Introduction to Recombination Physics and Why it is Important for Cosmology and Early-Universe Physics

Jens Chluba

Cosmology - The Next Decade

ICTS, Bangalore, January 3th - 19th, 2019

The University of Manchester

MANCHE

Plan for the Lectures (in theory)

Lecture I:

- Introduction to the cosmological recombination problem
- Overview of standard recombination physics
- Relevance to the analysis of CMB data

Lecture II:

- Cosmological recombination radiation
- Non-standard recombination models
- Overview of cosmological recombination codes

Lecture III / Tutorial:

- Brief walk-through of CosmoRec
- Some examples with Recfast++

Cosmic Microwave Background Anisotropies

Planck all-sky temperature map CMB has a blackbody spectrum in every direction

• tiny variations of the CMB temperature $\Delta T/T \sim 10^{-5}$

CMB anisotropies (with SN, LSS, etc...) clearly taught us a lot about the Universe we live in!

- Standard 6 parameter concordance cosmology with values known to percent level precision (+ T₀ from COBE/FIRAS)
- Gaussian-distributed adiabatic fluctuations with nearly scaleinvariant power spectrum tested over a wide range of scales
- cold dark matter ("CDM")
- accelerated expansion today ("Λ")
- Standard BBN scenario $\rightarrow N_{\text{eff}}$ and Y_{p}
- Standard ionization history $\rightarrow N_{\rm e}(z)$

Parameter	TT+lowP 68 % limits	TT+lowP+lensing 68 % limits	TT+lowP+lensing+ext 68 % limits	TT,TE,EE+lowP 68 % limits	TT,TE,EE+lowP+lensing 68 % limits	TT,TE,EE+lowP+lensing+ext 68 % limits
$\Omega_{ m b} h^2 \ldots \ldots \ldots$	0.02222 ± 0.00023	0.02226 ± 0.00023	0.02227 ± 0.00020	0.02225 ± 0.00016	0.02226 ± 0.00016	0.02230 ± 0.00014
$\Omega_{\rm c} h^2$	0.1197 ± 0.0022	0.1186 ± 0.0020	0.1184 ± 0.0012	0.1198 ± 0.0015	0.1193 ± 0.0014	0.1188 ± 0.0010
$100\theta_{\rm MC}$	1.04085 ± 0.00047	1.04103 ± 0.00046	1.04106 ± 0.00041	1.04077 ± 0.00032	1.04087 ± 0.00032	1.04093 ± 0.00030
τ	0.078 ± 0.019	0.066 ± 0.016	0.067 ± 0.013	0.079 ± 0.017	0.063 ± 0.014	0.066 ± 0.012
$\ln(10^{10}A_s)$	3.089 ± 0.036	3.062 ± 0.029	3.064 ± 0.024	3.094 ± 0.034	3.059 ± 0.025	3.064 ± 0.023
<i>n</i> _s	0.9655 ± 0.0062	0.9677 ± 0.0060	0.9681 ± 0.0044	0.9645 ± 0.0049	0.9653 ± 0.0048	0.9667 ± 0.0040

Planck Collaboration, 2015, paper XIII

Sketch of the Cosmic Ionization History

at redshifts higher than
 ~10⁴ Universe
 → fully ionized

- at $z \ge 10^4$ $\rightarrow N_e/N_H \sim 1.16$ (Helium has 2 electrons and abundance $\sim 8\%$)
- Singly-ionized Helium recombination around z~6000
- Neutral Helium recombination around z~2000

 Hydrogen recombination around z~1000

Sketch of the Cosmic Ionization History

at redshifts higher than
 ~10⁴ Universe
 → *fully ionized*

- at $z \ge 10^4$ $\rightarrow N_e/N_H \sim 1.16$ (Helium has 2 electrons and abundance $\sim 8\%$)
- Singly-ionized Helium recombination around z~6000
- Neutral Helium recombination around z~2000
- Hydrogen recombination around z~1000

CMB Sky \rightarrow Cosmology

Lyman- α forest, weak lensing, ...

Cosmological Time in Years

Cosmological Time in Years

Redshift z

How does cosmological recombination work?

What is the recombination problem about?

