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Main Goals of this Lecture

• Convince you that future CMB distortions science will 
be extremely exciting!

• Explain how distortions evolve and thermalize

• Definition of different types of distortions

• Computations of spectral distortions (you should be 
able to do this yourself afterwards!)

• Provide an overview for different sources of 
primordial distortions

• Show you why the CMB spectrum provides a 
complementary probe of inflation and particle physics



References for the Theory of Spectral Distortions

• Original works
- Zeldovich & Sunyaev, 1969, Ap&SS, 4, 301
- Sunyaev & Zeldovich, 1970, Ap&SS, 7, 20
- Illarionov & Sunyaev, 1975, Sov. Astr., 18, 413

Rashid SunyaevYakov Zeldovich
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Cosmic Microwave Background Anisotropies

Planck all-sky 
temperature map

• CMB has a blackbody spectrum in every direction

• tiny variations of the CMB temperature ΔT/T ~ 10-5



CMB constraints on Neff and Yp  

Planck Collaboration, 2013, paper XV

=
10

5
N

D
/N

H
Yp fixed using SBBN 
relations

• Helium determination from CMB 
consistent with SBNN prediction

• CMB constraint on Neff competitive
• Partial degeneracy with Yp and running
• Some tension between different data sets

Calabrese et al. 2013



All kind of fun new science with the CMB!

Planck Collaboration, 2013, paper XVII

Power spectrum of 
the lensing potential

Planck Collaboration, 2013, paper XXIV

SZ clusters on the sky

• Non-Gaussianity (test of inflation models)

• Topology

• CMB anomalies

• CIB and Galactic science

Effect of our motion

Planck Collaboration, 2013, paper XXVII

Illustration from 
Chluba 2011



CMB anisotropies as probe of Inflation

Text

Planck Collaboration, 2013, paper XVI

Planck Collaboration: Cosmological parameters
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Fig. 22. The Planck power spectrum of Fig. 10 plotted as `2D`
against multipole, compared to the best-fit base ⇤CDM model
with ns = 0.96 (red dashed line). The best-fit base ⇤CDM model
with ns constrained to unity is shown by the blue line.

Our extensive grid of models allows us to investigate cor-
relations of the spectral index with a number of cosmological
parameters beyond those of the base ⇤CDM model (see Figs.
21 and 24). As expected, ns is uncorrelated with parameters de-
scribing late-time physics, including the neutrino mass, geom-
etry, and the equation of state of dark energy. The remaining
correlations are with parameters that a↵ect the evolution of the
early Universe, including the number of relativistic species, or
the helium fraction. This is illustrated in Fig. 24: modifying the
standard model by increasing the number of neutrinos species,
or the helium fraction, has the e↵ect of damping the small-scale
power spectrum. This can be partially compensated by an in-
crease in the spectral index. However, an increase in the neu-
trino species must be accompanied by an increased matter den-
sity to maintain the peak positions. A measurement of the matter
density from the BAO measurements helps to break this degen-
eracy. This is clearly seen in the upper panel of Fig. 24, which
shows the improvement in the constraints when BAO measure-
ments are added to the Planck+WP+highL likelihood. With the
addition of BAO measurements we find more than a 3� devi-
ation from ns = 1 even in this extended model, with a best-fit
value of ns = 0.969 ± 0.010 for varying relativistic species. As
discussed in Sect. 6.3, we see no evidence from the Planck data
for non-standard neutrino physics.

The simplest single-field inflationary models predict that the
running of the spectral index should be of second order in infla-
tionary slow-roll parameters and therefore small [dns/d ln k ⇠
(ns � 1)2], typically about an order of magnitude below the
sensitivity limit of Planck (see e.g., Kosowsky & Turner 1995;
Baumann et al. 2009). Nevertheless, it is easy to construct in-
flationary models that have a larger scale dependence (e.g., by
adjusting the third derivative of the inflaton potential) and so it
is instructive to use the Planck data to constrain dns/d ln k. A
test for dns/d ln k is of particularly interest given the results from
previous CMB experiments.

Early results from WMAP suggested a preference for a nega-
tive running at the 1–2� level. In the final 9-year WMAP analy-
sis no significant running was seen using WMAP data alone, with
dns/d ln k = �0.019 ± 0.025 (68% confidence; Hinshaw et al.
2012. Combining WMAP data with the first data releases from
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Fig. 23. Upper: Posterior distribution for ns for the base ⇤CDM
model (black) compared to the posterior when a tensor compo-
nent and running scalar spectral index are added to the model
(red) Middle: Constraints (68% and 95%) in the ns–dns/d ln k
plane for ⇤CDM models with running (blue) and additionally
with tensors (red). Lower: Constraints (68% and 95%) on ns and
the tensor-to-scalar ratio r0.002 for ⇤CDM models with tensors
(blue) and additionally with running of the spectral index (red).
The dotted line show the expected relation between r and ns for
a V(�) / �2 inflationary potential (Eqs. 66a and 66b); here N is
the number of inflationary e-foldings as defined in the text. The
dotted line should be compared to the blue contours, since this
model predicts negligible running. All of these results use the
Planck+WP+highL data combination.
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adjusting the third derivative of the inflaton potential) and so it
is instructive to use the Planck data to constrain dns/d ln k. A
test for dns/d ln k is of particularly interest given the results from
previous CMB experiments.

