
PHYS 20602 Examples Class 2

Finger Exercises (mostly from Q1 of the exam paper in various past years)

1. Give the number of dimensions of the following vector spaces:

(i) The direct sum of a 2-D and a 3-D vector space: V 2 ⊕ V 3;

(ii) The set of polynomials of degree up to N ;

2. For each of the following matrices, state whether it is Hermitian, unitary, both,
or neither:

(i)

(

1 0
0 1

)

; (ii)

(

0 1
0 0

)

; (iii)

(

1 −i
i 2

)

; (iv)

(

0 i
1 0

)

.

(From 2010 exam question; worth 6 marks)

3. Given that Ω̂ and Λ̂ are Hermitian operators, and λ is a scalar, under what
conditions are the following Hermitian or anti-Hermitian?

NB: the commutator [Â, B̂] = ÂB̂ − B̂Â.

(a) Ω̂Λ̂;

(b) Ω̂Λ̂ + λΩ̂;

(c) [Ω̂, Λ̂];

(d) i[Ω̂, Λ̂]?

4. Show that the vectors

|←〉 =
|↑〉+ |↓〉√

2

and

|→〉 =
|↑〉 − |↓〉√

2

are orthogonal, given that |↑〉 and |↓〉 are orthogonal.

5. A particle is in a state

|ψ(t = 0)〉 = C (|E0〉+ 2i|E1〉+ (1 + i)|E2〉)

where |E0〉, |E1〉, |E2〉 are energy eigenstates with energies E0 = 0.5 eV, E1 =
1.5 eV, and E2 = 2.5 eV.

(a) Evaluate the normalization constant C.

(b) What are the possible results of a measurement of the energy, and the
probability of each result?

1



(c) What is the expectation value of the energy?

(d) Write down the state |ψ(t)〉 of the particle at a later time t, assuming no
measurement has taken place.

(e) Write down the state at time t assuming an ideal measurement took place
and the energy was found to be E0.

(Brownie points for anyone who can spot what kind of potential the particle
is in, given the pattern of energy eigenvalues...you met this in Wendy Flavell’s
course!).

6. Find the eigenvectors and eigenvalues of the matrix

P =

(

1/2 1/2
1/2 1/2

)

.

(From 2009 exam paper, worth 7 marks).

Brownie points for guessing why this matrix is called “P”!
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PHYS 20602 Answers for Examples Class 2

1. (i) 5 (dimensions of vector spaces just add with direct sums); (ii) Polynomials
of degree N have the form:

f(x) = a0 + a1x+ a2x
2 + . . . aNx

N .

As we saw in an example, polynomials of the form xn are linearly independent,
so we need N + 1 of them (including x0 = 1 for the first term) to make any
polynomial of degree N . Hence we have N + 1 dimensions for the vector space
describing these polynomials.

2. Matrix adjoints are:

(i)

(

1 0
0 1

)

; (ii)

(

0 0
1 0

)

; (iii)

(

1 −i
i 2

)

; (iv)

(

0 1
−i 0

)

.

Adjoints (i) and (iii) are equal to their original matrices, which are therefore
Hermitian. Matrix multiplication of the adjoints with the originals gives the
identity matrix for (i) and (iv), which are therefore unitary. (ii) is neither.

3. (a) (Ω̂Λ̂)† = Λ̂†Ω̂† = Λ̂Ω̂ since Λ̂ and Ω̂ are Hermitian. Hence Ω̂Λ̂ will be
Hermitian if [Ω̂, Λ̂] = 0, and anti-Hermitian if Ω̂Λ̂ = −Λ̂Ω̂ (this is called
anti-commutation). If neither of these holds, the product is neither Hermi-
tian nor anti-Hermitian.

(b) (Ω̂Λ̂ + λΩ̂)† = Λ̂Ω̂ + λ∗Ω̂. Hence the conditions are as in the previous part
except that λ must be real for Hermitian and imaginary for anti-Hermitian.