- coupled system describing the interaction of *matter* with the ambient CMB *photon* field
- atoms can be in different excitation states
 - \implies lots of levels to worry about
- recombination process changes Wien tail of CMB and this affects the recombination dynamics
 - \implies radiative transfer problem

Have to follow evolution of: $N_{\rm e}, T_{\rm e}, N_{\rm p}, N_i \text{ and } \Delta I_{\nu}$

electron temperature

Only problem in time!

ber densities

non-thermal photons

Physical Conditions during Recombination

- Anisotropies negligible for recombination problem
- CMB temperature $T_{\gamma} \sim 2.725 (1+z) \text{ K} \sim 3000 \text{ K}$
- Baryon number density $N_{\rm b} \sim 2.5 \times 10^{-7} {\rm cm}^{-3} (1+z)^3 \sim 330 {\rm cm}^{-3}$
- Photon number density N_γ ~ 410 cm⁻³ (1+z)³ ~ 2×10⁹ N_b
 ⇒ photons in very distant Wien tail of blackbody spectrum can keep
 hydrogen ionized until hv_α ~ 40 kT_γ ⇔ T_γ ~ 0.26 eV (Ly-c 13.6 eV!)
- Collisional processes negligible (completely different in stars!!!)
- Rates dominated by radiative processes (e.g. stimulated emission & stimulated recombination)
- Compton interaction couples electrons very tightly to photons until $z \sim 200 \Rightarrow T_{\gamma} \sim T_e \sim T_m$

3-level Hydrogen Atom and Continuum

Routes to the ground state ?

 direct recombination to 1s Emission of photon is followed by immediate re-absorption 	} No
- recombination to 2p followed by Lyman- α emission	
 medium optically thick to Ly-α phot. many resonant scatterings escape very hard (<i>P</i>~10⁻⁹ @ <i>z</i>~1100) 	
 recombination to 2s followed by 2s two-photon decay 	
 2s → 1s ~10⁸ times slower than Ly-α 2s two-photon decay profile → maximum at v ~ 1/2 v_α 	
- immediate escape	

Zeldovich, Kurt & Sunyaev, 1968, ZhETF, 55, 278 Peebles, 1968, ApJ, 153, 1

 $\Delta N_{\rm e}$ / $N_{\rm e}$ ~ 10% - 20%

These first computations were completed in 1968!

Moscow

losif Shklovsky (radio astronomer)

Princeton

Jim Peebles

Zeldovich, Kurt & Sunyaev, 1968, ZhETF, 55, 278 Peebles, 1968, ApJ, 153, 1

Vladimir Kurt (UV astronomer)

Rashid Sunyaev

Let's do the simple 3-level atom derivation?

Multi-level Atom ⇔ Recfast-Code

Seager, Sasselov & Scott, 1999, ApJL, 523, L1 Seager, Sasselov & Scott, 2000, ApJS, 128, 407

RECFAST reproduces the result of detailed recombination calculation using fudge-functions

Output of $N_{\rm e}/N_{\rm H}$

Hydrogen:

- up to 300 levels (shells)
- *n* ≥ 2 → full SE for *l*-sub-states

Helium:

- Hel 200-levels (z ~ 1400-1500)
- Hell 100-levels (*z* ~ 6000-6500)
- Helll 1 equation

Low Redshifts:

- H chemistry (only at low z)
- cooling of matter (Bremsstrahlung, collisional cooling, line cooling)

 $\Delta N_{\rm e}$ / $N_{\rm e}$ ~ 1% - 3%

Getting the job done for Planck

44 GH2

Hydrogen recombination

- Two-photon decays from higher levels (Dubrovich & Grachev, 2005, Astr. Lett., 31, 359; Wong & Scott, 2007; JC & Sunyaev, 2007; Hirata, 2008; JC & Sunyaev 2009)
- Induced 2s two-photon decay for hydrogen (JC & Sunyaev, 2006, A&A, 446, 39; Hirata 2008)
- Feedback of the Lyman- α distortion on the 1s-2s two-photon absorption rate (Kholupenko & Ivanchik, 2006, Astr. Lett.; Fendt et al. 2008; Hirata 2008)
- Non-equilibrium effects in the angular momentum sub-states (Rubiño-Martín, JC & Sunyaev, 2006, MNRAS; JC, Rubiño-Martín & Sunyaev, 2007, MNRAS; Grin & Hirata, 2009; JC, Vasil & Dursi, 2010)
- Feedback of Lyman-series photons (Ly[n] → Ly[n-1])
 (JC & Sunyaev, 2007, A&A; Kholupenko et al. 2010; Haimoud, Grin & Hirata, 2010)
- Lyman-α escape problem (*atomic recoil, time-dependence, partial redistribution*) (Dubrovich & Grachev, 2008; JC & Sunyaev, 2008; Forbes & Hirata, 2009; JC & Sunyaev, 2009)
- Collisions and Quadrupole lines (JC, Rubiño-Martín & Sunyaev, 2007; Grin & Hirata, 2009; JC, Vasil & Dursi, 2010; JC, Fung & Switzer, 2011)
- Raman scattering (Hirata 2008; JC & Thomas , 2010; Haimoud & Hirata, 2010)