Early results from WMAP suggested a preference for a nega-
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the tensor-to-scalar ratio r0.002 for ⇤CDM models with tensors
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The dotted line show the expected relation between r and ns for
a V(�) / �2 inflationary potential (Eqs. 66a and 66b); here N is
the number of inflationary e-foldings as defined in the text. The
dotted line should be compared to the blue contours, since this
model predicts negligible running. All of these results use the
Planck+WP+highL data combination.
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• Big goal/hope: detection of B-polarization

• Plenty of progress over the next few years: 
 ground/balloon: BICEP2, SPTpol, ACTpol, Spider, ...
 space: Planck, LiteBIRD, PIXIE, COrE+, ...?



Cosmic Microwave Background Anisotropies

Planck all-sky 
temperature map

• CMB has a blackbody spectrum in every direction

• tiny variations of the CMB temperature ΔT/T ~ 10-5



Cosmic Microwave Background Anisotropies

Planck all-sky 
temperature map

• CMB has a blackbody spectrum in every direction

• tiny variations of the CMB temperature ΔT/T ~ 10-5

Let’s forget about 
this today!



CMB provides another independent piece of information!

Mather et al., 1994, ApJ, 420, 439
Fixsen et al., 1996, ApJ, 473, 576 
Fixsen, 2003, ApJ, 594, 67
Fixsen, 2009, ApJ, 707, 916  

COBE/FIRAS

• CMB monopole is 10000 - 100000 times  
larger than the fluctuations

T0 = (2.726± 0.001)K

Absolute measurement required!
One has to go to space...



Mather et al., 1994, ApJ, 420, 439
Fixsen et al., 1996, ApJ, 473, 576 
Fixsen et al., 2003, ApJ, 594, 67  

COBE / FIRAS (Far InfraRed Absolute Spectrophotometer)

Nobel Prize in Physics 2006!

 Error bars a small fraction 
of the line thickness!

Theory and Observations

Average spectrum



(Te >> Tγ)

thermal SZ effect

Sunyaev & Zeldovich, 1980, ARAA, 18, 537

Compton y-distortion

• also known from thSZ effect
• up-scattering of CMB photon
• important at late times (z<50000)
• scattering inefficient • important at very times (z>50000)

• scattering very efficient

Chemical potential µ-distortion

Sunyaev & Zeldovich, 1970, ApSS, 2, 66

Standard types of primordial CMB distortions

Blackbody 
restored



Mather et al., 1994, ApJ, 420, 439
Fixsen et al., 1996, ApJ, 473, 576 
Fixsen et al., 2003, ApJ, 594, 67  

COBE / FIRAS (Far InfraRed Absolute Spectrophotometer)

Nobel Prize in Physics 2006!

 Error bars a small fraction 
of the line thickness!

Theory and Observations

Only very small distortions of CMB spectrum are still allowed!

Average spectrum



No primordial distortion found so far!? Why are we 
at all talking about this then?



Physical mechanisms that lead to spectral distortions

• Cooling by adiabatically expanding ordinary matter                                                                     

(JC, 2005; JC & Sunyaev 2011; Khatri, Sunyaev & JC, 2011)

• Heating by decaying or annihilating relic particles                                                       
(Kawasaki et al., 1987; Hu & Silk, 1993; McDonald et al., 2001; JC, 2005; JC & Sunyaev, 2011; JC, 2013; JC & Jeong, 2013)

• Evaporation of primordial black holes & superconducting strings                                                                            
(Carr et al.  2010; Ostriker & Thompson, 1987; Tashiro et al. 2012; Pani & Loeb, 2013)

• Dissipation of primordial acoustic modes & magnetic fields                                                                
(Sunyaev & Zeldovich, 1970; Daly 1991; Hu et al. 1994; JC & Sunyaev, 2011; JC et al. 2012 - Jedamzik et al. 2000; Kunze & Komatsu, 2013)

• Cosmological recombination radiation                                                                     
(Zeldovich et al., 1968; Peebles, 1968; Dubrovich, 1977; Rubino-Martin et al., 2006; JC & Sunyaev, 2006; Sunyaev & JC, 2009)

•                                                                                  

• Signatures due to first supernovae and their remnants                                        
(Oh, Cooray & Kamionkowski, 2003)

• Shock waves arising due to large-scale structure formation                                    
(Sunyaev & Zeldovich, 1972; Cen & Ostriker, 1999)

• SZ-effect from clusters; effects of reionization                                                              
(Refregier et al., 2003; Zhang et al. 2004; Trac et al. 2008)

• more exotic processes                                                                                          
(Lochan et al. 2012; Bull & Kamionkowski, 2013; Brax et al., 2013; Tashiro et al. 2013)

„high“ redshifts

„low“   redshifts
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Standard sources 
of distortions



Dramatic improvements in angular resolution and 
sensitivity over the past decades!

