CMB Spectral Distortions as New Probe of
Early-Universe Physics

y-distortion with y = 2x10”

standard power spectrum

standard power spectrum with step (X 1/5)
standard power spectrum with bend (x 1/12)
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What does the spectrum look like after energy injection?

Intensity signal for different heating redshifts
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u-distortion at z ~ 3 X 10
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y-distortion, z, < 10
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Intermediate distortions
probe time-dependence of
energy release history
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JC & Sunyaev, 2011, ArXiv:1109.6552
JC, 2013, ArXiv:1304.6120







Main Goals for this Lecture

Convince you that future CMB distortions science
will be extremely exciting!

Provide an overview for different sources of early-
energy release

Show why the CMB spectrum is a complementary
probe of inflation physics and particle physics



Physical mechanisms that lead to spectral distortions

Cooling by adiabatically expanding ordinary matter: T, ~ (1+z) & T, ~ (1+z)

(JC, 2005; JC & Sunyaev 2011; Khatri, Sunyaev & JC, 2011)
« continuous cooling of photons until redshift z ~ 150 via Compton scattering
 due to huge heat capacity of photon field distortion very small ( Ap/p ~ 10-10-10-9)

Heating by decaying or annihilating relic particles
 How is energy transferred to the medium?
« lifetimes, decay channels, neutrino fraction, (at low redshifts: environments), ...

Evaporation of primordial black holes & superconducting strings

(Carr et al. 2010; Ostriker & Thompson, 1987; Tashiro et al. 2012)
 rather fast, quasi-instantaneous but also extended energy release

Dissipation of primordial acoustic modes & magnetic fields

(Sunyaev & Zeldovich, 1970; Daly 1991; Hu et al. 1994; Jedamzik et al. 2000)

pre-recombination epoch

Cosmological recombination

,high“ redshifts

_ _ _ Jow" redshifts
Signatures due to first supernovae and their remnants

(Oh, Cooray & Kamionkowski, 2003)

Shock waves arising due to large-scale structure formation
(Sunyaev & Zeldovich, 1972; Cen & Ostriker, 1999)

-
post-recombination

SZ-effect from clusters; effects of reionization (Heating of medium by X-Rays, Cosmic Rays, etc)
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Physical mechanisms that lead to spectral distortions

Cooling by adiabatically expanding ordinary matter: T, ~ (1+z) & T, ~ (1+z)?
(JC, 2005; JC & Sunyaev 2011; Khatri, Sunyaev & JC, 2011)

« continuous cooling of photons until redshift z ~ 150 via Compton scattering Standard sources

 due to huge heat capacity of photon field distortion very small ( Ap/p ~ 10-10-10-9) of distortions

too little time...
Heating by decaying or annihilating relic particles
 How is energy transferred to the medium?
+ lifetimes, decay channels, neutrino fraction, (at low redshifts: environments), ...

Evaporation of primordial black holes & superconducting strings

(Carr et al. 2010; Ostriker & Thompson, 1987; Tashiro et al. 2012)
 rather fast, quasi-instantaneous but also extended energy release

Dissipation of primordial acoustic modes & magnetic fields

(Sunyaev & Zeldovich, 1970; Daly 1991; Hu et al. 1994; Jedamzik et al. 2000)

pre-recombination epoch

Cosmological recombination

,high“ redshifts

Jow“ redshifts

Signatures due to first supernovae and their remnants
(Oh, Cooray & Kamionkowski, 2003)

Shock waves arising due to large-scale structure formation
(Sunyaev & Zeldovich, 1972; Cen & Ostriker, 1999)

-
post-recombination

SZ-effect from C|USterS; effects of reionization (Heating of medium by X-Rays, Cosmic Rays, etc)



PIXIE: Primordial Inflation Explorer

Angular Scale (Deg)

QOUnpoi(,).ized R—— ,' o 400 spectral channel in the frequency
sonetE range 30 GHz and 6THz (Av ~ 15GHz)
about 1000 (!!!) times more sensitive than
COBE/FIRAS

B-mode polarization from inflation (r = 10-3)
Improved limits on y and y

was proposed 2011 as NASA EX mission
100 (i.e. cost ~ 200 M$)
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Instruments:
* L-class ESA mission
* White paper, May 24th, 2013
- Imager:
- polarization sensitive

- 3.5m telescope [arcmin resolution
at highest frequencies]

- 30GHz-6TH2z [30 broad (Av/iv~25%)
and 300 narrow (Av/v~2.5%) bands]

» Spectrometer:
- FTS similar to PIXIE
- 30GHz-6THz (Av~15 & 0.5 GHz)

Some of the science goals:

+ B-mode polarization from
inflation (r = 5x10-4)

- count all SZ clusters >10"* Msun
- ClB/large scale structure

+ Galactic science

« CMB spectral distortions

Sign up at:
http://www.prism-mission.org/
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Adiabatically cooling ordinary matter



Spectral distortion caused by the cooling of ordinary matter

adiabatic expansion
= T, ~(1+2) & T, ~ (1+2)°

End of HI recombination

/ photons continuously cooled /
down-scattered since day one

Electrons & baryons always of the Universe!
slightly cooler than photons

Compton heating balances
adiabatic cooling

da*p 6
= a4dt7 ~ —HkanT, < (1 + 2)

at high redshift same scaling
as annihilation (o< N% )
no distortion

with distortion = cancellation possible

------- — effective photon temperature

JC, 2005; JC & Sunyaev, 2012
Khatri, Sunyaev & JC, 2012



Spectral distortion caused by the cooling of ordinary matter

adiabatic expansion
= T, ~(1+2) & T, ~ (1+2)°

photons continuously cooled /
down-scattered since day one
of the Universe!