Helium recombination

- Similar list of processes as for hydrogen (Switzer & Hirata, 2007a&b; Hirata & Switzer, 2007)
- Spin forbidden 2p-1s triplet-singlet transitions (Dubrovich & Grachev, 2005, Astr. Lett.; Wong & Scott, 2007; Switzer & Hirata, 2007; Kholupenko, Ivanchik&Varshalovich, 2007)
- Hydrogen continuum opacity during He I recombination (Switzer & Hirata, 2007; Kholupenko, Ivanchik & Varshalovich, 2007; Rubiño-Martín, JC & Sunyaev, 2007; JC, Fung & Switzer, 2011)
- Detailed feedback of helium photons (Switzer & Hirata, 2007a; JC & Sunyaev, 2009, MNRAS; JC, Fung & Switzer, 2011)

 $\Delta N_{\rm e}$ / $N_{\rm e}$ ~ 0.1 %

HFI 100 GHz

Solving the problem for the *Planck* Collaboration was a common effort!

Atomic Physics Challenges

Hydrogen Atom & Hydrogenic Helium

- Rather simple and basically analytic (e.g., Karzas & Latter, 1961)
- Even 2γ rates can be computed precisely (e.g., Goeppert-Mayer, 1931)
- Collisional rates less robust, but effect small (new rates became available!)
- Biggest computational challenge is the number of levels (~ n²)

Neutral Helium

- Lower levels non-hydrogenic (perturbative approach needed)
- Spectrum complicated and data (was) rather sparse (e.g., Drake & Morton, 2007)

Grotrian diagram for neutral helium

Atomic Physics Challenges

Hydrogen Atom & Hydrogenic Helium

- Rather simple and basically analytic (e.g., Karzas & Latter, 1961)
- Even 2γ rates can be computed precisely (e.g., Goeppert-Mayer, 1931)
- Collisional rates less robust, but effect small (new rates became available!)
- Biggest computational challenge is the number of levels (~ n²)

Neutral Helium

- Lower levels non-hydrogenic (perturbative approach needed)
- Spectrum complicated and data (was) rather sparse (e.g., Drake & Morton, 2007)
- Collisional rate estimates pretty rough (important for distortions...)
- Computational challenge because of levels not as demanding if you only want to get the free electron fraction right

(not true for recombination radiation...)

Stimulated HI 2s \rightarrow 1s decay

2s-1s emission profile

Transition rate in vacuum $\rightarrow A_{2s1s} \sim 8.22 \text{ sec}^{-1}$ CMB ambient photons field $\rightarrow A_{2s1s}$ increased by ~1%-2% \rightarrow HI - recombination faster by $\Delta N_e/N_e \sim 1.3\%$

Feedback of Ly- α on the HI 1s \rightarrow 2s transition

- Some Ly-α photon are reabsorbed in the 1s-2s channel
- delays recombination
- net effect on 2s-1s channel $\Delta N_e/N_e \sim 0.6\%$ around z~1100
- 2s-1s self-feedback $\Delta N_e/N_e \sim -0.08\%$ around z~1100 (JC & Thomas, 2010)

Kholupenko et al. 2006 Fendt, JC, Rubino-Martin & Wandelt, 2009

The Lyman-series radiative transfer problem

Evolution of the HI Lyman-series distortion

Sobolev approximation

(developed in late 50's to model expanding envelopes of stars)

To solve the coupled system of rate-equations

→ need to know mean intensity across the Ly- α (& Ly-n) resonance at different times

- \rightarrow approximate solution using *escape probability*
- \rightarrow Escape == photons stop interacting with Ly- α resonance
 - == photons stop supporting the 2p-level
 - == photons reach the very distant red wing

Main assumptions of Sobolev approximation

- populations of level + radiation field quasi-stationary
- every 'scattering' leads to complete redistribution
- emission & absorption profiles have the same shape