~ 7 degree 
beam

~ 0.3 degree 
beam

~ 0.08 degree 
beam



Dramatic improvements in angular resolution and 
sensitivity over the past decades!

~ 7 degree 
beam

~ 0.3 degree 
beam

~ 0.08 degree 
beam

Measurements of the CMB energy spectrum on the other 
hand are still in the same state as some ~20+ yrs ago!



PIXIE: Primordial Inflation Explorer

• 400 spectral channel in the frequency 
range 30 GHz and 6THz (Δν ~ 15GHz)

• about 1000 (!!!) times more sensitive than 
COBE/FIRAS 

• B-mode polarization from inflation (r ≈ 10-3)
• improved limits on µ and y 
• was proposed 2011 as NASA EX mission 

(i.e. cost ~ 200 M$)

Kogut et al, JCAP, 2011, arXiv:1105.2044

Average spectrum



NASA 30-yr Roadmap Study
(published Dec 2013)

How does the Universe work?

“Measure the spectrum of the 
CMB with precision several orders 
of magnitude higher than COBE 
FIRAS, from a moderate-scale 
mission or an instrument on CMB 
Polarization Surveyor.”

New call from NASA expected 
~2-3 years from now



Instruments:
• L-class ESA mission
• White paper, May 24th, 2013
• Imager:

- polarization sensitive
- 3.5m telescope [arcmin resolution 
at highest frequencies]

- 30GHz-6THz [30 broad (Δν/ν~25%) 
and 300 narrow (Δν/ν~2.5%) bands] 

• Spectrometer:
- FTS similar to PIXIE
- 30GHz-6THz (Δν~15 & 0.5 GHz) 

More info at:
http://www.prism-mission.org/

Polarized Radiation Imaging and Spectroscopy Mission 

Spokesperson: Paolo de Bernardis 
e-mail: paolo.debernardis@roma1.infn.it — tel: + 39 064 991 4271 

PRISM 
Probing cosmic structures and radiation  
with the ultimate polarimetric spectro-imaging  
of the microwave and far-infrared sky 

1

Some of the science goals:
• B-mode polarization from 

inflation (r ≈ 5x10-4)
• count all SZ clusters >1014 Msun

• CIB/large scale structure
• Galactic science
• CMB spectral distortions

http://www.prism-mission.org
http://www.prism-mission.org
http://www.prism-mission.org
http://www.prism-mission.org
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and 300 narrow (Δν/ν~2.5%) bands] 

• Spectrometer:
- FTS similar to PIXIE
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Polarized Radiation Imaging and Spectroscopy Mission 

Spokesperson: Paolo de Bernardis 
e-mail: paolo.debernardis@roma1.infn.it — tel: + 39 064 991 4271 

PRISM 
Probing cosmic structures and radiation  
with the ultimate polarimetric spectro-imaging  
of the microwave and far-infrared sky 

1

Some of the science goals:
• B-mode polarization from 

inflation (r ≈ 5x10-4)
• count all SZ clusters >1014 Msun

• CIB/large scale structure
• Galactic science
• CMB spectral distortions

COrE+

M4 proposal to ESA currently under 
discussion but spectrometer 

presently not part of baseline :(

http://www.prism-mission.org
http://www.prism-mission.org
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     CMB distortions probe the 
thermal history of the 
Universe at z < few x 106

pre- post-recombination epoch

Di
sc

ov
er

y
sp

ac
e!

Measurements of CMB spectrum will open a new 
unexplored window to the early Universe!



Why should one expect some spectral distortion?



Why should one expect some spectral distortion?

Full thermodynamic equilibrium (certainly valid at very high redshift)

• CMB has a blackbody spectrum at every time (not affected by expansion)

• Photon number density and energy density determined by temperature Tγ

 Tγ  ~ 2.726 (1+z) K
  Nγ ~ 411 cm-3 (1+z)3 ~ 2×109 Nb   (entropy density dominated by photons)

 ργ  ~ 5.1×10-7 mec² cm-3 (1+z)4 ~ ρb x (1+z) / 925 ~ 0.26 eV cm-3 (1+z)4
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 ργ  ~ 5.1×10-7 mec² cm-3 (1+z)4 ~ ρb x (1+z) / 925 ~ 0.26 eV cm-3 (1+z)4

Perturbing full equilibrium by 

• Energy injection  (interaction matter  photons)
• Production of (energetic) photons and/or particles (i.e. change of entropy)

 CMB spectrum deviates from a pure blackbody
 thermalization process (partially) erases distortions            

(Compton scattering, double Compton and Bremsstrahlung in the expanding Universe)



Why should one expect some spectral distortion?

