PHYS 20602

- Examples Class 3
- 1. For *each* of the following expressions, say whether it is (or evaluates to) a ket, a bra, a complex number, or an operator:
 - (i) $\langle \psi | \hat{L}_z$, (ii) $|1\rangle \langle 1|$, (iii) $|f\rangle \otimes |h\rangle$, (iv) $\langle \uparrow | \leftarrow \rangle$.
- 2. Given that

$$\left|\leftarrow\right\rangle = \frac{\left|\uparrow\right\rangle + \left|\downarrow\right\rangle}{\sqrt{2}},$$

where $\{|\uparrow\rangle, |\downarrow\rangle\}$ are the eigenstates of \hat{S}_z , evaluate the 2 × 2 matrix representing the operator $|\leftarrow\rangle\langle\leftarrow|$ in the S_z basis. What kind of operator is this?

3. (i) The following equations are written rather 'loosely': re-write in a form that is fully consistent:

$$\hat{M} = \hat{S}_z^2 + 2\hbar^2$$
$$\hat{J} = \hat{L} + \hat{S}$$

(ii) In the equation

$$\hat{L}_z | m = 0 \rangle = 0,$$

what does the symbol '0' on the right-hand side stand for?

4. Part of 2010 Exam Q2: A certain ion in a crystal has a Hamiltonian $\hat{H} = A\hat{L}_x^2$, where \hat{L}_x is the x-component of orbital angular momentum and A is a positive constant. The ion has angular momentum quantum number l = 1. In the L_z representation, this gives

$$\hat{H} \xrightarrow{L_z} \frac{A\hbar^2}{2} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix},$$

- (a) Find all the eigenvalues of \hat{H} , and the normalised eigenvector of the ground state (only).
- (b) The ion's state at time t = 0 is $|m = -1\rangle$. Analyse this into a component in the ground state and a component orthogonal to the ground state, and hence find the state at a later time t.
- 5. 2009 Exam Q1(c) A hydrogen atom is in the state

$$|\psi\rangle = N(|1,0,0\rangle + 3|2,1,-1\rangle + 2|3,2,2\rangle).$$

where $|n, l, m\rangle$ is a hydrogenic state with the usual quantum number notation. If the z component of orbital angular momentum is measured, give the possible results with their probabilities of occurence. [6 marks]

- 1. (i) Bra (operator acts to left on a bra to make a new bra).
 - (ii) Operator (outer products are operators; this is the projector to state $|1\rangle$).
 - (iii) Ket (direct product of two kets is a ket in the direct product space).
 - (iv) Complex numbers (inner products are complex numbers).
- 2. $|\leftarrow\rangle\langle\leftarrow|$ is the projection operator onto state $|\leftarrow\rangle$; call it *P*. First basis ket is $|\uparrow\rangle$, second is $|\downarrow\rangle$, so

$$P_{11} = \langle \uparrow |P| \uparrow \rangle = \langle \uparrow | \leftarrow \rangle \langle \leftarrow | \uparrow \rangle = \frac{1}{2} \langle \uparrow | (|\uparrow\rangle + |\downarrow\rangle) (\langle \uparrow | + \langle \downarrow |) |\uparrow\rangle$$
$$= \frac{1}{2} (\langle \uparrow |\uparrow\rangle + \langle \uparrow |\downarrow\rangle) (\langle \uparrow |\uparrow\rangle + \langle \downarrow |\uparrow\rangle) = \frac{1}{2} (1+0)(1+0) = \frac{1}{2}$$

using the orthonormality of $\{|\uparrow\rangle, |\downarrow\rangle\}$. Similarly:

$$P_{12} = \langle \uparrow | P | \downarrow \rangle = \langle \uparrow | \leftarrow \rangle \langle \leftarrow | \downarrow \rangle = \frac{1}{2}(1+0)(0+1) = \frac{1}{2}$$

$$P_{21} = \langle \downarrow | P | \uparrow \rangle = \langle \downarrow | \leftarrow \rangle \langle \leftarrow | \uparrow \rangle = \frac{1}{2}(0+1)(1+0) = \frac{1}{2}$$

$$P_{22} = \langle \downarrow | P | \downarrow \rangle = \langle \downarrow | \leftarrow \rangle \langle \leftarrow | \downarrow \rangle = \frac{1}{2}(0+1)(0+1) = \frac{1}{2}$$

So the matrix

$$[P] = \begin{pmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

This is the one we met in the last example class.

3. (i)

$$\hat{M} = \hat{S_z}^2 + 2\hbar^2$$

This is an operator equation so all terms should be operators. However, since multiplying by the identity has no effect we often don't bother writing \hat{I} ; but to be accurate we should say

$$\hat{M} = \hat{S_z}^2 + 2\hbar^2 \hat{I}.$$
$$\hat{J} = \hat{L} + \hat{S}$$

J is an operator that acts on the combined (direct product) space of orbital angular momentum and spin, but \hat{L} and \hat{S} act only on one (each) of these factor spaces. To be precise we should write

$$\hat{J} = \hat{L} \otimes \hat{I} + \hat{I} \otimes \hat{S}.$$

(ii) In the equation

$$\hat{L}_z | m = 0 \rangle = 0,$$

the '0' on the right-hand side is the zero vector (zero ket), since the LHS (operator acting on ket) evaluates to a ket, not to a scalar.