Compton heating balances
adiabatic cooling

N da*p,
a*dt

at high redshift same scaling
as annihilation (o< N% )

= cancellation possible

~ —Hkap, T, o< (1 + 2)°

JC, 2005; JC & Sunyaev, 2012
Khatri, Sunyaev & JC, 2012



Spectral distortion caused by the cooling of ordinary matter

adiabatic expansion

No energy 1njection

2 =3.960000e+07 Il AT /T =-1497247¢-12 1| AT_ /T =1.585450e-09 Il y_=7.675988¢+00 _ _
T, T, = TY (1+Z) > Tm (1+Z)2
L ———
o 2¢:09 down-scattered since day one
" 409 of the Universe!
-Oe-09
8609 Compton heating balances
1608 adiabatic cooling
0.01 :
: da*p
Y 6
= iy ~ —HkanT, < (1 + 2)

at high redshift same scaling
as annihilation (o< N% )

= cancellation possible

0.001 . 1 10 100
today x=2x102 means v~1GHz

JC, 2005; JC & Sunyaev, 2012
Khatri, Sunyaev & JC, 2012



Spectral distortion caused by the cooling of ordinary matter

, o adiabatic expansion
No energy 1njection
2 =3.960000e4+07 I AT /T =-1497247¢-12 AT /T =1.3585450e-09 Il y_=7.675988¢+00 2
gl ‘ mill, - = T, ~(1+2) & T~ (1+2)

photons continuously cooled /
down-scattered since day one
of the Universe!

Compton heating balances
adiabatic cooling

N da*p,
atdt

at high redshift same scaling
as annihilation (o< N% )

= cancellation possible

~ —Hkap, T, o< (1 + 2)°

10 100 negative u and y distortion
today x=2x102 means v~1GHz

late free-free absorption at
very low frequencies

~ —6 x 1010
y Distortion a few times below
PIXIE’s sensitivity

JC, 2005; JC & Sunyaev, 2012
Khatri, Sunyaev & JC, 2012



Reionization and structure formation




Simple estimates for the distortion

Gas temperature T = 104 K kT
— y e

5 = 2% 10~°
MeC

Thomson optical depth = = 0.1

second order Doppler effect y = few x 108

structure formation / SZ effect .. refregier etal. 2003y Y = few x 10-7-10-°



Average CMB spectral distortions

Monopole distortion signals

negative branch: ‘thin’

positive branch: ‘heavy’ o>
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Average CMB spectral distortions

Monopole distortion signals

I | I I | I
negative branch: ‘thin’
positive branch: ‘heavy’
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PIXIE’s sensitivity

Signal detectable with very
high significance using
present day technology!
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Fluctuations of the y-parameter at large scales
. ' AL N T '."

 spatial variations of the
optical depth and
temperature cause
small-spatial variations
of the y-parameter at
different angular scales

« could tell us about the
reionization sources
and structure formation
process

‘g - additional independent
¥ piece of information!

Example:
Simulation of reionization process
(1Gpc/h) by Alvarez & Abel






Constraints from measurements of light elements

10-6
107
108
10-¢
E 10-10
=\ 1011
10 12
10 13
1014

10-15 957%C.L.
10-16 7=(6.1+0.3)x10-10
——— CMB constraint (FIRAS)

10—17

“Yield” variable

from Kawasaki et al, 2005

Yield variable =

parametrizes the total
energy release relative to
total entropy density of
the Universe

YX ’;JNX/S

E.is hides physics of
energy deposition

(decay channels, neutrino
fraction, etc.)

current CMB limit rather
weak....



Energy release by decaying particles

AQ/p) _ I"Mx Nx(2) .
&= THE2) p(2)
fx

For computations: fx = f*Mxc*Nx/Nu and ex = ~
X

Xe—FXt

Energy release rate

Efficiency factor [~ contains all the physics describing the cascade
of decay products

At high redshift deposited energy goes into heat

Around recombination and after things become more complicated

(Slatyer et al. 2009; Cirelli et al. 2009; Huts et al. 2009; Slatyer et al. 2013)

=> branching ratios into heat, ionizations, and atomic excitation



Average CMB spectral distortions

Monopole distortion signals
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negative branch: ‘thin’
positive branch: ‘heavy’
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Average CMB spectral distortions

