CMB Spectral Distortions as New Probe of Early-Universe Physics

Jens Chluba

Lecture II: Science with CMB Spectral Distortions

Les Houches, August 2nd, 2013

What does the spectrum look like after energy injection?

Main Goals for this Lecture

- Convince you that future CMB distortions science will be *extremely* exciting!
- Provide an overview for different sources of earlyenergy release
- Show why the CMB spectrum is a complementary probe of inflation physics and particle physics

Physical mechanisms that lead to spectral distortions

- Cooling by adiabatically expanding ordinary matter: $T_v \sim (1+z) \leftrightarrow T_m \sim (1+z)^2$ (JC, 2005; JC & Sunyaev 2011; Khatri, Sunyaev & JC, 2011) • continuous cooling of photons until redshift $z \sim 150$ via Compton scattering • due to huge heat capacity of photon field distortion very small ($\Delta \rho / \rho \sim 10^{-10} - 10^{-9}$) Heating by decaying or annihilating relic particles · How is energy transferred to the medium? • lifetimes, decay channels, neutrino fraction, (at low redshifts: environments), ... Evaporation of primordial black holes & superconducting strings (Carr et al. 2010; Ostriker & Thompson, 1987; Tashiro et al. 2012) rather fast, quasi-instantaneous but also extended energy release Dissipation of primordial acoustic modes & magnetic fields (Sunyaev & Zeldovich, 1970; Daly 1991; Hu et al. 1994; Jedamzik et al. 2000) Cosmological recombination "high" redshifts "low" redshifts Signatures due to first supernovae and their remnants (Oh, Cooray & Kamionkowski, 2003) Shock waves arising due to large-scale structure formation (Sunyaev & Zeldovich, 1972; Cen & Ostriker, 1999)
- SZ-effect from clusters; effects of reionization (Heating of medium by X-Rays, Cosmic Rays, etc)

post-recombination

Physical mechanisms that lead to spectral distortions

•	Cooling by adiabatically expanding ordinary matter: $T_{\gamma} \sim (1+z) \leftrightarrow T_{m} \sim (1+z)^{2}$ (JC, 2005; JC & Sunyaev 2011; Khatri, Sunyaev & JC, 2011)				
	 continuous <i>cooling</i> of photons until redshift <i>z</i> ~ 150 via Compton scattering due to huge heat capacity of photon field distortion very small (Δο/ο ~ 10⁻¹⁰-10⁻⁹) 	Standard sources of distortions			
•	Heating by <i>decaying</i> or <i>annihilating</i> relic particles				
	 How is energy transferred to the medium? 		ch		
	• lifetimes, decay channels, neutrino fraction, (at low redshifts: environments),		odeu		
•	Evaporation of primordial black holes & superconducting strings (Carr et al. 2010; Ostriker & Thompson, 1987; Tashiro et al. 2012)		nation		
	 rather fast, quasi-instantaneous but also extended energy release 		, nbii		
•	Dissipation of primordial acoustic modes & magnetic fields (Sunyaev & Zeldovich, 1970; Daly 1991; Hu et al. 1994; Jedamzik et al. 2000)		e-recor		
•	Cosmological recombination	1 · · ·	bre		
		"nign" redshifts			
	Signatures due to first supernovae and their remnants (Oh, Cooray & Kamionkowski, 2003)	"low" redshifts	ntion		
	Shock waves arising due to large-scale structure formation (Sunyaev & Zeldovich, 1972; Cen & Ostriker, 1999)		combine		
	SZ-effect from clusters; effects of reionization (Heating of medium by X-Rays, Cos	mic Rays, etc)	oost-red		

Physical mechanisms that lead to spectral distortions

•	Cooling by adiabatically expanding ordinary matter: $T_{\gamma} \sim (1+z) \leftrightarrow T_{m} \sim (1+z)^{2}$ (JC, 2005; JC & Sunyaev 2011; Khatri, Sunyaev & JC, 2011)				
	 continuous <i>cooling</i> of photons until redshift z ~ 150 via Compton scattering due to huge heat capacity of photon field distortion very small (Δ₀/₀ ~ 10⁻¹⁰-10⁻⁹) 	S	Standard of distortic	sources ons	
		too little time		me	
•	Heating by <i>decaying</i> or <i>annihilating</i> relic particles				
	 How is energy transferred to the medium? 			ch	
	 lifetimes, decay channels, neutrino fraction, (at low redshifts: environments), 			ı epo	
•	Evaporation of primordial black holes & superconducting strings (Carr et al. 2010; Ostriker & Thompson, 1987; Tashiro et al. 2012)			natio	
	 rather fast, quasi-instantaneous but also extended energy release 			¥ mbir	
•	Dissipation of primordial acoustic modes & magnetic fields (Sunyaev & Zeldovich, 1970; Daly 1991; Hu et al. 1994; Jedamzik et al. 2000)			e-reco	
•	Cosmological recombination	"high'	' redshifts	Г <u>а</u>	
-		"low"	redshifts		
•	SIGNATURES QUE TO TIRST SUPERNOVAE AND THEIR REMNANTS (Oh, Cooray & Kamionkowski, 2003)			ation	
	Shock waves arising due to large-scale structure formation (Sunyaev & Zeldovich, 1972; Cen & Ostriker, 1999)			combin	
	SZ-effect from clusters; effects of reionization (Heating of medium by X-Rays, Cosr	nic Rays	s, etc)	post-re	

