Cosmic Microwave Background and Spectral Distortions III: Distortions for different scenarios and what we may learn from them

ICCUB School: "Hot Topics in Cosmology"

Barcelona, Spain, Oct. 23rd-26th, 2017

The University of Manchester

MANCHESTER

Example: Energy release by decaying relict particle

- initial condition: *full* equilibrium
- total energy release:
 Δρ/ρ~1.3x10⁻⁶
- most of energy released around: zx~2x10⁶
- positive μ -distortion
- high frequency distortion frozen around z~5x10⁵
- late (z<10³) free-free absorption at very low frequencies ($T_e < T_\gamma$)

Computation carried out with CosmoTherm (JC & Sunyaev 2012)

What does the spectrum look like after energy injection?

JC & Sunyaev, 2012, ArXiv:1109.6552 JC, 2013, ArXiv:1304.6120

Part III: Distortions for different scenarios and what we may learn by studying them

Physical mechanisms that lead to spectral distortions

- Cooling by adiabatically expanding ordinary matter (JC, 2005; JC & Sunyaev 2011; Khatri, Sunyaev & JC, 2011)
- Heating by decaying or annihilating relic particles (Kawasaki et al., 1987; Hu & Silk, 1993; McDonald et al., 2001; JC, 2005; JC & Sunyaev, 2011; JC, 2013; JC & Jeong, 2013)
- Evaporation of primordial black holes & superconducting strings (Carr et al. 2010; Ostriker & Thompson, 1987; Tashiro et al. 2012; Pani & Loeb, 2013)
- Dissipation of primordial acoustic modes & magnetic fields (Sunyaev & Zeldovich, 1970; Daly 1991; Hu et al. 1994; JC & Sunyaev, 2011; JC et al. 2012 - Jedamzik et al. 2000; Kunze & Komatsu, 2013)
- Cosmological recombination radiation (Zeldovich et al., 1968; Peebles, 1968; Dubrovich, 1977; Rubino-Martin et al., 2006; JC & Sunyaev, 2006; Sunyaev & JC, 2009)

"high" redshifts

"low" redshifts

- Signatures due to first supernovae and their remnants
 (Oh, Cooray & Kamionkowski, 2003)
- Shock waves arising due to large-scale structure formation (Sunyaev & Zeldovich, 1972; Cen & Ostriker, 1999)
- SZ-effect from clusters; effects of reionization

(Refregier et al., 2003; Zhang et al. 2004; Trac et al. 2008)

Additional exotic processes
 (Lochan et al. 2012; Bull & Kamionkowski, 2013; Brax et al., 2013; Tashiro et al. 2013)

pre-recombination epoch

Standard sources of distortions

Reionization and structure formation

Simple estimates for the distortion

- Gas temperature $T \simeq 10^4$ K
- Thomson optical depth $\tau \simeq 0.1$

$$\implies \quad y \simeq \frac{kT_{\rm e}}{m_{\rm e}c^2} \, \tau \approx 2 \times 10^{-7}$$

- second order Doppler effect $y \simeq \text{few x } 10^{-8}$ (e.g., Hu, Scott & Silk, 1994)
- structure formation / SZ effect (e.g., Refregier et al., 2003) $y \simeq \text{few x } 10^{-7}\text{--}10^{-6}$

What does the spectrum look like after energy injection?

JC & Sunyaev, 2012, ArXiv:1109.6552 JC, 2013, ArXiv:1304.6120

What does the spectrum look like after energy injection?

JC & Sunyaev, 2012, ArXiv:1109.6552 JC, 2013, ArXiv:1304.6120

Fluctuations of the y-parameter at large scales

- spatial variations of the optical depth and temperature cause small-spatial variations of the yparameter at different angular scales
- could tell us about the reionization sources and structure formation process
- additional independent piece of information!
- **Cross-correlations**

Example: Simulation of reionization process (1Gpc/h) by *Alvarez & Abel* The dissipation of small-scale acoustic modes

Dissipation of small-scale acoustic modes

Dissipation of small-scale acoustic modes

Energy release caused by dissipation process

'Obvious' dependencies:

- Amplitude of the small-scale power spectrum
- Shape of the small-scale power spectrum
- Dissipation scale $\rightarrow k_D \sim (H_0 \ \Omega_{rel}^{1/2} N_{e,0})^{1/2} (1+z)^{3/2}$ at early times

not so 'obvious' dependencies:

- primordial non-Gaussianity in the ultra squeezed limit (Pajer & Zaldarriaga, 2012; Ganc & Komatsu, 2012)
- Type of the perturbations (adiabatic ↔ isocurvature) (Barrow & Coles, 1991; Hu et al., 1994; Dent et al, 2012, JC & Grin, 2012)
- Neutrinos (or any extra relativistic degree of freedom)

CMB Spectral distortions could add additional numbers beyond 'just' the tensor-to-scalar ratio from B-modes!