Monopole distortion signals

I | I I | I I I l
negative branch: ‘thin’
positive branch: ‘heavy’
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Spectral distortions provide ! Example:
probe of particle physics! lifetime &x ~ 114 yrs
Ap -
Signature of Particles with — ~few x 10
different lifetimes can be
distinguished!
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Decaying particle scenarios

y - distortion LL—y transition L - distortion

! | I S I e I

>

folzg=1eV

effective heating rate (1+z) d(Q/p) / dz

-l

JC & Sunyaev, 2011, Arxiv:1109.6552
JC, 2013, Arxiv:1304.6120




Decaying particle scenarios

y-distortion with y = 2x10”

Shape of the distortions depends
on the particle lifetime!
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Decaying particle scenarios (information in residual)

-

Best-fit y + y-distortion
was removed
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JC, 2013, Arxiv:1304.6120




Decaying particle scenarios (information in residual)

-

Best-fit y + y-distortion
was removed

residual distortion
contains information
about lifetime!
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Decaying particle scenarios

3.8 3.9 40 41 4.2

yle

Fiducial values:

Af - 1.2 X 10_4 9.85 9.90 9.95 10.00 10.05 10.10 10.
fX/ZX eV]

Ve =4 % 1077

fx =5x%x10"eV

zx = 5% 10* Tx =~ 1.1 x 10 8sec™)

JC, 2013, ArXiv:1304.6120



Using signhal eigenmodes to compress the distortion data
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JC & Jeong, 2013

: 6
temperature-shift, z, > few x 10
: : 5
u-distortion at z, ~ 3 x 10

: : 4
y-distortion, z, < 10

Principle component
decomposition of the
distortion signal

compression of the
useful information

given instrumental
settings



Using signhal eigenmodes to compress the distortion data
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R(v) at z < 38000
— R(V) at z ~ 38000
R(v) at z > 38000

Signal-Eigenmodes of
residual distortion

Principle component
decomposition of the
distortion signal

compression of the
useful information

given instrumental
settings

new set of
observables

p={y, W, U1, P2, ...}

model-comparison +
forecasts of errors
very simple!



Decaying particle 1o0-detection limits for PIXIE

ix

4.8x10° 2x10° 5x100  2x10° 107 5x10°  2x10" 10

e

4

10’ 10° 10° 10" 10"

tX[sec]

JC & Jeong, 2013



Decaying particle 1o-detection limits for PIXIE

ix

4.8x10° 2x10° 5x100  2x10° 107 5x10°
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Direct measurement __—x—

of particle lifetime!
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Decaying particle error forecasts

5 times PIXIE sensitivity
Reference € = eV
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Decaying particle error forecasts

5 times PIXIE sensitivity
Reference € = eV

PIXIE and PRISM will be great
probe for decaying particles
with lifetime ~ 10° - 10" sec J/
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Decaying particle during & after recombination

Chen & Kamionkowski, 2004

Modify recombination history

this changes Thomson

visibility function and thus
the CMB temperature and
polarization power spectra

= CMB anisotropies allow

probing particles with
lifetimes = 10'2 sec

CMB spectral distortions
provide complementary
probe!



Cancellation of cooling by heating from annihilation

1000 2000 fann = annihilation efficiency
(Padmanabhan & Finkbeiner, 2005; JC 2010)

CMB anisotropy constraint

Fann <2 x 10723eVg™!

(Galli et al., 2009; Slatyer et al., 2009;
Huetsi et al., 2009, 2011)

Limit from Planck satellite
will be roughly 6 times
Cancellation for stronger — more precise
farn ~2x 10 eV /s prediction for the distortion

will be possible

no annihilation

23 -1 : I
........... - f..=10 e\7/35 | uncertalnty dominated by
~ =2x107eVs particle physics

—4x10°eVs
limits from PIXIE/PRISM
several times weaker, but
iIndependent

JC & Sunyaev, 2012 fann — 1.1 x% 10—24

100GeV [Qxh2]’ (o)
Mx c? 0.11 | 3 x10726cm3 /s



The dissipation of small-scale acoustic modes




Dissipation of small-scale acoustic modes




Dissipation of small-scale acoustic modes
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Dissipation of small-scale acoustic modes

— —undamped
———pot. env 2P,

Silk-damping is ' MO AR
equivalent to A RER S AT NEA
energy release! - ; ¥ e

\ v » \

— full calculation
--—-undamped x 27




Energy release caused by dissipation process

‘Obvious’ dependencies:
Amplitude of the small-scale power spectrum
Shape of the small-scale power spectrum

Dissipation scale — kp ~ (Ho QreiV? Ne0)? (1+2)%? at early times

not so ‘obvious’ dependencies:

primordial non-Gaussianity in the squeezed limit
(Pajer & Zaldarriaga, 2012; Ganc & Komatsu, 2012)

Type of the perturbations (adiabatic < isocurvature)
(Barrow & Coles, 1991; Hu et al., 1994; Dent et al, 2012, JC & Grin, 2012)

Neutrinos (or any extra relativistic degree of freedom)



Energy release caused by dissipation process

‘Obvious’ dependencies:
Amplitude of the small-scale power spectrum
Shape of the small-scale power spectrum

Dissipation scale — kp ~ (Ho QreiV? Ne0)? (1+2)%? at early times

not so ‘obvious’ dependencies:

primordial non-Gaussianity in the squeezed limit
(Pajer & Zaldarriaga, 2012; Ganc & Komatsu, 2012)

Type of the perturbations (adiabatic < isocurvature)
(Barrow & Coles, 1991; Hu et al., 1994; Dent et al, 2012, JC & Grin, 2012)

Neutrinos (or any extra relativistic degree of freedom)

CMB Spectral distortions provide probe of Inflation physics!!!