Doppler width (due to atomic motions)

$$\frac{\Delta\nu_{\rm D}}{\nu} = \sqrt{\frac{2kT}{m_{\rm H}c^2}} \simeq \text{few} \times 10^{-5}$$

Sobolev approximation

(developed in late 50's to model expanding envelopes of stars)

- To solve the coupled system of rate-equations \rightarrow need to know mean intensity across the Ly- α (& Ly-n) resonance at different times
- \rightarrow approximate solution using escape probability
- \rightarrow Escape == photons stop interacting with Ly- α resonance
 - == photons stop supporting the 2p-level
 - == photons reach the very distant red wing
- Main assumptions of Sobolev approximation
 - populations of level + radiation field quasi-stationary
 - every 'scattering' leads to complete redistribution
 - emission & absorption profiles have the same shape
- Sobolev escape probability & optical depth

$$P_{\rm S} = \frac{1 - e^{-\tau_{\rm S}}}{\tau_{\rm S}} \simeq 10^{-8}$$

$$\tau_{\rm S} = \frac{c \,\sigma_{\rm r} N_{\rm 1s}}{H} \,\frac{\Delta \nu_{\rm D}}{\nu} = \frac{g_{\rm 2p}}{g_{\rm 1s}} \,\frac{A_{\rm 21} \lambda_{\rm 21}^3}{8\pi H} \,N_{\rm 1s}$$

Escape from resonance in expanding medium

- Initial evolution dominated by broadening (atomic recoil smaller)
- Redshift takes over later (much longer time-scale than scattering and real absorption)
- Only a very small fraction of photons escape from line-center

Escape from resonance in expanding medium

Injection @ red wing

- Initial evolution dominated by broadening (atomic recoil smaller)
- Redshift takes over later (much longer time-scale than scattering and real absorption)
- Only a very small fraction of photons escape from line-center
- Escape from red wing easier (more photons survive)

Escape from resonance in expanding medium

Injection @ blue wing

- Initial evolution dominated by broadening (atomic recoil smaller)
- Redshift takes over later (much longer time-scale than scattering and real absorption)
- Only a very small fraction of photons escape from line-center
- Escape from red wing easier (more photons survive)
- Non-vanishing probability to 'survive' even from blue wing

Differential Escape Probability

- Escape depends on physical assumptions (e.g., scattering and absorption)
- Escape probability is a strong function of frequency and redshift
- Escape from Doppler core very similar to escape from blue wing
- Ly-α resonance becomes optically thin only in very distant red wing

Problems with Sobolev approximation:

Complete redistribution ⇔ partial redistribution

Sobolev-approximation:

- Important variation of the photon distribution at ~1.5 times the ionization energy!
- For 1% accuracy one has to integrate up to ~10⁷ Doppler width!
- Complete redistribution bad approximation and very unlikely (P~10⁻⁴-10⁻³)

No redistribution case:

- Much closer to the correct solution (*partial redistribution*)
- Avoids some of the unphysical aspect

Other Problems with Sobolev approximation

Time-dependence of the emission process

- Quasi-stationarity ok close to line center
- Non-stationarity important in the distant wings
- Wings even at ~ 10⁴ Doppler width ($\Delta \nu / \nu \sim 10\%$) required for <0.1% precision

Asymmetry of emission / absorption profiles

- Standard textbook equations always assume $v \sim v_0$
- Very *inaccurate* in distant damping wings
- Detailed balance off → blackbody not conserved!
- Formulation that includes profile asymmetries required

Illustration from Switzer & Hirata 2007 (meant for Helium)

Sobolev approximation is still pretty good (sadly...)

Total escape probability correction

Change in ionization history

- In spite of being developed for totally different purpose and issues with the physical formulation....
- Time-dependence largest correction to the Ly-α escape problem
- Total correction $\Delta N_e/N_e \sim -1.8\%$ @ $z\sim 1150$

Two-photon emission process from upper levels

Seaton cascade (1+1 photon)

No collisions \rightarrow two photons (mainly H- α and Ly- α) are emitted

Maria-Göppert-Mayer (1931): description of two-photon emission as *single quantum act*

→Deviations of the *two-photon line profile* from the Lorentzian in the damping wings

→Changes in the optically thin (i.e., below ~500-5000 Doppler width) parts of the line spectra