(c) ([Ω̂, Λ̂])† = (Ω̂Λ̂ − Λ̂Ω̂)† = Λ̂†Ω̂† − Ω̂†Λ̂† = Λ̂Ω̂ − Ω̂Λ̂ = [Λ̂, Ω̂] = −[Ω̂, Λ̂].
Therefore the commutator of Hermitian matrices is anti-Hermitian (or
zero).

(d) From the previous part, i[Ω̂, Λ̂] must be Hermitian.

4. If two kets are orthogonal their inner product is zero, i.e. 〈→ |←〉 = 0. We have

〈→ |←〉 =

(〈↑ | − 〈↓ |√
2

) ( |↑〉+ |↓〉√
2

)

=
〈↑ |↑〉+ 〈↑ |↓〉 − 〈↓ |↑〉 − 〈↓ |↓〉

2

=
〈↑ |↑〉+ 0− 0− 〈↓ |↓〉

2

where we used orthogonality of {|↑〉, |↓〉} in the last line. I should have told you
also to assume that these vectors are normalised (this is the usual convention).
If you assume that they are, then you get

〈→ |←〉 =
1 + 0− 0− 1

2
= 0
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as required.

(Similarly, 〈← |←〉 = 1 = 〈→ |→〉).

5. (a) Vectors representing physical states must be normalised, hence 〈ψ|ψ〉 = 1.
The states |E0〉, |E1〉 and |E2〉 must be mutually orthogonal as they are
eigenkets of a Hermitian operator (i.e. the Hamiltonian) with different
eigenvalues. By the usual convention, as eigenkets, they are normalised.
Hence we can ignore the cross terms in the inner product and we have:

1 = 〈ψ|ψ〉
= C∗ (〈E0| − 2i〈E1|+ (1− i)〈E2|) C (|E0〉+ 2i|E1〉+ (1 + i)|E2〉)
= C∗C (〈E0|E0〉 − 2i× 2i〈E1|E1〉+ (1− i)(1 + i)〈E2|E2〉)
= |C|2(1 + 4 + 2) = 7|C|2

Hence C = eiδ/
√

7 for some δ ∈ R.

(b) Possible results: E0, E1, E2; Probabilities 1/7, 4/7, 2/7 respectively.

(c) 〈E〉 = 1 eV ×
(

1

2
× 1

7
+ 3

2
× 4

7
+ 5

2
× 2

7

)

= 23/14 eV = 1.64 eV

(d)

|ψ(t)〉 = C
(

e−iE0t/~|E0〉+ 2ie−iE1t/~|E1〉+ (1 + i)e−iE2t/~|E2〉
)

(e)

|ψ(t)〉 = e−iE0t/~|E0〉

For brownie points: A system with energies proportional to (1/2), (3/2),
(5/2) . . . times some basic unit sounds a lot like a 1-D simple harmonic
oscillator.

6.

detP =

∣

∣

∣

∣

1/2− p 1/2
1/2 1/2− p

∣

∣

∣

∣

=

(

1

2
− p

)2

−
(

1

2

)2

=
1

4
− p+ p2− 1

4
= p(1− p).

so the eigenvalues (solutions of detP = 0) are p = 0 and p = 1.

Eigenvectors:
(

1/2− p 1/2
1/2 1/2− p

) (

x
y

)

= 0

For p = 0 this gives x/2 + y/2 = 0 (twice), i.e. x = −y, or a normalized
eigenvector of

|p = 0〉 → 1√
2

(

1
−1

)
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For p = 1 we have −x/2 + y/2 = 0 and (redundantly, as ever when solving for
eigenvectors) x/2− y/2 = 0, i.e. x = y, or

|p = 1〉 → 1√
2

(

1
1

)

P̂ is an operator with a single non-zero eigenvalue, and that equal to 1. That
makes it a projector (onto the state |p = 1〉).
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