Dissipation of acoustic modes: ‘classical treatment’

energy stored in plane sound waves

Landau & Lifshitz, ‘Fluid Mechanics’, § 65 = Q ~ c¢s? p (0p/p)?

expression for normal ideal gas where p is ‘mass
density’ and ¢s denotes ‘sounds speed

Sunyaev & Zeldovich, 1970
Hu, Scott & Silk, 1994, ApJ



Dissipation of acoustic modes: ‘classical treatment’

energy stored in plane sound waves

Landau & Lifshitz, ‘Fluid Mechanics’, § 65 = Q ~ c¢s? p (0p/p)?

expression for normal ideal gas where p is ‘mass
density’ and ¢s denotes ‘sounds speed

photon-baryon fluid with baryon loading R << 1

(cslc)2=[3 (1+R) ]! ~ 1/3
p—py =ar T*
6,0/,0 —> 4(6 TO/T) = 4 (®g <—_ only perturbation in the

monopole accounted for

Sunyaev & Zeldovich, 1970
Hu, Scott & Silk, 1994, ApJ



Dissipation of acoustic modes: ‘classical treatment’

energy stored in plane sound waves

Landau & Lifshitz, ‘Fluid Mechanics’, § 65 = Q ~ c¢s? p (0p/p)?

expression for normal ideal gas where p is ‘mass
density’ and ¢s denotes ‘sounds speed

‘minus’ because decrease of ©
at small scales means increase

photon-baryon fluid with baryon loading R << 1 for average spectrum
(cslc)2=[3 (1+R) ' ~ 1/3

op—py =ar T = (a%*py)! da*Qac/dt = -16/3 d<Op?>/dt
50/ — 4(5To/T) = 40 \

can be calculated using first
order perturbation theory

Sunyaev & Zeldovich, 1970
Hu, Scott & Silk, 1994, ApJ



Dissipation of acoustic modes: ‘classical treatment’

energy stored in plane sound waves

Landau & Lifshitz, ‘Fluid Mechanics, § 65 = Q ~ ¢s2 p (dp/p)?

expression for normal ideal gas where p is ‘mass
density’ and ¢s denotes ‘sounds speed

photon-baryon fluid with baryon loading R << 1

(cslc2=[3 (1+R) ' ~ 1/3

op—py, =ar T* = (a%*py)! da*Qac/dt = -16/3 d<Op?>/dt
Oplpo — 4(0To/T) =4O

Sunyaev & Zeldovich, 1970
Hu, Scott & Silk, 1994, ApJ




Dissipation of acoustic modes: ‘classical treatment’

energy stored in plane sound waves

Landau & Lifshitz, ‘Fluid Mechanics, § 65 = Q ~ ¢s2 p (dp/p)?

expression for normal ideal gas where p is ‘mass
density’ and ¢s denotes ‘sounds speed

photon-baryon fluid with baryon loading R << 1

(cslc)2=[3 (1+R) T ~ 1/3
op—py, =ar T* = (a%*py)! da*Qac/dt = -16/3 d<Op?>/dt
Oplpo — 4(0To/T) =4O

Simple estimate does not capture
all the physics of the problem:

» fotal energy release is 9/4 ~ 2.25
times larger!
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» only 1/3 of the released energy o
goes into distortions monopole

——————— dipole

Sunyaev & Zeldovich, 1970
Hu, Scott & Silk, 1994, ApJ




Dissipation of acoustic modes: ‘microscopic picture’

- after inflation: photon field has spatially
varying temperature T

 average energy stored in photon field at
any given moment

<py>=ar<T*>=ar <T>*[1+4<0> + 6<0?>] =
=S E.g., our snapshot at z=0

JC, Khatri & Sunyaev, 2012



Dissipation of acoustic modes: ‘microscopic picture’

- after inflation: photon field has spatially
varying temperature T

 average energy stored in photon field at
any given moment

<py>=ar<T*>=ar <T>*[1+ 4<0> + 6<0?>]

E.g., our snapshot at z=0

= (a4py)'1 da*Qac/dt = -6 d<O@?>/dt

* Monopole actually drops out of the equation!