Distortion due to mixing of blackbodies

JC, Hamann & Patil, 2015

Classical derivation for the heating rate

energy stored in plane sound waves

Landau & Lifshitz, 'Fluid Mechanics', § 65 $\Rightarrow Q \sim c_{s^2} \rho (\delta \rho / \rho)^2$

- expression for normal ideal gas where ρ is 'mass density' and c_s denotes 'sounds speed'
- photon-baryon fluid with baryon loading R << 1

 $(c_{\rm S}/c)^2 = [3 (1+R)]^{-1} \sim 1/3$ $\rho \rightarrow \rho_{\gamma} = a_{\rm R} T^4$ $\delta \rho / \rho \rightarrow 4 (\delta T_0 / T) \equiv 4 \Theta_0$ only perturbation of the monopole accounted for

energy stored in plane sound waves

Landau & Lifshitz, 'Fluid Mechanics', § 65 $\Rightarrow Q \sim c_{s^2} \rho (\delta \rho / \rho)^2$

- expression for normal ideal gas where ρ is 'mass density' and c_s denotes 'sounds speed'
- photon-baryon fluid with baryon loading R << 1

'minus' because decrease of Θ at small scales means *increase* for average spectrum

 $(c_{\rm s}/c)^2 = [3 (1+R)]^{-1} \sim 1/3$ $\rho \rightarrow \rho_{\gamma} = a_{\rm R} T^4 \qquad \Rightarrow (a^4 \rho_{\gamma})^{-1} da^4 Q_{\rm ac}/dt = -16/3 d <\Theta_0^2 > /dt$ $\delta \rho / \rho \rightarrow 4(\delta T_0/T) \equiv 4\Theta_0$

can be calculated using first order perturbation theory

energy stored in plane sound waves

Landau & Lifshitz, 'Fluid Mechanics', § 65 $\Rightarrow Q \sim c_{s^2} \rho (\delta \rho / \rho)^2$

- expression for normal ideal gas where ρ is 'mass density' and c_s denotes 'sounds speed'
- photon-baryon fluid with baryon loading R << 1

 $(c_{s}/c)^{2} = [3 (1+R)]^{-1} \sim 1/3$ $\rho \rightarrow \rho_{\gamma} = a_{R} T^{4} \qquad \Rightarrow (a^{4}\rho_{\gamma})^{-1} da^{4}Q_{ac}/dt = -16/3 d <\Theta_{0}^{2} > /dt$ $\delta \rho / \rho \rightarrow 4(\delta T_{0}/T) \equiv 4\Theta_{0}$

energy stored in plane sound waves

Landau & Lifshitz, 'Fluid Mechanics', § 65 $\Rightarrow Q \sim c_s^2 \rho (\delta \rho / \rho)^2$

- expression for normal ideal gas where ρ is 'mass density' and c_s denotes 'sounds speed'
- photon-baryon fluid with baryon loading R << 1

 $(c_{\rm s}/c)^2 = [3 (1+R)]^{-1} \sim 1/3$ $\rho \rightarrow \rho_{\gamma} = a_{\rm R} T^4 \qquad \Rightarrow (a^4 \rho_{\gamma})^{-1} da^4 Q_{\rm ac}/dt = -16/3 d <\Theta_0^2 > /dt$ $\delta \rho / \rho \rightarrow 4(\delta T_0/T) \equiv 4\Theta_0$

- Simple estimate does not capture all the physics of the problem: (JC, Khatri & Sunyaev, 2012)
 - total energy release is 9/4 ~ 2.25 times larger!
 - only 1/3 of the released energy goes into distortions