PIXIE: Primordial Inflation Explorer

- 400 spectral channel in the frequency range 30 GHz and 6THz (Δv ~ 15GHz)
- about 1000 (!!!) times more sensitive than COBE/FIRAS
- B-mode polarization from inflation ($r \approx 10^{-3}$)
- improved limits on μ and γ

was proposed 2011 as NASA EX mission (i.e. cost ~ 200 M\$)

Kogut et al, JCAP, 2011, arXiv:1105.2044

Polarized Radiation Imaging and Spectroscopy Mission PRISM

Probing cosmic structures and radiation with the ultimate polarimetric spectro-imaging of the microwave and far-infrared sky

> Spokesperson: Paolo de Bernardis e-mail: paolo.debernardis@roma1.infn.it — tel: + 39 064 991 4271

1.1-1

Instruments:

- L-class ESA mission
- White paper, May 24th, 2013
- Imager:
 - polarization sensitive
 - 3.5m telescope [arcmin resolution at highest frequencies]
 - 30GHz-6THz [30 broad (Δv/v~25%) and 300 narrow (Δv/v~2.5%) bands]
- Spectrometer:
 - FTS similar to PIXIE
 - 30GHz-6THz (Δv~15 & 0.5 GHz)

Some of the science goals:

- B-mode polarization from inflation ($r \approx 5 \times 10^{-4}$)
- count all SZ clusters >10¹⁴ M_{sun}
- CIB/large scale structure
- Galactic science
- CMB spectral distortions

Sign up at: http://www.prism-mission.org/ Adiabatically cooling ordinary matter

adiabatic expansion

$$\Rightarrow T_{\gamma} \sim (1+z) \leftrightarrow T_{\rm m} \sim (1+z)^2$$

- photons continuously cooled / down-scattered since day one of the Universe!
- Compton heating balances adiabatic cooling

 $\Rightarrow \frac{\mathrm{d}a^4 \rho_{\gamma}}{a^4 \mathrm{d}t} \simeq -Hk\alpha_{\mathrm{h}}T_{\gamma} \propto (1+z)^6$

- at high redshift same scaling as annihilation ($\propto N_X^2$)
- ⇒ *cancellation* possible

JC, 2005; JC & Sunyaev, 2012 Khatri, Sunyaev & JC, 2012

adiabatic expansion

$$\Rightarrow T_{\gamma} \sim (1+z) \leftrightarrow T_{\rm m} \sim (1+z)^2$$

- photons continuously cooled / down-scattered since day one of the Universe!
- Compton heating balances adiabatic cooling

 $\Rightarrow \frac{\mathrm{d}a^4 \rho_{\gamma}}{a^4 \mathrm{d}t} \simeq -Hk\alpha_{\mathrm{h}}T_{\gamma} \propto (1+z)^6$

- at high redshift same scaling as annihilation ($\propto N_X^2$)
- ⇒ *cancellation* possible

today x=2x10⁻² means v~1GHz

adiabatic expansion

$$\Rightarrow T_{\gamma} \sim (1+z) \leftrightarrow T_{\rm m} \sim (1+z)^2$$

- photons continuously cooled / down-scattered since day one of the Universe!
- Compton heating balances adiabatic cooling

 $\Rightarrow \frac{\mathrm{d}a^4 \rho_{\gamma}}{a^4 \mathrm{d}t} \simeq -Hk\alpha_{\mathrm{h}}T_{\gamma} \propto (1+z)^6$

- at high redshift same scaling as annihilation ($\propto N_X^2$)
- ⇒ cancellation possible

JC, 2005; JC & Sunyaev, 2012 Khatri, Sunyaev & JC, 2012

$$\mu \simeq 1.4 \left. \frac{\Delta \rho_{\gamma}}{\rho_{\gamma}} \right|_{\mu} \approx -3 \times 10^{-9} \quad y \simeq \frac{1}{4} \left. \frac{\Delta \rho_{\gamma}}{\rho_{\gamma}} \right|_{y} \approx -6 \times 10^{-10}$$