* In principle all higher multipoles contribute to the energy release

JC, Khatri & Sunyaev, 2012



Dissipation of acoustic modes: ‘microscopic picture’

after inflation: photon field has spatially R e

varying temperature T doo el e
A it e r iR g el g R S
e %}a }2 : 1{’ Rig

' ' o e ,‘%%ﬁ;ﬁ?
average energy stored in photon field at U SRERE . Sldisy.
any given moment SRl e

. \ RS 77 ’
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<py>=ar <T*>=ar <T>*[1+ 4<0> + 6<0?>] et
== E.g., our snapshot at z=0

= (apy)" da*Qac/dt = -6 d<O2>/dt

Monopole actually drops out of the equation!
In principle all higher multipoles contribute to the energy release
At high redshifts (z = 10%):

» net (gauge-invariant) dipole and contributions from
higher multipoles are negligible

» dominant term caused by quadrupole anisotropy

= (84,0\/)'1 da*Qac/dt = -12 d<Op?>/dt

JC, Khatri & Sunyaev, 2012 9/4 larger than classical estimate




Where does the 2:1 ratio come from?



Superpositions of blackbody spectra
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Superpositions of blackbody spectra
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Superpositions of blackbody spectra
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Superpositions of blackbody spectra
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Superpositions of blackbody spectra

SRR SR R JENEUE R R R REA
2 [non + G (©7) + 5Ys2(67)]
W)\ 2(e%)
(o) = [ (L) dv e pun(B) [146(62)]
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Superpositions of blackbody spectra

JELERL T IR AL EEEREL
2% [+ G (%) + 3Y52.(67))]
4<@2N/2<@2>
(py) = dm [ (L) dv ~ po(T) [1+ 6 (02)]
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Distortion caused by superposition of blackbodies

* average spectrum

= ! (AT>2 ~ 8 x 10~ 19
Y=o\ \ 71 ~
AT 2
ATsup ~ T (T) ~ 44HK

- known with very high precision

JC & Sunyaeyv, 2004
JC, Khatri & Sunyaev, 2012



Distortion caused by superposition of blackbodies

* average spectrum

= ~1((AT>2>~8><10—10
YT\ ) /T

2
ATgyp =T ( (%) > ~ 4.4nK

- known with very high precision

« CMB dipole ( Bc ~ 1.23x103)

- electrons are up-scattered

« can be taken out at the level
of ~ 10°

JC & Sunyaev, 2004 COBE/DMR: AT = 3.353 mK

JC, Khatri & Sunyaev, 2012



Effective energy release caused by damping effect

Effective heating rate from full 2x2 Boltzmann treatment (c, knatri & sunyaev, 2012)

3 2

1 | [

STES 2 /@(U)PE(M)dU gauge-independent dipole

1 da’4QaC (3@1 _ 6)2 9 5 1 . b ,
T = 40TNec< +203 - -0,(0F +65) + 3 (21 +1)6]

effect of polarization higher multipoles

xy) = [ AR bk X (B)Y (k)

2772 /

Primordial power spectrum



Effective energy release caused by damping effect

Effective heating rate from full 2x2 Boltzmann treatment (sc, knatri & sunyaev, 2012)

(301 —6)* 9

1 da*Qac
1 - Q — 40'TNeC
a*p, dt 3

1 |

Primordial power spectrum

quadrupole dominant at high z

net dipole important only at
low redshifts

polarization ~5% effect

contribution from higher
multipoles rather small

JC, Khatri & Sunyaev, 2012

gauge-independent dipole

1
+-02- 562(@5 +05) + > (21 +1)6]

2
/ [>3 ‘
effect of polarization higher multipoles

total
net dipole

ns = 0.96
Units: AcH/ o1 Ne c

quadrupole
....... — octupole

=
5}
L
L
o 10
=
o
A

10°
Scale factor a=1/(1+2)



Our computation for the effective energy release

scaled such that constant for ns =1

Our 2. order perturbation
calculation showed that
the classical picture was
slightly inconsistent

g
o
-
o
—_

g

+
~—

Amplitude of the distortion
depends on the small-
scale power spectrum
with runming. . Computation carried out

ng=1027&n_ =005 with CosmoTherm
ng = 1.027 & n_. = -0034 (JC & Sunyaev 2011)

ng=1027&n_ =-001

Effective heating rate P,

free streaming

JC, Khatri & Sunyaev, 2012

P((k) = 27T2A§k_3(k/k0)ns_1+%"mnln(k/ko)

Primordial power spectrum of curvature
perturbations is input for the calculation



Which modes dissipate in the y and y-eras?

Energy Release for the Standard Power Spectrum with a Sharp Feature

Single mode with

—— e wavenumber k
dissipates its energy at
ks =200 Mpe” zq~ 4.5x105(k Mpc/103)23

Modes with wavenumber
50 Mpc' < k< 10 Mpc™'
| dissipate their energy

| during the u-era

-

gl Modes with k < 50 Mpc-

cause y-distortion
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JC, Erickcek & Ben-Dayan, 2012



Average CMB spectral distortions

Monopole distortion signals
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positive branch: ‘heavy’
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Average CMB spectral distortions

Monopole distortion signals
I | I I | I I I l
negative branch: ‘thin’
positive branch: ‘heavy’
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But this is not all that one could look at !!!