 $M = \sum_{n'=2} \langle R_{1s} | r | R_{n'p} \rangle \langle R_{n'p} | r | R_{n\ell} \rangle g_{n,n'}(\nu) \qquad g$

$$\eta_{n,n'}(\nu) = \frac{1}{h\nu_{nn'} - h\nu} + \frac{1}{h\nu_{nn'} - h\nu'}$$

3s and 3d two-photon decay spectrum

Direct Escape from optically thin regions:

- → HI -recombination is a bit *slower* due to 2γ-transitions from s-states
- → HI -recombination is a bit *faster* due to 2γ-transitions from d-states

5s two-photon decay spectrum

 \rightarrow matters become more complicated quickly

 \rightarrow splitting of resonance and non-resonant parts simplify the computation greatly

- \rightarrow luckily including these effects up to $n \sim 4-5$ is enough
- JC & Sunyaev, 2008, A&A, 480

2s-1s Raman scattering

C.V. Raman

 collisions weak ⇒ process has to be modeled as single quantum act

Computation similar to

two-photon decay profiles

Hirata 2008 JC & Thomas, 2010

Effect of Raman scattering and 2y decays

z = 1190**Departure from CMB blackbody** (arbitrary unit) $\iota 0^2$ reference case w 2y-emission w 2y-emission and Raman-scattering no scattering 10^{1} **2s-1s Raman scattering:** $2s + \gamma \rightarrow 1s + \gamma'$ 10⁰ ⊦ **Decreased Ly-n feedback** 10^{-1} Increased Lyβ feedback ⇒ delay HI recombination 10^{-2} ⇒ result in good agreement with Hirata 2008 Ly-δ Ly-β 10^{-3} 1.24 0.96 1.04 1.08 1.12 1.16 1.2 1.28 1 $\nu\,/\,\nu_{21}$

Evolution of the HI Lyman-series distortion

Deviations from Statistical Equilibrium in the upper levels

Basis for Recfast computation (Seager et al. 2000)

- *l*-dependence of populations neglected
- Levels in a given shell assumed to be in Statistical Equilibrium (SE)
- Complexity of problem scales like ~ n_{max}

$$N_{nl} = \frac{2l+1}{n^2} N_{\text{tot},n}$$

Processes for the upper levels

recombination & photoionization

- *n* small \rightarrow *l*-dependence not drastic
- high shells \rightarrow more likely to *l*<<*n*
- large $n \rightarrow induced$ recombination
- many radiative dipole transitions
 - Lyman-series optically thick
 - $\Delta l = \pm 1$ restriction (electron cascade)
 - large *n* & small $\Delta n \rightarrow$ *induced* emission
- *l*-changing collisions
 - help to establish full SE within the shell
 - only effective for n > 25-30
- *n*-changing collisions
- Collisional photoionization
- Three-body-recombination

Deviations from Statistical Equilibrium in the upper levels

Basis for Recfast computation (Seager et al. 2000)

l-dependence of populations neglected

$$N_{nl} = \frac{2l+1}{n^2} N_{\text{tot},n}$$

- Levels in a given shell assumed to be in Statistical Equilibrium (SE)
- Complexity of problem scales like ~ n_{max}

Refined computation

(JC, Rubino-Martin & Sunyaev, 2007)

- need to treat angular momentum sub-levels separately!
- include collision to understand how close populations are to SE
- Complexity of problem scales like ~ n²max
- But problem very sparse
 (Grin & Hirata, 2010; JC, Vasil & Dursi, 2010)

Sparsity of the problem and effect of ordering

20 shell Hydrogen + 5 shell Helium model

Shell-by-Shell ordering

 $1s, 2s, 2p, 3s, 3p, 3d, \dots$

Angular momentum ordering

 $1s, 2s, 3s, \dots, ns, 2s, 3p, \dots, np, 3d, 4d, \dots$

Grin & Hirata, 2010 JC, Vasil & Dursi, MNRAS, 2010

Collisions during hydrogen recombination

- effective recombination cross section of the atom matters most at low z
- collisions *increase* recombination rate
- effect on ionization history remains *small*
- uncertainties in collision rates may change this by factors of a few
- updated rates (with large △l) became available and effect remains negligible (noticeable in recombination radiation though...)