JC, 2005; JC & Sunyaev, 2012 Khatri, Sunyaev & JC, 2012 adiabatic expansion

$$\Rightarrow T_{\gamma} \sim (1+z) \leftrightarrow T_{\rm m} \sim (1+z)^2$$

- photons continuously cooled / down-scattered since day one of the Universe!
- Compton heating balances adiabatic cooling

 $\Rightarrow \frac{\mathrm{d}a^4 \rho_{\gamma}}{a^4 \mathrm{d}t} \simeq -Hk\alpha_{\mathrm{h}}T_{\gamma} \propto (1+z)^6$

- at high redshift same scaling as annihilation ($\propto N_X^2$)
- ⇒ cancellation possible
 - *negative* μ and γ distortion
- late free-free absorption at very low frequencies
- Distortion a few times below PIXIE's sensitivity

Reionization and structure formation

Simple estimates for the distortion

- Gas temperature $T \simeq 10^4 \text{ K}$
- Thomson optical depth $\tau \simeq 0.1$

$$\implies \quad y \simeq \frac{kT_{\rm e}}{m_{\rm e}c^2} \simeq 2 \times 10^{-7}$$

- second order Doppler effect $y \simeq \text{few x } 10^{-8}$
- structure formation / SZ effect (e.g., Refregier et al., 2003) $y \simeq \text{few x } 10^{-7} 10^{-6}$

Fluctuations of the y-parameter at large scales

- spatial variations of the optical depth and temperature cause small-spatial variations of the y-parameter at different angular scales
- could tell us about the reionization sources and structure formation process
- additional independent piece of information!

Example: Simulation of reionization process (1Gpc/h) by *Alvarez & Abel* Decaying particles

Constraints from measurements of light elements

• Yield variable ⇒

parametrizes the total energy release relative to total entropy density of the Universe

 $Y_X \simeq N_X / S$

- *E*_{vis} hides physics of energy deposition
 (decay channels, neutrino fraction, etc.)
- current CMB limit rather weak....

Energy release by decaying particles

- Energy release rate $\frac{\mathrm{d}(Q/\rho_{\gamma})}{\mathrm{d}z} \approx \frac{f^* M_{\mathrm{X}} c^2}{H(z)(1+z)} \frac{N_{\mathrm{X}}(z)}{\rho_{\gamma}(z)} \Gamma_{\mathrm{X}} \mathrm{e}^{-\Gamma_{\mathrm{X}} t}$
- For computations: $f_{\rm X} = f^* M_{\rm X} c^2 N_{\rm X} / N_{\rm H}$ and $\varepsilon_{\rm X} = rac{f_{\rm X}}{z_{\rm X}}$
- Efficiency factor f^{\ast} contains all the physics describing the cascade of decay products
- At high redshift deposited energy goes into heat
- Around recombination and after things become more complicated (Slatyer et al. 2009; Cirelli et al. 2009; Huts et al. 2009; Slatyer et al. 2013)

⇒ branching ratios into heat, ionizations, and atomic excitation

Decaying particle scenarios

Decaying particle scenarios

Decaying particle scenarios (information in residual)

v [GHz]

Decaying particle scenarios (information in residual)

v [GHz]

Decaying particle scenarios

JC, 2013,

Using signal eigenmodes to compress the distortion data

- Principle component decomposition of the distortion signal
- compression of the useful information given instrumental settings

JC & Jeong, 2013

Using signal eigenmodes to compress the distortion data

- Principle component decomposition of the distortion signal
- compression of the useful information given instrumental settings
- new set of observables
 - $p = \{y, \mu, \mu_1, \mu_2, \dots\}$
- model-comparison + forecasts of errors very simple!

JC & Jeong, 2013

Decaying particle 1σ -detection limits for PIXIE

Decaying particle 1σ -detection limits for PIXIE

JC & Jeong, 2013

Decaying particle error forecasts

Decaying particle error forecasts

 2×10^{3}

 10^{5}
Decaying particle during & after recombination

- Modify recombination history
- this changes Thomson visibility function and thus the CMB temperature and polarization power spectra
- → CMB anisotropies allow

probing particles with lifetimes $\gtrsim 10^{12}$ sec

 CMB spectral distortions provide complementary probe!

