1,-1\rangle+2|3,2,2\rangle) .
$$

where $|n, l, m\rangle$ is a hydrogenic state with the usual quantum number notation. If the z component of orbital angular momentum is measured, give the possible results with their probabilities of occurence.

1. (i) Bra (operator acts to left on a bra to make a new bra).
(ii) Operator (outer products are operators; this is the projector to state $|1\rangle$).
(iii) Ket (direct product of two kets is a ket in the direct product space).
(iv) Complex numbers (inner products are complex numbers).
2. $|\leftarrow\rangle\langle\leftarrow|$ is the projection operator onto state $|\leftarrow\rangle$; call it P. First basis ket is $|\uparrow\rangle$, second is $|\downarrow\rangle$, so

$$
\begin{aligned}
P_{11} & =\langle\uparrow| P|\uparrow\rangle=\langle\uparrow \mid \leftarrow\rangle\langle\leftarrow \mid \uparrow\rangle=\frac{1}{2}\langle\uparrow|(|\uparrow\rangle+|\downarrow\rangle)(\langle\uparrow|+\langle\downarrow|)|\uparrow\rangle \\
& =\frac{1}{2}(\langle\uparrow \mid \uparrow\rangle+\langle\uparrow \mid \downarrow\rangle)(\langle\uparrow \mid \uparrow\rangle+\langle\downarrow \mid \uparrow\rangle)=\frac{1}{2}(1+0)(1+0)=\frac{1}{2}
\end{aligned}
$$

using the orthonormality of $\{|\uparrow\rangle,|\downarrow\rangle\}$. Similarly:

$$
\begin{aligned}
& P_{12}=\langle\uparrow| P|\downarrow\rangle=\langle\uparrow \mid \leftarrow\rangle\langle\leftarrow \mid \downarrow\rangle=\frac{1}{2}(1+0)(0+1)=\frac{1}{2} \\
& P_{21}=\langle\downarrow| P|\uparrow\rangle=\langle\downarrow \mid \leftarrow\rangle\langle\leftarrow \mid \uparrow\rangle=\frac{1}{2}(0+1)(1+0)=\frac{1}{2} \\
& P_{22}=\langle\downarrow| P|\downarrow\rangle=\langle\downarrow \mid \leftarrow\rangle\langle\leftarrow \mid \downarrow\rangle=\frac{1}{2}(0+1)(0+1)=\frac{1}{2}
\end{aligned}
$$

So the matrix

$$
[P]=\left(\begin{array}{ll}
P_{11} & P_{12} \\
P_{21} & P_{22}
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)
$$

This is the one we met in the last example class.
3. (i)

$$
\hat{M}=\hat{S}_{z}{ }^{2}+2 \hbar^{2}
$$

This is an operator equation so all terms should be operators. However, since multiplying by the identity has no effect we often don't bother writing \hat{I}; but to be accurate we should say

$$
\begin{gathered}
\hat{M}=\hat{S}_{z}^{2}+2 \hbar^{2} \hat{I} \\
\hat{J}=\hat{L}+\hat{S}
\end{gathered}
$$

J is an operator that acts on the combined (direct product) space of orbital angular momentum and spin, but \hat{L} and \hat{S} act only on one (each) of these factor spaces. To be precise we should write

$$
\hat{J}=\hat{L} \otimes \hat{I}+\hat{I} \otimes \hat{S}
$$

(ii) In the equation

$$
\hat{L}_{z}|m=0\rangle=0
$$

the ' 0 ' on the right-hand side is the zero vector (zero ket), since the LHS (operator acting on ket) evaluates to a ket, not to a scalar.
4. (a) Given that we know $H=A L_{x}^{2}$, which is a function of L_{x}, its eigenvalues will be the same functions of the L_{x} eigenvalues. L_{x} must have the same eigenvalues as L_{z}, since x and z are just conventional labels. For $l=1$, the eigenvalues of L_{z} and L_{x} are $\hbar, 0$, and $-\hbar$. Hence we expect eigenvalues of H to be

$$
A \hbar^{2} \times(1,0,1)
$$

Check by explicitly solving the matrix. For speed, solve the matrix without the pre-factor (call it H^{\prime}) and then multiply the eigenvalues by $A \hbar^{2} / 2$:

$$
\begin{aligned}
\operatorname{det}\left(H^{\prime}-m I\right) & =\left|\begin{array}{rrr}
1-m & 0 & 1 \\
0 & 2-m & 0 \\
1 & 0 & 1-m
\end{array}\right| \\
& =(1-m)[(2-m) \times(1-m)-0]-0+1 \times[0-(2-m) \times 1] \\
& =(2-m)\left[1-2 m+m^{2}-1\right]=(2-m) m(m-2),
\end{aligned}
$$

i.e. $m=(2,0,2)$ and hence energy eigenvalues are $E=A \hbar^{2}(1,0,1)$ as expected.
The ground state is the lowest energy value, in this case $E=0$. Hence the eigenvector satisfies:

$$
\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 0 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=0
$$

i.e. $a+c=0$ and $2 b=0$. Hence the normalised ground state ket is

$$
|E=0\rangle \overrightarrow{L_{z}} \frac{1}{\sqrt{2}}\left(\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right)
$$

(b) The state with $m=-1$ is an eigenstate of L_{z}, hence one of our basis kets; in fact it is the third basis ket as we always list the eigenvalues in the order $\hbar, 0,-\hbar$. So

$$
|m=-1\rangle \overrightarrow{L_{z}}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Per the question, write this as $|m=-1\rangle=a|E=0\rangle+|\phi\rangle$ where a and $|\phi\rangle$ are unknown, but $\langle\phi \mid E=0\rangle=0$, i.e. $|\phi\rangle$ is a vector in the subspace with excited energy $E=A \hbar^{2}$.

$$
\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\frac{a}{\sqrt{2}}\left(\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right)+\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

where

$$
(1,0,-1)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=(x-z)=0
$$

so the excited subspace contains any vector with $x=z$. The solution may be obvious; formally we have to solve:

$$
\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{r}
a / \sqrt{2}+x \\
y \\
-a / \sqrt{2}+x
\end{array}\right)
$$

hence $y=0, x=-a / \sqrt{2}$, and $-\sqrt{2} a=1$:

$$
\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\frac{1}{2}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)-\frac{1}{2}\left(\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right) .
$$

The two terms have energies $A \hbar^{2}$ and 0 , so we can apply the time evolution operator to get the state at time t :

$$
|\Psi(t)\rangle=e^{-i H t / \hbar}|m=-1\rangle=e^{-i A \hbar t}|\phi\rangle-e^{0} \frac{1}{\sqrt{2}}|E=0\rangle \underset{L_{z}}{\longrightarrow} \frac{1}{2}\left(\begin{array}{r}
e^{-i A \hbar t}-1 \\
0 \\
e^{-i A \hbar t}+1
\end{array}\right) .
$$

This is a bit more illuminating if we pull out an overall phase factor:

$$
|\Psi(t)\rangle \underset{L_{z}}{ } \frac{e^{-i A \hbar t / 2}}{2}\left(\begin{array}{r}
e^{-i A \hbar t / 2}-e^{i A \hbar t / 2} \\
0 \\
e^{-i A \hbar t / 2}+e^{i A \hbar t / 2}
\end{array}\right)=e^{-i A \hbar t / 2}\left(\begin{array}{r}
-i \sin (A \hbar t / 2) \\
0 \\
\cos (A \hbar t / 2)
\end{array}\right) .
$$

The ion oscillates between $L_{z}=-\hbar$ and $L_{z}=\hbar$, but without passing through $L_{z}=0$.
5. First find the normalization constant N :

$$
\langle\psi \mid \psi\rangle=1=|N|^{2}\left(1+3^{2}+2^{2}\right)=14 N^{2}
$$

using the orthogonality of states with different eigenvalues. Hence $N^{2}=1 / 14$. The z component of angular momentum is given by the m quantum number, namely $L_{z}=m \hbar$, so the possibilities are: $L_{z}=0$, probability $1 / 14 ; L_{z}=-\hbar$, probability $9 / 14, L_{z}=2 \hbar$, probability $4 / 14$.