Full thermodynamic equilibrium (certainly valid at very high redshift)

• CMB has a blackbody spectrum at every time (not affected by expansion)

• Photon number density and energy density determined by temperature Tγ

 Tγ  ~ 2.726 (1+z) K
  Nγ ~ 411 cm-3 (1+z)3 ~ 2×109 Nb   (entropy density dominated by photons)

 ργ  ~ 5.1×10-7 mec² cm-3 (1+z)4 ~ ρb x (1+z) / 925 ~ 0.26 eV cm-3 (1+z)4

Perturbing full equilibrium by 

• Energy injection  (interaction matter  photons)
• Production of (energetic) photons and/or particles (i.e. change of entropy)

 CMB spectrum deviates from a pure blackbody
 thermalization process (partially) erases distortions            

(Compton scattering, double Compton and Bremsstrahlung in the expanding Universe)

Measurements of CMB spectrum place very tight 
constraints on the thermal history of our Universe!
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How does the thermalization process work?



• Plasma fully ionized before recombination (z~1000)

 free electrons, protons and helium nuclei
 photon dominated (~2 Billion photons per baryon)

• Coulomb scattering 
  electrons in full thermal equilibrium with baryons 

  electrons follow thermal Maxwell-Boltzmann distribution

  efficient down to very low redshifts (z ~ 10-100)

• Medium homogeneous and isotropic on large scales
  

  thermalization problem rather simple!
  in principle allows very precise computations

• Hubble expansion
  

  adiabatic cooling of photons [Tγ ~ (1+z)] and ordinary matter [Tm ~ (1+z)2]      
  redshifting of photons 

Some important ingredients
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• Collision term: C[n] = dn⌫
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Compton scattering



• Reaction:

 

Redistribution of photons by Compton scattering
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• Reaction: 

  no energy exchange ⇒ Thomson limit           

                              ⇒ important for anisotropies
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• Reaction: 

  no energy exchange ⇒ Thomson limit           

                              ⇒ important for anisotropies
 

 energy exchange included

• up-scattering due to the Doppler effect for 
 

• down-scattering because of recoil                                        
(and stimulated recoil) for

• Doppler broadening 
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What are y- and µ-distortions?



Compton y-distortion / thermal SZ effect
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At this point it is 100% at all time!!!

We also need to include photon 
production to have thermalization!
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 production of low frequency photons

 include dependence on composition 
(Gaunt-factors; simple fits: Itoh et al, 2000) 
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Comptonization & 
free-free emission

Gaunt-Factor 
- depends on temperature
- depends on charge

Karzas & Latter, 1961, ApJS, 6, 167

Thermalization inefficient 
already at z ≲107 with 
Bremsstrahlung alone!
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where α is the fine structure constant and gdc(x, θ z, θ e) is the ef-
fective DC Gaunt factor. In lowest order of the photon and electron
energies the DC Gaunt factor factorizes (see Chluba 2005 for more
details). Furthermore, if the photon distribution is not too far from
full equilibrium one can approximate gdc(x, θ z, θ e) using a black-
body ambient radiation field and assuming that Te ∼ Tz. In this
case, one has (e.g. see Chluba 2005; Chluba et al. 2007)

gdc(x, θz, θe) ≈ Ipl
4

1 + 14.16 θz

× Hdc(x) , (11)

where Ipl
4 =

∫
x4nPl(nPl + 1) dx = 4π4/15 ≈ 25.976. Here we

have included the first-order relativistic correction in the pho-
ton temperature; however, this term only becomes significant at
z ! few × 106.

The second factor in equation (11) allows us to go beyond the soft
photon limit, for which x $ 1 was assumed. In lowest order, Hdc(x)
only depends on the ambient photon distribution, but is independent
of the electron temperature. It can be computed using (see Chluba
2005 for more details)

Hdc(x) ≈ 1

Ipl
4

∫ ∞

2x

x ′4nPl(x ′)[1 + nPl(x ′ − x)]
[ x

x ′ HG

( x

x ′

)]
dx ′,

(12)

where HG(w) = (1 − 3y + 3y2/2 − y3)/y with y = w(1 − w).
The factor HG(w) was first obtained by Gould (1984) to describe
the corrections to the DC emissivity when going beyond the soft
photon limit but assuming resting electrons.10 In the limit x → 0,
one finds w HG(w) → 1, so that Hdc(x) → 1.