Sunyaev & Zeldovich, 1970 Hu, Scott & Silk, 1994, ApJ

Early power spectrum constraints from FIRAS

FIG. 1.—Spectral distortion μ , predicted from the full eq. (11), as a function of the power index *n* for a normalization at the mean of the *COBE* DMR detection $(\Delta T/T)_{10^\circ} = 1.12 \times 10^{-5}$. With the uncertainties on *both* the DMR and FIRAS measurements, the conservative 95% upper limit is effectively $\mu < 1.76 \times 10^{-4}$ (see text). The corresponding constraint on *n* is relatively weakly dependent on cosmological parameters: n < 1.60 (h = 0.5) and n < 1.63 (h = 1.0) for $\Omega_0 = 1$ and quite similar for $0.2 < \Omega_0 = 1 - \Omega_A < 1$ universes. These limits are nearly independent of Ω_B . We have also plotted the optimistic 95% upper limit on $\mu < 0.63 \times 10^{-4}$ for comparison as discussed in the text.

- based on classical estimate for heating rate
- Tightest / cleanest constraint at that point!
- simple power-law spectrum assumed
- μ~10⁻⁸ for scale-invariant power spectrum

Dissipation of acoustic modes: 'microscopic picture'

- after inflation: photon field has spatially varying temperature T
- average energy stored in photon field at any given moment

$$< \rho_{\gamma} > = a_{R} < T^{4} > \approx a_{R} < T^{4} [1 + 4 < \Theta > + 6 < \Theta^{2} >]$$

 $\Rightarrow (a^4 \rho_V)^{-1} da^4 Q_{ac}/dt = -6 d < \Theta^2 > /dt$

- Monopole actually drops out of the equation!
- In principle all higher multipoles contribute to the energy release
- At high redshifts ($z \ge 10^4$):
 - net (gauge-invariant) dipole and contributions from higher multipoles are negligible
 - dominant term caused by quadrupole anisotropy

$$\Rightarrow$$
 (a⁴ ρ_{γ})⁻¹ da⁴Q_{ac}/dt \approx -12 d< Θ_0^2 >/dt

9/4 larger than classical estimate

Effective energy release caused by damping effect

Effective heating rate from full 2x2 Boltzmann treatment (JC, Khatri & Sunyaev, 2012)

Which modes dissipate in the µ and y-eras?

 Single mode with wavenumber k dissipates its energy at

 $z_{\rm d} \sim 4.5 \times 10^5 (k \,{\rm Mpc}/10^3)^{2/3}$

- Modes with wavenumber
 50 Mpc⁻¹ < k < 10⁴ Mpc⁻¹
 dissipate their energy
 during the µ-era
- Modes with *k* < 50 Mpc⁻¹ cause *y*-distortion

JC, Erickcek & Ben-Dayan, 2012

Distortions provide general power spectrum constraints!

- Amplitude of power spectrum rather uncertain at k > 3 Mpc⁻¹
- improved limits at smaller scales can rule out many inflationary models
- CMB spectral distortions would extend our lever arm to k ~ 10⁴ Mpc⁻¹
- very complementary piece of information about early-universe physics

e.g., JC, Khatri & Sunyaev, 2012; JC, Erickcek & Ben-Dayan, 2012; JC & Jeong, 2013

Distortions provide general power spectrum constraints!

- Amplitude of power spectrum rather uncertain at k > 3 Mpc⁻¹
- improved limits at smaller scales can rule out many inflationary models
- CMB spectral distortions would extend our lever arm to k ~ 10⁴ Mpc⁻¹
- very complementary piece of information about early-universe physics

e.g., JC, Khatri & Sunyaev, 2012; JC, Erickcek & Ben-Dayan, 2012; JC & Jeong, 2013

Enhanced small-scale power in hybrid inflation

- Hybrid Inflation models cause enhanced small-scale power
- Motivated to explain seeds of supermassive blackholes seen in basically all galaxies
- µ and y distortions sensitive to enhancement at scales
 1 Mpc⁻¹ ≤ k ≤ 2x10⁴ Mpc⁻¹
- Can constrain cases that are unconstrained by CMB measurements at large scales
- Possible link to BH mergers seen by LIGO??
- Figure: case with red line already ruled out by FIRAS (!) and today's CMB; distortions sensitive to orange and blue case; other cases PIXIE-lite is not sensitive to

Old forecast without foreground penalty

Figures adapted from Clesse & Garcia-Bellido, 2015
Shedding Light on the 'Small-Scale Crisis'

- 'missing satellite' problem
- 'too-big-to-fail'
- Cusp-vs-core problem

⇒ Are these caused by a *primordial* or *late-time* suppression?