Quadrupole lines during hydrogen recombination

Getting the job done for Planck

44 GH2

Hydrogen recombination

- Two-photon decays from higher levels (Dubrovich & Grachev, 2005, Astr. Lett., 31, 359; Wong & Scott, 2007; JC & Sunyaev, 2007; Hirata, 2008; JC & Sunyaev 2009)
- Induced 2s two-photon decay for hydrogen (JC & Sunyaev, 2006, A&A, 446, 39; Hirata 2008)
- Feedback of the Lyman- α distortion on the 1s-2s two-photon absorption rate (Kholupenko & Ivanchik, 2006, Astr. Lett.; Fendt et al. 2008; Hirata 2008)
- Non-equilibrium effects in the angular momentum sub-states (Rubiño-Martín, JC & Sunyaev, 2006, MNRAS; JC, Rubiño-Martín & Sunyaev, 2007, MNRAS; Grin & Hirata, 2009; JC, Vasil & Dursi, 2010)
- Feedback of Lyman-series photons (Ly[n] → Ly[n-1])
 (JC & Sunyaev, 2007, A&A; Kholupenko et al. 2010; Haimoud, Grin & Hirata, 2010)
- Lyman-α escape problem (*atomic recoil, time-dependence, partial redistribution*) (Dubrovich & Grachev, 2008; JC & Sunyaev, 2008; Forbes & Hirata, 2009; JC & Sunyaev, 2009)
- Collisions and Quadrupole lines (JC, Rubiño-Martín & Sunyaev, 2007; Grin & Hirata, 2009; JC, Vasil & Dursi, 2010; JC, Fung & Switzer, 2011)
- Raman scattering (Hirata 2008; JC & Thomas , 2010; Haimoud & Hirata, 2010)

Helium recombination

- Similar list of processes as for hydrogen (Switzer & Hirata, 2007a&b; Hirata & Switzer, 2007)
- Spin forbidden 2p-1s triplet-singlet transitions (Dubrovich & Grachev, 2005, Astr. Lett.; Wong & Scott, 2007; Switzer & Hirata, 2007; Kholupenko, Ivanchik&Varshalovich, 2007)
- Hydrogen continuum opacity during He I recombination (Switzer & Hirata, 2007; Kholupenko, Ivanchik & Varshalovich, 2007; Rubiño-Martín, JC & Sunyaev, 2007; JC, Fung & Switzer, 2011)
- Detailed feedback of helium photons (Switzer & Hirata, 2007a; JC & Sunyaev, 2009, MNRAS; JC, Fung & Switzer, 2011)

 $\Delta N_{\rm e}$ / $N_{\rm e}$ ~ 0.1 %

HFI 100 GHz

Main corrections during Hel Recombination

Delayed neutral helium recombination was indeed one of the *Recfast* results

- Effect of HI absorption already mentioned in Hu et al. 1995 (priv. comm Peebles)
- Spin-forbidden Hel transition estimated in 1977 (Lin et al.)
- Luckily neutral helium recombination is not as crucial for Cl's...

Kholupenko et al, 2007 Switzer & Hirata, 2007

Evolution of the HeI high frequency distortion

CosmoRec v2.0 only!

So why is all this so important?

Cosmological Time in Years

Cumulative Changes to the Ionization History

JC & Thomas, MNRAS, 2010; Shaw & JC, MNRAS, 2011

Cumulative Change in the CMB Power Spectra

Importance of recombination for Planck

CITA Graduate Mathematic Applying Instant and Shaw & JC, 2011, and references therein

Biases as they would have been for Planck 15

- Biases a little less significant with real *Planck* 2015 data
- absolute biases very similar to earlier estimates
- In particular n_s would be biased significantly

Planck Collaboration, XIII 2015

Importance of recombination for inflation constraints

Planck Collaboration, 2015, paper XX

Analysis uses refined recombination model (CosmoRec/HyRec)

Differences for current recombination codes

CMB constraints on N_{eff} and Y_p

Consistent with SBBN and standard value for N_{eff}

• Future CMB constraints (Stage-IV CMB) on Yp will reach 1% level

Importance of recombination for measuring helium

CITA Graduation for the second second

Summary

- The standard recombination problem has been solved to a level that is sufficient for the analysis of current and future CMB data (<0.1% precision!)
- Many people helped with this problem! (most of them were not in *Planck...*)
- Without the improvements over the original version of Recfast cosmological parameters derived from *Planck* would be *biased* significantly
- In particular the conclusions about inflation models would have been affected
- Cosmological recombination radiation allows us to directly constrain the recombination history (more tomorrow...)