4. (a) Given that we know $H = AL_x^2$, which is a function of L_x , its eigenvalues will be the same functions of the L_x eigenvalues. L_x must have the same eigenvalues as L_z , since x and z are just conventional labels. For l = 1, the eigenvalues of L_z and L_x are \hbar , 0, and $-\hbar$. Hence we expect eigenvalues of H to be

$$A\hbar^2 \times (1,0,1)$$

Check by explicitly solving the matrix. For speed, solve the matrix without the pre-factor (call it H') and then multiply the eigenvalues by $A\hbar^2/2$:

$$det(H' - mI) = \begin{vmatrix} 1 - m & 0 & 1 \\ 0 & 2 - m & 0 \\ 1 & 0 & 1 - m \end{vmatrix}$$

= $(1 - m)[(2 - m) \times (1 - m) - 0] - 0 + 1 \times [0 - (2 - m) \times 1]$
= $(2 - m)[1 - 2m + m^2 - 1] = (2 - m)m(m - 2),$

i.e. m = (2, 0, 2) and hence energy eigenvalues are $E = A\hbar^2(1, 0, 1)$ as expected.

The ground state is the lowest energy value, in this case E = 0. Hence the eigenvector satisfies:

$$\left(\begin{array}{rrr}1&0&1\\0&2&0\\1&0&1\end{array}\right)\left(\begin{array}{r}a\\b\\c\end{array}\right)=0,$$

i.e. a + c = 0 and 2b = 0. Hence the normalised ground state ket is

$$|E=0\rangle \xrightarrow{L_z} \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\-1 \end{pmatrix}.$$

(b) The state with m = -1 is an eigenstate of L_z , hence one of our basis kets; in fact it is the third basis ket as we always list the eigenvalues in the order \hbar , 0, $-\hbar$. So

$$|m = -1\rangle \xrightarrow{L_z} \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

Per the question, write this as $|m = -1\rangle = a|E = 0\rangle + |\phi\rangle$ where a and $|\phi\rangle$ are unknown, but $\langle \phi | E = 0 \rangle = 0$, i.e. $|\phi\rangle$ is a vector in the subspace with excited energy $E = A\hbar^2$.

$$\begin{pmatrix} 0\\0\\1 \end{pmatrix} = \frac{a}{\sqrt{2}} \begin{pmatrix} 1\\0\\-1 \end{pmatrix} + \begin{pmatrix} x\\y\\z \end{pmatrix}$$

where

$$(1,0,-1)\begin{pmatrix}x\\y\\z\end{pmatrix} = (x-z) = 0,$$

so the excited subspace contains any vector with x = z. The solution may be obvious; formally we have to solve:

$$\begin{pmatrix} 0\\0\\1 \end{pmatrix} = \begin{pmatrix} a/\sqrt{2}+x\\y\\-a/\sqrt{2}+x \end{pmatrix},$$

hence $y = 0, x = -a/\sqrt{2}$, and $-\sqrt{2}a = 1$:

$$\begin{pmatrix} 0\\0\\1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1\\0\\1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 1\\0\\-1 \end{pmatrix}.$$

The two terms have energies $A\hbar^2$ and 0, so we can apply the time evolution operator to get the state at time t:

$$|\Psi(t)\rangle = e^{-iHt/\hbar}|m = -1\rangle = e^{-iA\hbar t}|\phi\rangle - e^0 \frac{1}{\sqrt{2}}|E = 0\rangle \xrightarrow{L_z} \frac{1}{2} \begin{pmatrix} e^{-iA\hbar t} - 1\\ 0\\ e^{-iA\hbar t} + 1 \end{pmatrix}.$$

This is a bit more illuminating if we pull out an overall phase factor:

$$|\Psi(t)\rangle \xrightarrow{L_z} \frac{e^{-iA\hbar t/2}}{2} \begin{pmatrix} e^{-iA\hbar t/2} - e^{iA\hbar t/2} \\ 0 \\ e^{-iA\hbar t/2} + e^{iA\hbar t/2} \end{pmatrix} = e^{-iA\hbar t/2} \begin{pmatrix} -i\sin(A\hbar t/2) \\ 0 \\ \cos(A\hbar t/2) \end{pmatrix}.$$

The ion oscillates between $L_z = -\hbar$ and $L_z = \hbar$, but without passing through $L_z = 0$.

5. First find the normalization constant N:

$$\langle \psi | \psi \rangle = 1 = |N|^2 (1 + 3^2 + 2^2) = 14N^2$$

using the orthogonality of states with different eigenvalues. Hence $N^2 = 1/14$. The z component of angular momentum is given by the m quantum number, namely $L_z = m\hbar$, so the possibilities are: $L_z = 0$, probability 1/14; $L_z = -\hbar$, probability 9/14, $L_z = 2\hbar$, probability 4/14.