Expression (12) was also used in the work of Burigana et al.
(1991b). There, the approximation Hdc(x) ≈ e−x φ/2 was given.
However, as mentioned above, with the assumptions leading to
equation (12) the electron temperature is irrelevant, and hence one
should set φ → 1. Furthermore, we re-examined the integral and
found that for background photons that follow a blackbody spec-
trum,

H
pl
dc(x) ≈ e−2x

(
1 + 3

2
x + 29

24
x2 + 11

16
x3 + 5

12
x4

)
(13)

provides a much better approximation to the full numerical result
for Hdc (cf. Fig. 1). This approximation was obtained by replacing
nPl(x) ≈ e−x and neglecting the induced term in equation (12). Fur-
thermore, the resulting expression was rescaled to have the correct
limit for x → 0. In particular, for x ) 1 equation (13) captures
the correct scaling Hdc(x) ∼ x4 e−2x . However, since most of the
photons are produced at low frequencies x $ 1 we do not expect
any significant difference because of this improved approximation.
Nevertheless, when using the old approximation we found that at
early times the spectrum is erroneously brought into full equilibrium
at very high frequencies, just by DC emission and absorption.

We note here that if the distortions are not small, then in lowest
order the correction to the DC emission can be accounted for by
replacing nPl with the solution nx in the expression for Ipl

4 . How-
ever, from the observational point of view, it seems unlikely that
distortions of interest ever exceeded the level $nν /nν ∼ 10−3, even
at z ∼ 107. Therefore, the above approximation should be sufficient.
Of course this does not include DC emission from very high energy
photons that are directly related to the energy injection process.
However, in that case the simple approximation used above will

10 Note that HG(w) is 1/2 of F(w) given by equation (27) of Gould (1984).
The factor of 2 is to avoid double counting of photons.
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Figure 1. Effective double Compton correction factor Hdc(x). We com-
pare the result from a full integration of a blackbody spectrum with the
approximation given by equation (13). For comparison the approximation
of Burigana et al. (1991b) is also shown. Close to the maximum of the CMB
blackbody spectrum the differences are ∼20–40 per cent.

anyhow need revision, although the total contribution to the photon
production is still expected to be small.

Bremsstrahlung. At lower redshifts (z " few × 105),
Bremsstrahlung starts to become the main source of soft photons.
One can define the Bremsstrahlung emission coefficient by (cf.
Burigana et al. 1991b; Hu & Silk 1993a)

KBR(x, θe) = α λ3
e

2π
√

6π

θ−7/2
e e−x φ

φ3

∑

i

Z2
i Ni gff (Zi, x, θe) . (14)

Here, λe = h/me c is the Compton wavelength of the electron, Zi, Ni

and gff (Zi, x, θ e) are the charge, the number density and the BR
Gaunt factor for a nucleus of the atomic species i, respectively. Var-
ious simple analytical approximations exist (Rybicki & Lightman
1979), but nowadays more accurate fitting formulae, valid over
a wide range of temperatures and frequencies, may be found in
Nozawa, Itoh & Kohyama (1998) and Itoh et al. (2000). In compar-
ison with the expressions summarized in Burigana et al. (1991b),
we find differences at the level of 10–20 per cent for small x.

In the early Universe, only hydrogen and helium contribute to the
BR Gaunt factor, while the other light elements can be neglected.
In the non-relativistic case, the hydrogen and helium Gaunt factors
are approximately equal, i.e. gH,ff ≈ gHe,ff to within a few per cent.
Therefore, assuming that the plasma is still fully ionized, the sum
in equation (14) may be simplified to

∑
≈ gH,ff Nb, where Nb is

the baryon number density. However, for per cent accuracy, one
should take the full expressions for gH,ff and gHe,ff into account,
which does not lead to any significant computational burden using
the expressions of Itoh et al. (2000).

Furthermore, at redshifts z " 7000–8000, the plasma enters the
different epochs of recombination. Therefore, the mixture of the
different species (Ne, H I, H II, He I, He II and He III) in the primordial
medium has to be followed. We use the most recent computations of
the recombination process including previously neglected physical
corrections to the recombination dynamics according to Chluba &
Thomas (2011).