Chen & Kamionkowski, 2004

Cancellation of cooling by heating from annihilation

- $f_{ann} \equiv annihilation efficiency$ (Padmanabhan & Finkbeiner, 2005; JC 2010)
- CMB anisotropy constraint

 $f_{\rm ann} \lesssim 2 \times 10^{-23} {\rm eV s^{-1}}$ (Galli et al., 2009; Slatyer et al., 2009; Huetsi et al., 2009, 2011)

- Limit from Planck satellite will be roughly 6 *times stronger* → more precise prediction for the distortion will be possible
- uncertainty dominated by particle physics
- limits from PIXIE/PRISM several times weaker, but independent

 $f_{\rm ann} = 1.1 \times 10^{-24} \, \frac{100 \text{GeV}}{M_X c^2} \, \left[\frac{\Omega_X h^2}{0.11}\right]^2 \frac{\langle \sigma v \rangle}{3 \times 10^{-26} \text{cm}^3/\text{s}}$

JC & Sunyaev, 2012

The dissipation of small-scale acoustic modes

Dissipation of small-scale acoustic modes

Dissipation of small-scale acoustic modes

Dissipation of small-scale acoustic modes

Energy release caused by dissipation process

'Obvious' dependencies:

- Amplitude of the small-scale power spectrum
- Shape of the small-scale power spectrum
- Dissipation scale $\rightarrow k_D \sim (H_0 \ \Omega_{rel}^{1/2} N_{e,0})^{1/2} (1+z)^{3/2}$ at early times

not so 'obvious' dependencies:

- primordial non-Gaussianity in the squeezed limit (Pajer & Zaldarriaga, 2012; Ganc & Komatsu, 2012)
- Type of the perturbations (adiabatic ↔ isocurvature) (Barrow & Coles, 1991; Hu et al., 1994; Dent et al, 2012, JC & Grin, 2012)
- Neutrinos (or any extra relativistic degree of freedom)

Energy release caused by dissipation process

'Obvious' dependencies:

- Amplitude of the small-scale power spectrum
- Shape of the small-scale power spectrum
- Dissipation scale $\rightarrow k_D \sim (H_0 \ \Omega_{rel}^{1/2} N_{e,0})^{1/2} (1+z)^{3/2}$ at early times

not so 'obvious' dependencies:

- primordial non-Gaussianity in the squeezed limit (Pajer & Zaldarriaga, 2012; Ganc & Komatsu, 2012)
- Type of the perturbations (adiabatic ↔ isocurvature) (Barrow & Coles, 1991; Hu et al., 1994; Dent et al, 2012, JC & Grin, 2012)
- Neutrinos (or any extra relativistic degree of freedom)

CMB Spectral distortions provide probe of Inflation physics!!!

energy stored in plane sound waves

Landau & Lifshitz, 'Fluid Mechanics', § 65 $\Rightarrow Q \sim c_s^2 \rho (\delta \rho / \rho)^2$

 expression for normal ideal gas where ρ is 'mass density' and c_s denotes 'sounds speed'

energy stored in plane sound waves

Landau & Lifshitz, 'Fluid Mechanics', § 65 $\Rightarrow Q \sim c_s^2 \rho (\delta \rho / \rho)^2$

- expression for normal ideal gas where ρ is 'mass density' and c_s denotes 'sounds speed'
- photon-baryon fluid with baryon loading R << 1

 $(c_{\rm S}/c)^2 = [3 (1+R)]^{-1} \sim 1/3$ $\rho \rightarrow \rho_{\gamma} = a_{\rm R} T^4$ $\delta \rho / \rho \rightarrow 4 (\delta T_0 / T) \equiv 4 \Theta_0$ only perturbation in the monopole accounted for

energy stored in plane sound waves

Landau & Lifshitz, 'Fluid Mechanics', § 65 $\Rightarrow Q \sim c_s^2 \rho (\delta \rho / \rho)^2$

- expression for normal ideal gas where ρ is 'mass density' and c_s denotes 'sounds speed'
- photon-baryon fluid with baryon loading R << 1

'minus' because decrease of O at small scales means *increase* for average spectrum

 $(c_{\rm s}/c)^2 = [3 (1+R)]^{-1} \sim 1/3$ $\rho \rightarrow \rho_{\gamma} = a_{\rm R} T^4 \qquad \Rightarrow (a^4 \rho_{\gamma})^{-1} da^4 Q_{\rm ac}/dt = -16/3 d <\Theta_0^2 > /dt$ $\delta \rho / \rho \rightarrow 4 (\delta T_0/T) \equiv 4 \Theta_0$

can be calculated using first order perturbation theory

energy stored in plane sound waves

Landau & Lifshitz, 'Fluid Mechanics', § 65 $\Rightarrow Q \sim c_s^2 \rho (\delta \rho / \rho)^2$

- expression for normal ideal gas where ρ is 'mass density' and c_s denotes 'sounds speed'
- photon-baryon fluid with baryon loading R << 1