- A primordial suppression would result in a very small µ-distortions
- Spectral distortion measurements might be able to test this question

Dissipation of tensor perturbations

- heating rate can be computed similar to adiabatic modes
- heating rate much smaller than for scalar perturbations
- roughly constant per dlnz for $n_T \sim 0.5$

- distortion signal very small compared to adiabatic modes
- no severe contamination in simplest cases
- models with 'large' distortion already constrained by BBN/CMB

JC, Dai, Grin et al., 2014, ArXiv:1407.3653

Spatially varying heating and dissipation of acoustic modes for non-Gaussian perturbations

- Uniform heating (e.g., dissipation in Gaussian case or quasi-uniform energy release)
 - \rightarrow distortion practically the same in different directions
- Spatially varying heating rate (e.g., due to ultra-squeezed limit non-Gaussianity or cosmic bubble collisions)

 → distortion varies in different directions

Pajer & Zaldarriaga, 2012; Ganc & Komatsu, 2012; Biagetti et al., 2013; JC et al., 2016

Signals for ultra-squeezed non-Gaussianity

Different correlation signals (see Emami et al, 2015)

$$C_{\ell}^{\mu T} \simeq 12 f_{\mathrm{nl}}^{\mu} C_{\ell}^{TT} \qquad \qquad f_{\mathrm{nl}}^{\mu} \simeq f_{\mathrm{nl}} (740 \,\mathrm{Mpc}^{-1}) \simeq 220 \left(\frac{\mu_{\mathrm{min}}}{10^{-9}}\right) \left(\frac{\langle \mu \rangle}{2 \times 10^{-8}}\right)^{-1}$$

$$C_{\ell}^{yT} \simeq 12 f_{\mathrm{nl}}^{y} C_{\ell}^{TT} \qquad \qquad \Leftrightarrow \qquad f_{\mathrm{nl}}^{y} \simeq f_{\mathrm{nl}} (7 \,\mathrm{Mpc}^{-1}) \simeq 220 \left(\frac{y_{\mathrm{min}}}{2 \times 10^{-10}}\right) \left(\frac{\langle y \rangle}{4 \times 10^{-9}}\right)^{-1}$$

- achievable sensitivity depends on monopole distortion!
- µT "cleanest" signal since it can only be created at early times
- yT also created by ISW but scale-dependence could help distinguishing it from the high-z signal (→ see new calculations by Ravenni et al., 1707.04759)
- possible link to CMB anomalies?

Requirements

- precise cross-calibration of frequency channels
- higher angular resolution does not improve cumulative S/N much (→ PIXIE-like experiment may be enough)

Energy extraction due to adiabatic cooling of matter

Average CMB spectral distortions

Distortion constraints on DM interactions through adiabatic cooling effect

Constrain interactions of DM with neutrinos/photons

- Dissipation is increased
- Enhances µ distortion
- Interesting complementary probe

- Early-time dissipation enhanced → larger µ
- Later, modes already gone, so less heating
- Dissipation scale larger early on

Diacoumis & Wong, 2017, 1707.07050

The cosmological recombination radiation

Simple estimates for hydrogen recombination

Hydrogen recombination:

 per recombined hydrogen atom an energy of ~ 13.6 eV in form of photons is released

- at $z \sim 1100 \rightarrow \Delta \epsilon/\epsilon \sim 13.6 \text{ eV } N_b / (N_\gamma 2.7 \text{k} T_r) \sim 10^{-9} \text{--} 10^{-8}$
- \rightarrow recombination occurs at redshifts $z < 10^4$
- At that time the *thermalization* process doesn't work anymore!
- There should be some small spectral distortion due to additional Ly-α and 2s-1s photons! (Zeldovich, Kurt & Sunyaev, 1968, ZhETF, 55, 278; Peebles, 1968, ApJ, 153, 1)
- → In 1975 *Viktor Dubrovich* emphasized the possibility to observe the recombinational lines from n > 3 and $\Delta n << n!$

First recombination computations completed in 1968!

Yakov Zeldovich

Vladimir Kurt (UV astronomer)

Moscow

Princeton

Rashid Sunyaev

Jim Peebles

Rubino-Martin et al. 2006, 2008; Sunyaev & JC, 2009

New detailed and fast computation!

CosmoSpec: fast and accurate computation of the CRR

- Like in old days of CMB anisotropies!
- detailed forecasts and feasibility studies
- non-standard physics (variation of α, energy injection etc.)