C© 2011 The Authors, MNRAS 419, 1294–1314
Monthly Notices of the Royal Astronomical Society C© 2011 RAS

JC, 2005 (PhD Thesis); JC, Sazonov & Sunyaev, 2007; 
JC & Sunyaev, 2012

 was only included later (Danese & De Zotti, 1982)

 DC Gaunt-factor and temperature 
corrections included by latest 
computations, but the effect is small



Example: Energy release by decaying relict particle

Computation carried out with CosmoTherm      
(JC & Sunyaev 2012)

• initial condition: full 
equilibrium 

• total energy release:       
    Δρ/ρ~1.3x10-6

• most of energy 
release around:

    zX~2x106

• positive µ-distortion 

• high frequency 
distortion frozen 
around z≃5x105

• late (z<103) free-free 
absorption at very 
low frequencies 
(Te<Tγ) 

redshift

difference between 
electron and photon 
temperature 

today x=2 x 10-2 means ν~1GHz
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Let’s try to understand the evolution of distortions 
with photon production analytically!
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⇒ neglect photon production 
for high frequency spectrum 
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Analytic Approximation for µ-distortion

• Comptonization efficient! =) dn

d⌧

����
C

+
dn

d⌧

����
em/abs

⇡ 0

• low frequency limit & small distortion
(e.g., see Sunyaev & Zeldovich, 1970, ApSS, 7, 20; Hu 1995, PhD Thesis)

=) µ(x, z) ⇡ µ0(z) e
�xc(z)/x

• Use µ(x, z) to estimate the total photon production rate at low 
frequencies ⇒ know at which rate the high frequency µ reduces

=) µ0 ⇡ 1.4

Z 1

zK

d(Q/⇢�)

dz0
Jµ(z

0)dz0

• µ-distortion visibility function:                                    withJµ(z) ⇡ e�(z/zµ)
5/2

zµ ⇡ 2⇥ 106

• Transition between µ and y modeled as simple step function

Set by photon 
DC process
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Improved approximations for the distortion visibility function

• high frequency tail not constant µ
• more emission at lower frequency
• faster thermalization ⇒ visibility lower

• analytic approximations possible...

Khatri & Sunyaev, ArXiv:1203.2601
JC, ArXiv:1312.6030

JC, ArXiv:1312.6030



What about the µ-y transition regime? 
Is the transition really as abrupt?
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Temperature shift ↔ y-distortion ↔ µ-distortion
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Transition from y-distortion → µ-distortion
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Transition from y-distortion → µ-distortion

Figure from Wayne Hu’s PhD thesis, 1995, but see also discussion in Burigana, 1991

increasing num
ber of scatterings 

Intermediate distortion 
is not just superposition 
of y- and µ- case!!!

Photon production 
neglected
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Distortion not just superposition of µ and y-distortion!

Computation carried out with CosmoTherm      
(JC & Sunyaev 2011)

Decaying particle with 
lifetime tX ~ 2.4 x 109 sec

   Final distortion not just 
µ + y! More information!
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Quasi-Exact Treatment: Thermalization Green’s Function

• But: distortions are small ⇒ thermalization problem becomes linear!

• Case-by-case computation of the distortion (e.g., with CosmoTherm, JC & 
Sunyaev, 2012, ArXiv:1109.6552) still rather time-consuming 

• Simple solution: compute “response function” of the thermalization 
problem ⇒ Green’s function approach (JC, 2013, ArXiv:1304.6120) 

• Final distortion for fixed energy-release history given by

�I⌫ ⇡
Z 1

0
Gth(⌫, z

0)
d(Q/⇢�)

dz0
dz0

• Fast and quasi-exact! No additional approximations!

• For real forecasts of future prospects a precise & fast method for 
computing the spectral distortion is needed!

Thermalization Green’s function



What does the spectrum look like after energy injection?
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Distortion contains much more 
information than previously thought!
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CMB spectrum adds another dimension to the problem!



Physical mechanisms that lead to spectral distortions

• Cooling by adiabatically expanding ordinary matter                                                                     

(JC, 2005; JC & Sunyaev 2011; Khatri, Sunyaev & JC, 2011)

• Heating by decaying or annihilating relic particles                                                       
(Kawasaki et al., 1987; Hu & Silk, 1993; McDonald et al., 2001; JC, 2005; JC & Sunyaev, 2011; JC, 2013; JC & Jeong, 2013)

• Evaporation of primordial black holes & superconducting strings                                                                            
(Carr et al.  2010; Ostriker & Thompson, 1987; Tashiro et al. 2012; Pani & Loeb, 2013)

• Dissipation of primordial acoustic modes & magnetic fields                                                                
(Sunyaev & Zeldovich, 1970; Daly 1991; Hu et al. 1994; JC & Sunyaev, 2011; JC et al. 2012 - Jedamzik et al. 2000; Kunze & Komatsu, 2013)

• Cosmological recombination radiation                                                                     
(Zeldovich et al., 1968; Peebles, 1968; Dubrovich, 1977; Rubino-Martin et al., 2006; JC & Sunyaev, 2006; Sunyaev & JC, 2009)

•                                                                                  

• Signatures due to first supernovae and their remnants                                        
(Oh, Cooray & Kamionkowski, 2003)

• Shock waves arising due to large-scale structure formation                                    
(Sunyaev & Zeldovich, 1972; Cen & Ostriker, 1999)