 $(c_{\rm s}/c)^2 = [3 (1+R)]^{-1} \sim 1/3$ $\rho \rightarrow \rho_{\gamma} = a_{\rm R} T^4 \qquad \Rightarrow (a^4 \rho_{\gamma})^{-1} da^4 Q_{\rm ac}/dt = -16/3 d <\Theta_0^2 > /dt$ $\delta \rho / \rho \rightarrow 4 (\delta T_0/T) \equiv 4\Theta_0$

energy stored in plane sound waves

Landau & Lifshitz, 'Fluid Mechanics', § 65 $\Rightarrow Q \sim c_s^2 \rho (\delta \rho / \rho)^2$

- expression for normal ideal gas where ρ is 'mass density' and c_s denotes 'sounds speed'
- photon-baryon fluid with baryon loading R << 1

 $(c_{s}/c)^{2} = [3 (1+R)]^{-1} \sim 1/3$ $\rho \rightarrow \rho_{\gamma} = a_{R} T^{4} \qquad \Rightarrow (a^{4}\rho_{\gamma})^{-1} da^{4}Q_{ac}/dt = -16/3 d <\Theta_{0}^{2} > /dt$ $\delta \rho / \rho \rightarrow 4(\delta T_{0}/T) \equiv 4\Theta_{0}$

- Simple estimate does not capture all the physics of the problem:
 - total energy release is 9/4 ~ 2.25 times larger!
 - only 1/3 of the released energy goes into distortions

Sunyaev & Zeldovich, 1970 Hu, Scott & Silk, 1994, ApJ

Dissipation of acoustic modes: 'microscopic picture'

- after inflation: photon field has spatially varying temperature T
- average energy stored in photon field at any given moment

$$< \rho_{\gamma} > = a_{R} < T^{4} > \approx a_{R} < T^{4} [1 + 4 < \Theta > + 6 < \Theta^{2} >]$$

JC, Khatri & Sunyaev, 2012

Dissipation of acoustic modes: 'microscopic picture'

- after inflation: photon field has spatially varying temperature T
- average energy stored in photon field at any given moment

$$< \rho_{\gamma} > = a_{R} < T^{4} > \approx a_{R} < T^{4} [1 + 4 < \Theta > + 6 < \Theta^{2} >]$$

$$\Rightarrow (a^4 \rho_V)^{-1} da^4 Q_{ac}/dt = -6 d < \Theta^2 > /dt$$

- Monopole actually drops out of the equation!
- In principle all higher multipoles contribute to the energy release

Dissipation of acoustic modes: 'microscopic picture'

- after inflation: photon field has spatially varying temperature T
- average energy stored in photon field at any given moment

$$< \rho_{\gamma} > = a_{R} < T^{4} > \approx a_{R} < T^{4} [1 + 4 < \Theta > + 6 < \Theta^{2} >]$$

$$\Rightarrow (a^4 \rho_V)^{-1} da^4 Q_{ac}/dt = -6 d < \Theta^2 > /dt$$

- Monopole actually drops out of the equation!
- In principle all higher multipoles contribute to the energy release
- At high redshifts ($z \ge 10^4$):
 - net (gauge-invariant) dipole and contributions from higher multipoles are negligible
 - dominant term caused by quadrupole anisotropy

$$\Rightarrow (a^4 \rho_V)^{-1} da^4 Q_{ac}/dt \approx -12 d < \Theta_0^2 > /dt$$

9/4 larger than classical estimate

Where does the 2:1 ratio come from?

Distortion caused by superposition of blackbodies

$$\Rightarrow y \simeq \frac{1}{2} \left\langle \left(\frac{\Delta T}{T}\right)^2 \right\rangle \approx 8 \times 10^{-10}$$
$$\Delta T_{\rm sup} \simeq T \left\langle \left(\frac{\Delta T}{T}\right)^2 \right\rangle \approx 4.4 \text{nK}$$

known with very high precision

Distortion caused by superposition of blackbodies

• average spectrum

$$\Rightarrow y \simeq \frac{1}{2} \left\langle \left(\frac{\Delta T}{T}\right)^2 \right\rangle \approx 8 \times 10^{-10}$$
$$\Delta T_{\rm sup} \simeq T \left\langle \left(\frac{\Delta T}{T}\right)^2 \right\rangle \approx 4.4 \text{nK}$$

known with very high precision

• CMB dipole ($\beta_c \sim 1.23 \times 10^{-3}$) $\Rightarrow \quad y \simeq \frac{\beta_c^2}{6} \approx 2.6 \times 10^{-7}$

$$\Delta T_{\rm sup} \simeq T \, \frac{\beta_{\rm c}^2}{3} \approx 1.4 \mu {\rm K}$$