CosmoSpec will be available here: www.Chluba.de/CosmoSpec Cosmological Time in Years

Getting the job done for Planck

44 GHz

Hydrogen recombination

- Two-photon decays from higher levels (Dubrovich & Grachev, 2005, Astr. Lett., 31, 359; Wong & Scott, 2007; JC & Sunyaev, 2007; Hirata, 2008; JC & Sunyaev 2009)
- Induced 2s two-photon decay for hydrogen (JC & Sunyaev, 2006, A&A, 446, 39; Hirata 2008)
- Feedback of the Lyman- α distortion on the 1s-2s two-photon absorption rate (Kholupenko & Ivanchik, 2006, Astr. Lett.; Fendt et al. 2008; Hirata 2008)
- Non-equilibrium effects in the angular momentum sub-states (Rubiño-Martín, JC & Sunyaev, 2006, MNRAS; JC, Rubiño-Martín & Sunyaev, 2007, MNRAS; Grin & Hirata, 2009; JC, Vasil & Dursi, 2010)
- Feedback of Lyman-series photons (Ly[n] → Ly[n-1])
 (JC & Sunyaev, 2007, A&A; Kholupenko et al. 2010; Haimoud, Grin & Hirata, 2010)
- Lyman-α escape problem (*atomic recoil, time-dependence, partial redistribution*) (Dubrovich & Grachev, 2008; JC & Sunyaev, 2008; Forbes & Hirata, 2009; JC & Sunyaev, 2009)
- Collisions and Quadrupole lines (JC, Rubiño-Martín & Sunyaev, 2007; Grin & Hirata, 2009; JC, Vasil & Dursi, 2010; JC, Fung & Switzer, 2011)
- Raman scattering (Hirata 2008; JC & Thomas , 2010; Haimoud & Hirata, 2010)

Helium recombination

- Similar list of processes as for hydrogen (Switzer & Hirata, 2007a&b; Hirata & Switzer, 2007)
- Spin forbidden 2p-1s triplet-singlet transitions (Dubrovich & Grachev, 2005, Astr. Lett.; Wong & Scott, 2007; Switzer & Hirata, 2007; Kholupenko, Ivanchik&Varshalovich, 2007)
- Hydrogen continuum opacity during He I recombination (Switzer & Hirata, 2007; Kholupenko, Ivanchik & Varshalovich, 2007; Rubiño-Martín, JC & Sunyaev, 2007; JC, Fung & Switzer, 2011)
- Detailed feedback of helium photons (Switzer & Hirata, 2007a; JC & Sunyaev, 2009, MNRAS; JC, Fung & Switzer, 2011)

 $\Delta N_{\rm e}$ / $N_{\rm e}$ ~ 0.1 %

HFI 100 GH

Solving the problem for the *Planck* Collaboration was a common effort!

Importance of recombination for inflation constraints

Planck Collaboration, 2015, paper XX

Analysis uses refined recombination model (CosmoRec/HyRec)

Biases as they would have been for Planck

- Biases a little less significant with real *Planck* data
- absolute biases very similar
- In particular n_s would be biased significantly

Planck Collaboration, XIII 2015

Average CMB spectral distortions

Cosmological Time in Years

Dark matter annihilations / decays

- Additional photons at all frequencies
- Broadening of spectral features
- Shifts in the positions

JC, 2009, arXiv:0910.3663

CMB spectral distortions after single energy release 25 shell HI and HeII bb&fb spectra: dependence on y

JC & Sunyaev, 2008, astro-ph/0803.3584

CMB spectral distortions after single energy release 25 shell HI and HeII bb&fb spectra: dependence on y

JC & Sunyaev, 2008, astro-ph/0803.3584

CMB spectral distortions after single energy release 25 shell HI and Hell bb&fb spectra: dependence on y

Hydrogen negative feature 10⁻²⁶ | $v = 10^{-6}$ 10^{-26} 10⁻²⁷ $\Delta I_{\rm v}$ [J m⁻² s⁻¹ Hz⁻¹ sr⁻¹] S 10-27 s⁻¹ Hz 10⁻²⁸ Γ $\sum_{i=1}^{n}$ 10-28

Helium +

JC & Sunyaev, 2008, astro-ph/0803.3584

10

HI bb+fb-spectra

 $n_{\rm max} = 25$

10⁻²⁹

 $z_{\rm in} = 40000$

CMB spectral distortions after single energy release 25 shell HI and HeII bb&fb spectra: dependence on y

Helium +

JC & Sunyaev, 2008, astro-ph/0803.3584

- Large increase in the total amplitude of the distortions with value of y!
- Strong emission-absorption feature in the Wien-part of CMB (absent for y=0!!!)