• SZ-effect from clusters; effects of reionization                                                              
(Refregier et al., 2003; Zhang et al. 2004; Trac et al. 2008)

• more exotic processes                                                                                          
(Lochan et al. 2012; Bull & Kamionkowski, 2013; Brax et al., 2013; Tashiro et al. 2013)

„high“ redshifts
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Reionization and structure formation
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Simple estimates for the distortion

• Gas temperature T ≃ 104 K

• Thomson optical depth  $ ≃ 0.1

• second order Doppler effect y ≃ few x 10-8

• structure formation / SZ effect (e.g., Refregier et al., 2003)   y ≃ few x 10-7-10-6



Average CMB spectral distortions
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Average CMB spectral distortions
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Signal detectable with very 
high significance using 
present day technology!



Fluctuations of the y-parameter at large scales

Example: 
Simulation of reionization process 
(1Gpc/h) by Alvarez & Abel

• spatial variations of the 
optical depth and 
temperature cause 
small-spatial variations 
of the y-parameter at 
different angular scales

• could tell us about the 
reionization sources 
and structure formation 
process

• additional independent 
piece of information! 

• Cross-correlations with 
other signals 



Decaying particles



Average CMB spectral distortions
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Average CMB spectral distortions
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Spectral distortions provide 
probe of particle physics!

Signature of Particles with 
different lifetimes can be 
distinguished!

Example:

lifetime tX ~ 114 yrs
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Shape of the distortions depends 
on the particle lifetime!
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Figure 5. Lifetime e↵ect for di↵erent decaying particle scenarios. The up-
per panel shows the energy release rate for all cases, while the central panel
illustrates the distortion in comparison with a y-distortion of y = 2 ⇥ 10�7.
The lower panel shows the residual distortion after subtracting the best-fit
µ- and y-superposition.

a pure µ-distortion is insensitive to when it was created and thus
does not allow di↵erentiating between scenarios with di↵erent par-
ticle lifetimes at z & few ⇥ 105. Still, a tight upper limit on the
total amount of energy that is release can be placed, constrain-
ing the possible abundance of decaying particles with lifetimes
tX ' 6 ⇥ 106 sec � 3 ⇥ 108 sec.

These statements, however, depend strongly on the sensitiv-
ity of the experiment and on how large the average distortion is.
As explained above, the information about the particle lifetime is
largely encoded in the deviations from a pure superposition of µ and
y-distortion, however, the residual is a correction and thus higher
sensitivity or a larger distortion are needed to make use of that in-
formation. Assuming fX/zX = 1 eV and zX = 2 ⇥ 104, a PIXIE-
type experiment is unable to constrain the lifetime of the particle.
The degeneracy is already broken at twice the sensitivity of PIXIE,
yielding ' 29% error on fX/zX and ' 17% error on zX. This fur-
ther improves to ' 14% error on fX/zX and ' 9% error on zX for
four times the sensitivity of PIXIE. This energy release scenario
corresponds to �⇢�/⇢� ' 6.4 ⇥ 10�7, so that the distortion is com-
parable in amplitude to the y-signal from late times. Assuming that
less energy is liberated by the decaying particle increases the er-
rors (and hence the degeneracy), and conversely, for larger decay
energy the errors diminish. Overall, a PIXIE-type experiment will
provide a pretty good probe for long-lived particles with lifetimes
tX ' 5.8 ⇥ 108 sec � 1.4 ⇥ 1010 sec and fX/zX & 1 eV.

5 DISSIPATION OF SMALL-SCALE ACOUSTIC MODES

The prospect of accurate measurements of the CMB spectrum with
a PIXIE-type experiment spurred renewed interests in how primor-
dial perturbations at small-scales dissipate their energy (Chluba
& Sunyaev 2012; Khatri et al. 2012a; Pajer & Zaldarriaga 2012;
Chluba et al. 2012b; Dent et al. 2012; Ganc & Komatsu 2012;
Chluba et al. 2012a; Powell 2012; Khatri & Sunyaev 2013; Chluba
& Grin 2013). It was shown, that this e↵ect can be used to place
tight limits on the amplitude and shape of the power spectrum at
scales far smaller than what is probed with measurements of the
CMB anisotropies, in principle allowing to discover the distortion
signatures from several classes of early universe models (e.g., see
Chluba et al. 2012a).