- electrons are up-scattered
- can be taken out at the level of ~ 10⁻⁹

JC & Sunyaev, 2004 JC, Khatri & Sunyaev, 2012 COBE/DMR: Δ*T* = 3.353 mK

Effective energy release caused by damping effect

• Effective heating rate from full 2x2 Boltzmann treatment (JC, Кhatri & Sunyaev, 2012)

$$\begin{split} \frac{1}{a^4 \rho_{\gamma}} \frac{\mathrm{d}a^4 Q_{\mathrm{ac}}}{\mathrm{d}t} &= 4\sigma_{\mathrm{T}} N_{\mathrm{e}} c \left\langle \frac{(3\Theta_1 - \beta)^2}{3} + \frac{9}{2} \Theta_2^2 - \frac{1}{2} \Theta_2 (\Theta_0^{\mathrm{P}} + \Theta_2^{\mathrm{P}}) + \sum_{l \geq 3} (2l+1) \Theta_\ell^2 \right\rangle \\ \Theta_\ell &= \frac{1}{2} \int \Theta(\mu) P_\ell(\mu) \mathrm{d}\mu \qquad \text{gauge-independent dipole} \quad \text{effect of polarization} \qquad \text{higher multipoles} \\ \langle XY \rangle &= \int \frac{k^2 \mathrm{d}k}{2\pi^2} P(k) X(k) Y(k) \end{split}$$

Primordial power spectrum

Effective energy release caused by damping effect

Effective heating rate from full 2x2 Boltzmann treatment (JC, Khatri & Sunyaev, 2012)

Our computation for the effective energy release

scaled such that constant for $n_{\rm S}$ =1

- Our 2. order perturbation calculation showed that the *classical* picture was slightly inconsistent
- Amplitude of the distortion depends on the smallscale power spectrum
- Computation carried out with CosmoTherm (JC & Sunyaev 2011)

JC, Khatri & Sunyaev, 2012

$$P_{\zeta}(k) = 2\pi^2 A_{\zeta} k^{-3} (k/k_0)^{n_{\rm S}-1+\frac{1}{2}n_{\rm run}\ln(k/k_0)}$$

Primordial power spectrum of curvature perturbations is input for the calculation

Which modes dissipate in the µ and y-eras?

 Single mode with wavenumber k dissipates its energy at

 $z_{\rm d} \sim 4.5 \times 10^5 (k \,{\rm Mpc}/10^3)^{2/3}$

- Modes with wavenumber 50 Mpc⁻¹ < k < 10⁴ Mpc⁻¹ dissipate their energy during the µ-era
- Modes with *k* < 50 Mpc⁻¹ cause *y*-distortion

JC, Erickcek & Ben-Dayan, 2012

Average CMB spectral distortions

Absolute value of Intensity signal

Average CMB spectral distortions

Absolute value of Intensity signal

But this is not all that one could look at !!!

Power spectrum constraints

- Amplitude of power spectrum rather uncertain at k > 3 Mpc⁻¹
- improving limits at smaller scales would constrain inflationary models

Power spectrum constraints

- Amplitude of power spectrum rather uncertain at k > 3 Mpc⁻¹
- improving limits at smaller scales would constrain inflationary models
- CMB spectral distortions could allow extending our lever arm to k ~ 10⁴ Mpc⁻¹
- See JC, Erickcek & Ben-Dayan, 2012 for constraints on more general P(k)

Probing the small-scale power spectrum

JC, 2013, Arxiv:1304.6120

Probing the small-scale power spectrum

Absolute value of Intensity signal

Probing the small-scale power spectrum

Dissipation scenario: 1σ -detection limits for PIXIE

JC & Jeong, 2013

Distinguishing dissipation and decaying particle scenarios

- measurement of μ, μ₁ & μ₂
- trajectories of decaying particle and dissipation scenarios differ!
- scenarios can in principle be distinguished

Distinguishing dissipation and decaying particle scenarios

- measurement of μ, μ₁ & μ₂
- trajectories of decaying particle and dissipation scenarios differ!
- scenarios can in principle be distinguished

Modified µ-distortion in the squeezed limit

- Modes that dissipate energy have $k_1 \approx k_2 >> k_3$
- Non-Gaussian power spectrum → presence of positive long-wavelength mode enhances small-scale power
- More small-scale power → larger µ-distortion
- → Spatially varying µ-distortion caused by non-Gaussianity! (Pajer & Zaldarriaga, 2012; Ganc & Komatsu, 2012)
- Non-vanishing µ-T correlation at large scales
- Might be detectable with PIXIE-type experiment for $f_{NL} > 10^3$

Requirements

- precise cross-calibration of frequency channels
- higher angular resolution does not improve cumulative S/N

Adiabatic modes:
 heating rate ~ 1/z
 at high z

JC & Grin, 2013

 $P_i(k) = 2\pi^2 A_i k^{-3} (k/k_0)^{n_i - 1}$

- Adiabatic modes: heating rate ~ 1/z at high z
- baryon/CDM isocurvature modes:

 $A \sim k/k_{eq}$

during radiation dominated epoch

$$P_i(k) = 2\pi^2 A_i k^{-3} (k/k_0)^{n_i - 1}$$

- Adiabatic modes: heating rate ~ 1/z at high z
- baryon/CDM isocurvature modes:

 $A \sim k/k_{eq}$

during radiation dominated epoch

•
$$n_{\rm iso} \sim 3 \Rightarrow$$
 heating

rate $\sim 1/z$

$$P_i(k) = 2\pi^2 A_i k^{-3} (k/k_0)^{n_i - 1}$$

- Adiabatic modes: heating rate ~ 1/z at high z
- baryon/CDM isocurvature modes:

 $A \sim k/k_{eq}$

during radiation dominated epoch

- $n_{\rm iso} \sim 3 \Rightarrow$ heating rate $\sim 1/z$
- neutrino isocurvature modes very similar to adiabatic modes

 $P_i(k) = 2\pi^2 A_i k^{-3} (k/k_0)^{n_i-1}$

- Adiabatic modes: heating rate ~ 1/z at high z
- baryon/CDM isocurvature modes:

 $A \sim k/k_{eq}$

during radiation dominated epoch

- $n_{\rm iso} \sim 3 \Rightarrow$ heating rate $\sim 1/z$
- neutrino isocurvature modes very similar to adiabatic modes

$$P_i(k) = 2\pi^2 A_i k^{-3} (k/k_0)^{n_i - 1}$$

- Adiabatic modes: heating rate ~ 1/z at high z
- baryon/CDM isocurvature modes:

 $A \sim k/k_{eq}$

during radiation dominated epoch

- $n_{\rm iso} \sim 3 \Rightarrow$ heating rate $\sim 1/z$
- neutrino isocurvature modes very similar to adiabatic modes
- compensated isocurvature modes: practically no heating

$$P_i(k) = 2\pi^2 A_i k^{-3} (k/k_0)^{n_i - 1}$$

The cosmological recombination radiation

Simple estimates for hydrogen recombination

Hydrogen recombination:

 per recombined hydrogen atom an energy of ~ 13.6 eV in form of photons is released

- at $z \sim 1100 \rightarrow \Delta \epsilon/\epsilon \sim 13.6 \text{ eV } N_b / (N_\gamma 2.7 \text{k} T_r) \sim 10^{-9} \text{--} 10^{-8}$
- \rightarrow recombination occurs at redshifts $z < 10^4$
- At that time the *thermalization* process doesn't work anymore!
- There should be some small spectral distortion due to additional Ly-α and 2s-1s photons! (Zeldovich, Kurt & Sunyaev, 1968, ZhETF, 55, 278; Peebles, 1968, ApJ, 153, 1)
- → In 1975 *Viktor Dubrovich* emphasized the possibility to observe the recombinational lines from n > 3 and $\Delta n << n!$

First recombination computations completed in 1968!

Yakov Zeldovich

Vladimir Kurt (UV astronomer)

Moscow

Princeton

Rashid Sunyaev

Jim Peebles

100-shell hydrogen atom and continuum CMB spectral distortions

JC & Sunyaev, 2006, A&A, 458, L29 (astro-ph/0608120)

100-shell hydrogen atom and continuum Relative distortions

Wien-region:

- L_{α} and 2s distortions
 - are very strong
- but CIB more dominant

@ CMB maximum:

- relative distortions extremely small
- strong v-dependence

RJ-region:

- relative distortion exceeds
 level of ~ 10⁻⁷ below v ~
 1-2 GHz
- oscillatory frequency dependence with ~ 1-10 percent-level amplitude:
- hard to mimic by known foregrounds or systematics

JC & Sunyaev, 2006, A&A, 458, L29 (astro-ph/0608120)

Cosmological Time in Years

What about the contributions from helium recombination?

• Nuclear reactions: $Y_p \sim 0.24 \leftrightarrow N_{Hel} / N_H \sim 8 \%$

 \rightarrow expected photon number rather small

• BUT: *two* epochs of He recombination (\mathbf{i}) HeIII \rightarrow HeII at z~6000 and HeII \rightarrow HeI at z~2500 (*ii*) Helium recombinations faster \rightarrow more *narrow* features with *larger* amplitude (*iii*) non-trivial superposition \rightarrow local amplification possible (iv) reprocessing of Hell & Hel photons by Hel and HI → increases the number of helium-related photons

Any opens a way to *directly* measure the primordial (pre-stellar!!!) helium abundance!

Grotrian diagram for neutral helium

Helium contributions to the cosmological recombination spectrum

Cosmological Time in Years

What would we actually learn by doing such hard job?