 Hell contribution to the pre-recombinational emission as strong as the one from Hydrogen alone !

CMB spectral distortions after single energy release 25 shell HI and HeII bb&fb spectra: dependence on z

Hydrogen and Helium +

JC & Sunyaev, 2008, astro-ph/0803.3584

- Large increase in the total amplitude of the distortions with injection redshift!
- Number of spectral features depends on injection redshift!
- Emission-Absorption feature increases ~2 for energy injection $z \Rightarrow 11000$

Annihilating/decaying (dark matter) particles

Why is this interesting?

- A priori no specific particle in mind
- *But:* we do not know what dark matter is and where it really came from!
- Was dark matter thermally produced or as a decay product of some heavy particle?
- is dark matter structureless or does it have internal (excited) states?
- sterile neutrinos? moduli? Some other relic particle?
- From the theoretical point of view really no shortage of particles to play with...

CMB spectral distortions offer a new independent way to constrain these kind of models

Latest Planck limits on annihilation cross section

AMS/Pamela models in tension

- but interpretation model-dependent
- Sommerfeld enhancement?
- clumping factors?
- annihilation channels?

Planck Collaboration, paper XIII, 2015

For current constraint only (weak) upper limits from distortion...

Distortions could shed light on decaying (DM) particles!

JC & Jeong, 2013

Decaying particle scenarios

JC & Sunyaev, 2011, Arxiv:1109.6552 JC, 2013, Arxiv:1304.6120

Decaying particle scenarios

JC & Sunyaev, 2011, Arxiv:1109.6552 JC, 2013, Arxiv:1304.6120

Decaying particle scenarios (information in residual)

v [GHz]

JC & Sunyaev, 2011, Arxiv:1109.6552 JC, 2013, Arxiv:1304.6120

Distortions could shed light on decaying (DM) particles!

JC & Jeong, 2013
Distortions could shed light on decaying (DM) particles!

JC & Jeong, 2013

Spectral distortions of the CMB dipole

Balashev, Kholupenko, JC, Ivanchik & Varshalovich, ApJ, 2015 (ArXiv:1505.06028)

- motion with respect to CMB blackbody monopole
- ⇒ CMB temperature dipole
- including primordial distortions of the CMB
- ⇒ CMB dipole is distorted

 $\eta_{\rm d}(\nu, \mathbf{n}) \approx -\nu \partial_{\nu} \eta_{\rm m}(\nu) \beta \cos \Theta$

- spectrum of the dipole is sensitive to the *derivative* of the monopole spectrum
- anisotropy does not need absolute calibration but just inter-channel calibration
 - *but* signal is ~1000 times smaller...
- foregrounds will also leak into the dipole in this way
- check of systematics

Other extremely interesting new signals

Scattering signals from the dark ages

(e.g., Basu et al., 2004; Hernandez-Monteagudo et al., 2007; Schleicher et al., 2009)

- constrain abundances of chemical elements at high redshift
- learn about star formation history

Rayleigh / HI scattering signals

(e.g., Yu et al., 2001; Rubino-Martin et al., 2005; Lewis 2013)

- provides way to constrain recombination history
- important when asking questions about N_{eff} and Y_{p}

Free-free signals from reionization

(e.g., Burigana et al. 1995; Trombetti & Burigana, 2013)

- constrains reionization history
- depends on clumpiness of the medium

All these effects give spectral-spatial signals, and an absolute spectrometer will help with channel cross calibration!

Foreground problem for CMB spectral distortions

- Distortion signals quite small even if spectrally different
- spatially varying foreground signals across the sky
 - Introduces new spectral shapes (superposition of power-laws, etc.)
 - Scale-dependent SED
 - Similar problem for B-mode searches
- New foreground parametrization required
 - Moment expansion (JC, Hill & Abitbol, 2017)
- many frequency channels with high sensitivity required
 - PIXIE stands best chance at tackling this problem
- Synergies with CMB imagers have to be exploited
 - Maps of foregrounds can be used to model contributions to average sky-signal
 - absolute calibration (from PIXIE) can be used for calibration of imagers