Power spectrum constraints

Allowed regions
=== Ultracompact mimhalos (gamma rays, Fermi-LAT)

Ultracompact minihalos (reionisation, WMAPS5 7, )

Mode/ g
T T~ = === Primordial black holes

— CMB, Lyman-o, LSS and other cosmological probes

,\“J& \“,-2 .\“A 1 10 _\“‘2 .\“3 11 \2 13 14 15 16 \T \B 419

10% 107 10° 107 40P 107 100 10M 102 1007 10M 10*° 10M° 10Y 10" 10

Bringmann, Scott & Akrami, 2011, ArXiv:1110.2484 k (Mpc™)

Amplitude of power spectrum rather uncertain at k > 3 Mpc™’
iImproving limits at smaller scales would constrain inflationary models



Power spectrum constraints

Allowed regions
=== Ultracompact mimhalos (gamma rays, Fermi-LAT)
Ultracompact mimhalos (reiomsation, WMAPS5 7,)

=== Primordial black holes

— CMB, Lyman-o, LSS and other cosmological probes

w

—
—
—

\
—

-3 -
107710

Bringmann, Scott & Akrami, 2011, ArXiv:1110.2484 k (Mpc™)

Amplitude of power spectrum rather uncertain at k > 3 Mpc™’

iImproving limits at smaller scales would constrain inflationary models

CMB spectral distortions could allow extending our lever arm to k ~ 10* Mpc™

See JC, Erickcek & Ben-Dayan, 2012 for constraints on more general P(k)




Probing the small-scale power spectrum

y - distortion LL—y transition L - distortion
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Probing the small-scale power spectrum

| bl
S

y-distortion with y = 2x10”

standard power spectrum

standard power spectrum with step (X 1/5)
standard power spectrum with bend (X 1/12) _::I/
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Average CMB spectral distortions

Monopole distortion signals

I | I I |
negative branch: ‘thin’
positive branch: ‘heavy’
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Average CMB spectral distortions

Monopole distortion signals

I | I I | I I I l
negative branch: ‘thin’
positive branch: ‘heavy’
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Probing the small-scale power spectrum

(A" = A= Ay)

Fiducial values:
Af=1.2x107%
Ve =4 % 1077
AA; =4x 1077
ks = 30 Mpc~!




Dissipation scenario: 10-detection limits for PIXIE

Notice different
pivot scale

JC & Jeong, 2013

P((k) = 27T2A§k—3(k/k0)ns—l+%—nmnln(k/ko)




Distinguishing dissipation and decaying particle scenarios

PIXIE sensitivity

Decaying particles
------- — Dissipationn_ =-0.6
un

..... — Dissipationn_ =-0.2
un

————— Dissipationn__ =0
mun

Dissipationn_ =0.2
un

JC & Jeong, 2013

measurement of p,
U1 & Y2

trajectories of
decaying particle
and dissipation
scenarios differ!

scenarios can in
principle be
distinguished



Distinguishing dissipation and decaying particle scenarios

5 x PIXIE sensitivity

measurement of p,
U1 & Y2

trajectories of
decaying particle
and dissipation
scenarios differ!

scenarios can in

—— Decaying particles principle be
------- - Dissipationn__=-0.6 | distinguished

----- — Dissipationn_ =-0.2
mun

————— Dissipationn__ =0
un

— i Dissipationn_ =0.2
un

JC & Jeong, 2013



Modified p-distortion in the squeezed limit

(a) squeezed triangle

Modes that dissipate energy have k1 = ko >> k3 (k 2k, >>k,)

Non-Gaussian power spectrum — presence of positive
long-wavelength mode enhances small-scale power

More small-scale power — larger y-distortion

— Spatially varying p-distortion caused by non-Gaussianity!
(Pajer & Zaldarriaga, 2012; Ganc & Komatsu, 2012)

Non-vanishing y-T correlation at large scales

Might be detectable with PIXIE-type experiment for fy. > 103

Requirements

precise cross-calibration of
frequency channels

higher anglJ|ar reSOIUtion does l,’l ——— full transfer function (ideal)
not improve cumulative S/N j Sachs-Wolfe approx.

full transfer function (Pixie)




Dependence of heating rate on the perturbation type

Adiabatic modes:
u - era u-y transition y - era recombination he ating rate ~ 1 / 7
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Dependence of heating rate on the perturbation type

u - era u-y transition y - era recombination
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Adiabatic modes:
heating rate ~ 1/z
at high z

baryon/CDM iso-
curvature modes:

A ~ k/keq

during radiation
dominated epoch




Dependence of heating rate on the perturbation type

u-y transition y - era recombination
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Pi(k) = 2" Ak~ (k ko)™ ™

Adiabatic modes:
heating rate ~ 1/z
at high z

baryon/CDM iso-
curvature modes:

A ~ k/keq

during radiation
dominated epoch

hiso ~ 3 = heating
rate ~ 1/z




Dependence of heating rate on the perturbation type

Adiabatic modes:
w-y transition y - era recombination heating rate ~ 1/z
T T TIT] 1 T T 111 |||||t5| I athlghz

baryon/CDM iso-
curvature modes:

A ~ k/keq

during radiation
dominated epoch
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Dependence of heating rate on the perturbation type

u-y transition y - era recombination
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Adiabatic modes:
heating rate ~ 1/z
at high z

baryon/CDM iso-
curvature modes:

A ~ k/keq

during radiation
dominated epoch

hiso ~ 3 = heating
rate ~ 1/z

neutrino I1So-
curvature modes
very similar to
adiabatic modes




Dependence of heating rate on the perturbation type

u-y

transition y - era recombination
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Adiabatic modes:
heating rate ~ 1/z
at high z

baryon/CDM iso-
curvature modes:

A ~ k/keq

during radiation
dominated epoch

hiso ~ 3 = heating
rate ~ 1/z

neutrino I1So-
curvature modes
very similar to
adiabatic modes

compensated
Isocurvature modes:
practically no
heating




The cosmological recombination radiation




Simple estimates for hydrogen recombination

Hydrogen recombination:

per recombined hydrogen atom an energy
of ~ 13.6 eV in form of photons is released

atz~ 1100 > Ae/e ~ 13.6 eV N, / (N, 2.7kT,) ~ 109-108

- recombination occurs at redshifts z < 104
- At that time the thermalization process doesn’'t work anymore!

- There should be some small spectral distortion due to
additional Ly-a and 2s-1s photons!

(Zeldovich, Kurt & Sunyaev, 1968, ZhETF, 55, 278; Peebles, 1968, ApJ, 153, 1)

- In 1975 Viktor Dubrovich emphasized the possibility to
observe the recombinational lines from n > 3 and An << n!



First recombination computations completed in 1968!

Moscow Princeton

Yakov Zeldovich

Rashid Sunyaev Jim Peebles

Vladimir Kurt
(UV astronomer)




100-shell hydrogen atom and continuum

CMB spectral distortions

nmax =n split

— free-bound emission
bound-bound transitions + 2s spectrum

—— sum of all

JC & Sunyaev, 2006, A&A, 458, L29 (astro-ph/0608120)

=100

-
c
Q
Q
o)
=
E
(oW

Brackett cont, ——mmm ™ >

Paschen cont, ———— > D

Balmer cont, —4m8 ——>

bound-bound & 2s:

- atv > 1GHz: distinct
features

- slope ~ 0.46

free-bound:

- only a few features
distinguishable

- slope ~ 0.6

Total:

- f-b contributes ~ 30%
and more

- Balmer cont. ~90%
- Balmer: 1y per HI

- in total 5y per HI



100-shell hydrogen atom and continuum
Relative distortions

Wien-region:
- L, and 2s distortions

are very strong
- but CIB more dominant

o
o

o
~

[10_28 Tm s Hz s

@ CMB maximum:

- relative distortions
extremely small

- strong v-dependence

—— total emission

RJ-region:

- relative distortion exceeds
level of ~ 107 below v ~

22
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Y £\ | 1-2 GHz
— free-bound emission AN T - oscillatory frequency
bound-bound transitions + 2s spectrum dependence with ~ 1-10
— sum of all percent-level amplitude:

- hard to mimic by known
foregrounds or systematics

JC & Sunyaev, 2006, A&A, 458, L29 (astro-ph/0608120)
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What about the contributions from helium
recombination?

Nuclear reactions: Y,~0.24 <> Ny, / Ny ~8 %
- expected photon number rather small

BUT:
(/) two epochs of He recombination
Helll=>Hell at z~6000 and Hell=>Hel at z~2500

(/1) Helium recombinations faster
- more narrow features with larger amplitude

(7if) non-trivial superposition
- local amplification possible
(iv) of Hell & Hel photons by Hel and HI

- increases the number of helium-related photons

- May opens a way to directly measure the
primordial (pre-stellar!!!) helium abundance!



Grotrian diagram for neutral helium
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Helium contributions to the cosmological
recombination spectrum

HI, Hel and Hell (bound—bound) recombination spectra

HI Lya line from the epoch of Hel recombination

L 1 11l

HIl > HI (ne=100, Chluba et al. 2007) A\ i/ \\ -
PN /i A
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Fine-structure absorption features
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Cosmological Recombination Spectrum
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Cosmological Recombination Spectrum

— Hydrogen only Shifts in the line positions — =, /

Hvd d Hel; due to presence of Helium Photons released
ydrogen and felium in the Universe \ O 00

A

Changes in the line shape
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in the Universe
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Features due to presence
of Helium in the Universe

Another way to do CMB-based cosmology!
Direct probe of recombination physics!

\ Spectral distortion reaches level of ~107-10"
relative to CMB
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What would we actually learn by doing such hard job?

Cosmological Recombination Spectrum opens a way to measure:
> the specific entropy of our universe (related to 2, h?)
> the CMB monopole temperature T,
> the pre-stellar abundance of helium Y,

> If recombination occurs as we think it does, then the lines can be predicted
with very high accuracy!

> In principle allows us to directly check our understanding of the standard
recombination physics



1075 1.118

1.042

1.4

0.5 0.083

2722 2728

0958 0.97% 0.236 0.254

3039 3077

Figure 7.3: The 1 and 2 dimensional marginalized parameter posterior using the
CMB spectral distortions. All three cases constrain the CMB power spectrum using
a Gaussian likelihood based on Planck noise levels. The black line adds constraints
due to a 10% measurement of the spectral distortions, while the blue line assumes a

computations prepared by Chad Fendt

in 2009 using detailed recombination code

InA,_

225 2316 1.075 1.118

104 1042 0075 0093 2722 2728 0236 0254 0.958 0976 3.039 3077

1% measurement. The red line does not include the data from the spectral distortions.