Cosmological Recombination Spectrum opens a way to measure:

- \rightarrow the specific *entropy* of our universe (related to $\Omega_{b}h^{2}$)
- \rightarrow the CMB *monopole* temperature T_0
- \rightarrow the pre-stellar abundance of helium Y_p

→ If recombination occurs as we think it does, then the lines can be predicted with very high accuracy!

→ In principle allows us to directly check our understanding of the standard recombination physics

Figure 7.3: The 1 and 2 dimensional marginalized parameter posterior using the CMB spectral distortions. All three cases constrain the CMB power spectrum using a Gaussian likelihood based on Planck noise levels. The black line adds constraints due to a 10% measurement of the spectral distortions, while the blue line assumes a 1% measurement. The red line does not include the data from the spectral distortions. CMB based cosmology alone

 Spectrum helps to break some of the parameter degeneracies

 Planning to provide a module that computes the recombination spectrum in a fast way

 detailed forecasts: which lines to measure; how important is the absolute amplitude; how accurately one should measure; best frequency resolution;

Absolute value of Intensity signal

Absolute value of Intensity signal

But this is again not all!

Extra Sources of Ionizations or Excitations

• ,Hypothetical' source of extra photons parametrized by $\epsilon_{\alpha} \& \epsilon_{i}$

- Extra excitations \Rightarrow delay of Recombination
- Extra ionizations ⇒ affect 'freeze out' tail
- This affects the Thomson visibility function

• From WMAP $\Rightarrow \epsilon_{\alpha} < 0.39 \& \epsilon_i < 0.058$ at 95% confidence level (Galli et al. 2008)

 Extra ionizations & excitations should also lead to additional photons in the recombination radiation!!!

 This in principle should allow us to check for such sources at z~1000

Peebles, Seager & Hu, ApJ, 2000

Dark matter annihilations / decays

- Additional photons at all frequencies
- Broadening of spectral features
- Shifts in the positions

JC, 2009, arXiv:0910.3663

Pre-recombination atomic transitions after possible early energy release

pure blackbody CMB

no net emission or absorption of photons before recombination epoch!

non-blackbody CMB

(Lyubarsky & Sunyaev, 1983)

- → atoms "try" to restore full equilibrium
- → atomic cycles develop (cont.→ bound → cont.)
- \rightarrow "splitting" of photons
- → cycles mainly end in Lyman-continuum
- → Balmer-cont. cycles work just before recombination

CMB spectral distortions after single energy release 25 shell HI and Hell bb&fb spectra: dependence on y

JC & Sunyaev, 2008, astro-ph/0803.3584

CMB spectral distortions after single energy release 25 shell HI and Hell bb&fb spectra: dependence on y

JC & Sunyaev, 2008, astro-ph/0803.3584
CMB spectral distortions after single energy release 25 shell HI and Hell bb&fb spectra: dependence on y

Hydrogen

Helium +

JC & Sunyaev, 2008, astro-ph/0803.3584

CMB spectral distortions after single energy release 25 shell HI and Hell bb&fb spectra: dependence on y

Hydrogen

Helium +

JC & Sunyaev, 2008, astro-ph/0803.3584

- Large increase in the total amplitude of the distortions with value of y!
- Strong emission-absorption feature in the Wien-part of CMB (absent for y=0!!!)

 Hell contribution to the pre-recombinational emission as strong as the one from Hydrogen alone !

CMB spectral distortions after single energy release 25 shell HI and Hell bb&fb spectra: dependence on z

JC & Sunyaev, 2008, astro-ph/0803.3584

- Large increase in the total amplitude of the distortions with injection redshift!
- Number of spectral features depends on injection redshift!
- Emission-Absorption feature increases ~2 for energy injection $z \Rightarrow 11000$

What would we actually learn by doing such hard job?

Cosmological Recombination Spectrum opens a way to measure:

- \rightarrow the specific *entropy* of our universe (related to $\Omega_{b}h^{2}$)
- \rightarrow the CMB *monopole* temperature T_0
- \rightarrow the pre-stellar abundance of helium Y_p
- → If recombination occurs as we think it does, then the lines can be predicted with very high accuracy!

→ In principle allows us to directly check our understanding of the standard recombination physics

If something unexpected or non-standard happened:

- → non-standard thermal histories should leave some measurable traces
- → direct way to measure/reconstruct the recombination history!
- → possibility to distinguish pre- and post-recombination y-type distortions
- → sensitive to energy release during recombination
- → variation of fundamental constants

Summary

CMB spectral distortions open a *new window* to the early Universe and inflationary epoch

- complementary and independent source of information about our Universe not just confirmation
- simplicity of thermalization physics allows making very precise predictions for the distortions caused by different heating mechanisms
- in standard cosmology several processes lead to early energy release at a level that will be detectable in the future
- extremely interesting future for CMB based science!