Some of the foregrounds and their spatial variation

Foreground problem for CMB spectral distortions

- Distortion signals quite small even if spectrally different
- spatially varying foreground signals across the sky
 - Introduces new spectral shapes (superposition of power-laws, etc.)
 - Scale-dependent SED
 - Similar problem for B-mode searches
- New foreground parametrization required
 - Moment expansion (JC, Hill & Abitbol, 2017)
- many frequency channels with high sensitivity required
 - PIXIE stands best chance at tackling this problem
- Synergies with CMB imagers have to be exploited
 - Maps of foregrounds can be used to model contributions to average sky-signal
 - absolute calibration (from PIXIE) can be used for calibration of imagers

Comparison of distortion signals with foregrounds

Forecasted sensitivities for PIXIE

Sky Model	CMB (baseline)	CMB	Dust, CO	Sync, FF, AME	Sync, FF, Dust	Dust, CIB, CO	Sync, FF, Dust, CIB	Sync, FF, AME Dust, CIB, CO
# of parameters	4	4	8	9	11	11	14	16
$\sigma_{\Delta_T}[10^{-9}]$ $\sigma_y[10^{-9}]$ $\sigma_{kT_{eSZ}}[10^{-2} \text{ keV}]$ $\sigma_\mu[10^{-8}]$	2.3 (52k σ) 1.2 (1500 σ) 2.9 (42 σ) 1.4 (1.4 σ)	$\begin{array}{c} 0.86 (140 \mathrm{k}\sigma) \\ 0.44 (4000 \sigma) \\ 1.1 (113 \sigma) \\ 0.53 (3.8 \sigma) \end{array}$	2.2 (55k σ) 0.65 (2700 σ) 1.8 (71 σ) 0.55 (3.6 σ)	$\begin{array}{c} 3.9 \ (31 \mathrm{k} \sigma) \\ 0.88 \ (2000 \sigma) \\ 1.3 \ (96 \sigma) \\ 1.7 \ (1.2 \sigma) \end{array}$	9.7 (12k σ) 2.7 (660σ) 4.1 (30σ) 2.6 (0.76σ)	5.3 (23k σ) 4.8 (370σ) 7.8 (16σ) 0.75 (2.7σ)	59 (2000σ) 12 (150σ) 11 (11σ) 14 (0.15σ)	75 (1600 σ) 14 (130 σ) 12 (10 σ) 18 (0.11 σ)
Parameter	1%/	10%	/ 10% 19	%/1% n	one (no μ)	10% / 10%	(no μ)	1% / 1% (no µ)
$\sigma_{\Delta_T}[10^{-9}]$	194 (61	19 σ) 75 (1	600σ) 18	(6500σ) 1	$7(7200\sigma)$	4.4 (270	(00σ)	$3.7 (33000\sigma)$
$\sigma_{kT_{eSZ}}[10^{-2} \text{ keV}]$ $\sigma_{\mu}[10^{-8}]$	32 (5) [] 23 (5) 47 (0.0	5σ 14 (1) 5σ) 12 (04σ) 18 (0)	(130σ) (3.9) (130σ) (3.9) (130σ) (3.9) $($	(500σ) 9 $5(14\sigma)$ (0.43σ)		4.0 (38)	οσ) δσ)	4.0 (390σ) 7.6 (17σ) –

- Greatly improved limit on μ expected, but a detection of ΛCDM value will be hard
- Measurement of relativistic correction signal very robust even with foregrounds
- Low-frequency measurements from the ground required!

Abitbol, JC & Hill, 1705.01534

What can CMB spectral distortions add?

- Add a new dimension to CMB science
 - probe the thermal history at different stages of the Universe
- Complementary and independent information!
 - cosmological parameters from the recombination radiation
 - new/additional test of large-scale anomalies
- Several guaranteed signals are expected
 - y-distortion from low redshifts
 - damping signal & recombination radiation
- Test various inflation models
 - damping of the small-scale power spectrum
- Discovery potential

- decaying particles and other exotic sources of distortions

All this largely without any competition from the ground!!!

Uniqueness of CMB Spectral Distortion Science

Guaranteed distortion signals in ΛCDM

New tests of inflation and particle/dark matter physics

Signals from the reionization and recombination eras

Huge discovery potential

Complementarity and synergy with CMB anisotropy studies

Chluba & Sunyaev, MNRAS, 419, 2012 Chluba et al., MNRAS, 425, 2012 Silk & Chluba, Science, 2014 Chluba, MNRAS, 2016