CMB based cosmology
alone

Spectrum helps to break
some of the parameter
degeneracies

Planning to provide a
module that computes the
recombination spectrum in
a fast way

detailed forecasts: which
lines to measure; how
important is the absolute
amplitude; how accurately
one should measure; best
frequency resolution;




Average CMB spectral distortions

Monopole distortion signals
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Average CMB spectral distortions

Monopole distortion signals
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But this i1s again not all!



Extra Sources of lonizations or Excitations

,Hypothetical’ source of extra photons
parametrized by €q & €;

Extra excitations = delay of Recombination

Extra ionizations = affect ‘freeze out’ tail

This affects the Thomson visibility function

o000 1000 1500 2000

: From WMAP = €4 <0.39 & € < 0.058 at
redshift

95% confidence level (Galli et al. 2008)

Extra ionizations & excitations should also
lead to additional photons in the
recombination radiation!!!

This in principle should allow us to check for
such sources at z~1000

500 1000 1500 2000
redshift

Peebles, Seager & Hu, ApJ, 2000



Dark matter annihilations / decays

10 shell Hydrogen & 10 shell Helium atom

bound-bound HI recombination spectrum

reference model

| pre-recombinational
b\ signal from interaction
b\ withHel
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e . JC, 2009, arXiv:0910.3663
Additional photons at all frequencies

Broadening of spectral features

Shifts in the positions



Pre-recombination atomic transitions after possible
early energy release

pure blackbody CMB
9

AR
Intensity

non-blackbody CMB

(Lyubarsky & Sunyaev, 1983)

- atoms “try” to restore full
equilibrium

> develop
(cont.-> bound - cont.)

- “splitting” of photons

e

1cm - imm

W‘z,ve.gen;/%

—> cycles mainly end in
Lyman-continuum

—> Balmer-cont. cycles work
just before recombination




CMB spectral distortions after single energy release
25 shell HI and Hell bb&fb spectra:

Hydrogen Helium +
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JC & Sunyaev, 2008, astro-ph/0803.3584



CMB spectral distortions after single energy release
25 shell HI and Hell bb&fb spectra:

Hydrogen Helium +
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CMB spectral distortions after single energy release
25 shell HI and Hell bb&fb spectra:

Hydrogen Helium +

negative feature 6 negative feature
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CMB spectral distortions after single energy release
25 shell HI and Hell bb&fb spectra:

Hydrogen Helium +
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JC & Sunyaev, 2008, astro-ph/0803.3584

Large increase in the total amplitude of the distortions with value of y/!
Strong emission-absorption feature in the Wien-part of CMB (absent for y=01!!)

Hell contribution to the pre-recombinational emission as strong as the one from
Hydrogen alone !



CMB spectral distortions after single energy release
25 shell HI and Hell bb&fb spectra:

Hydrogen and Helium +

z=40000

HI + Hell bb+fb-spectra z=40000
~mrmem 2= 15000

n =25 s 2=8000 e 7=8000
s _ze400 @/ TR N ~ z=4000
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HI + Hell bb+fb-spectra

n_ =25
max .

y=10"

JC & Sunyaev, 2008, astro-ph/0803.3584

Large increase in the total amplitude of the distortions with injection redshift!

Number of spectral features depends on injection redshift!

Emission-Absorption feature increases ~2 for energy injection z =11000




What would we actually learn by doing such hard job?

Cosmological Recombination Spectrum opens a way to measure:
> the specific entropy of our universe (related to 2, h?)
> the CMB monopole temperature T,
> the pre-stellar abundance of helium Y,

> If recombination occurs as we think it does, then the lines can be predicted
with very high accuracy!

> In principle allows us to directly check our understanding of the standard
recombination physics

If something unexpected or non-standard happened:

-> non-standard thermal histories should leave some measurable traces

- direct way to measure/reconstruct the recombination history!

-> possibility to distinguish pre- and post-recombination y-type distortions
-> sensitive to energy release during recombination

-> variation of fundamental constants









sted NS : \
ields 4 N X
AR .
\ R SN
Q N
.
A TSN ~ o=
/s v ’ w, W ‘.
b X % - "\‘

---~-spé’ctra| distortions open a new window to the
‘Universe and inflationary epoch

» complementary and independent source of
information about our Universe nof just confirmation

- simplicity of thermalization physics allows making
very precise predictions for the dlstortlons caused
by different heating mechanisms e, BT

* in standard cosmology several .
early energy release at a level that wilt be. . |
detectable in the future DR

+ extremely interesting fufure for- CMB SR8 Nz

based science! W o \
B ..' . g s
,’l,’;’r’h :’ Fasiy }f
é{. g - : i &
AL ol
o G?o_‘n PRSP % Ao e} ST e A