Taking a conservative perspective, one can assume that the
power spectrum of curvature perturbations is fully determined by
CMB anisotropy measurements at large scales, implying an ampli-
tude A⇣ ' 2.2 ⇥ 10�9, spectral index nS ' 0.96, and its running
nrun ' �0.02, at pivot scale k0 = 0.05 Mpc�1 (Planck Collaboration
et al. 2013b). This is a significant extrapolation from wavenumbers
k < 1 Mpc�1 all the way to k ' few⇥104 Mpc�1, and it was already
argued that for a PIXIE-type experiment the signal remains just
short of the 1�-detection limit (Chluba & Sunyaev 2012; Chluba
et al. 2012b). Improving the sensitivity a few times will allow a de-
tection of this signal, however, given that the errors on A⇣ , nS, and
nrun from CMB data are now . 1%, to use spectral distortion as
a competitive probe, factors of ' 20 � 50 improvement are neces-
sary3. The strongest dependence of the distortion signal is due to
nrun (see Fig. 6 for illustration), since small changes a↵ect the am-
plitude of the small-scale power spectrum and hence the associated
spectral distortion by a large amount (Khatri et al. 2012a; Chluba

3 See Powell (2012) and Khatri & Sunyaev (2013) for some more in depth
discussion of this challenge.
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Best-fit µ + y-distortion 
was removed
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Figure 5. Lifetime e↵ect for di↵erent decaying particle scenarios. The up-
per panel shows the energy release rate for all cases, while the central panel
illustrates the distortion in comparison with a y-distortion of y = 2 ⇥ 10�7.
The lower panel shows the residual distortion after subtracting the best-fit
µ- and y-superposition.

a pure µ-distortion is insensitive to when it was created and thus
does not allow di↵erentiating between scenarios with di↵erent par-
ticle lifetimes at z & few ⇥ 105. Still, a tight upper limit on the
total amount of energy that is release can be placed, constrain-
ing the possible abundance of decaying particles with lifetimes
tX ' 6 ⇥ 106 sec � 3 ⇥ 108 sec.

These statements, however, depend strongly on the sensitiv-
ity of the experiment and on how large the average distortion is.
As explained above, the information about the particle lifetime is
largely encoded in the deviations from a pure superposition of µ and
y-distortion, however, the residual is a correction and thus higher
sensitivity or a larger distortion are needed to make use of that in-
formation. Assuming fX/zX = 1 eV and zX = 2 ⇥ 104, a PIXIE-
type experiment is unable to constrain the lifetime of the particle.
The degeneracy is already broken at twice the sensitivity of PIXIE,
yielding ' 29% error on fX/zX and ' 17% error on zX. This fur-
ther improves to ' 14% error on fX/zX and ' 9% error on zX for
four times the sensitivity of PIXIE. This energy release scenario
corresponds to �⇢�/⇢� ' 6.4 ⇥ 10�7, so that the distortion is com-
parable in amplitude to the y-signal from late times. Assuming that
less energy is liberated by the decaying particle increases the er-
rors (and hence the degeneracy), and conversely, for larger decay
energy the errors diminish. Overall, a PIXIE-type experiment will
provide a pretty good probe for long-lived particles with lifetimes
tX ' 5.8 ⇥ 108 sec � 1.4 ⇥ 1010 sec and fX/zX & 1 eV.

5 DISSIPATION OF SMALL-SCALE ACOUSTIC MODES

The prospect of accurate measurements of the CMB spectrum with
a PIXIE-type experiment spurred renewed interests in how primor-
dial perturbations at small-scales dissipate their energy (Chluba
& Sunyaev 2012; Khatri et al. 2012a; Pajer & Zaldarriaga 2012;
Chluba et al. 2012b; Dent et al. 2012; Ganc & Komatsu 2012;
Chluba et al. 2012a; Powell 2012; Khatri & Sunyaev 2013; Chluba
& Grin 2013). It was shown, that this e↵ect can be used to place
tight limits on the amplitude and shape of the power spectrum at
scales far smaller than what is probed with measurements of the
CMB anisotropies, in principle allowing to discover the distortion
signatures from several classes of early universe models (e.g., see
Chluba et al. 2012a).

Taking a conservative perspective, one can assume that the
power spectrum of curvature perturbations is fully determined by
CMB anisotropy measurements at large scales, implying an ampli-
tude A⇣ ' 2.2 ⇥ 10�9, spectral index nS ' 0.96, and its running
nrun ' �0.02, at pivot scale k0 = 0.05 Mpc�1 (Planck Collaboration
et al. 2013b). This is a significant extrapolation from wavenumbers
k < 1 Mpc�1 all the way to k ' few⇥104 Mpc�1, and it was already
argued that for a PIXIE-type experiment the signal remains just
short of the 1�-detection limit (Chluba & Sunyaev 2012; Chluba
et al. 2012b). Improving the sensitivity a few times will allow a de-
tection of this signal, however, given that the errors on A⇣ , nS, and
nrun from CMB data are now . 1%, to use spectral distortion as
a competitive probe, factors of ' 20 � 50 improvement are neces-
sary3. The strongest dependence of the distortion signal is due to
nrun (see Fig. 6 for illustration), since small changes a↵ect the am-
plitude of the small-scale power spectrum and hence the associated
spectral distortion by a large amount (Khatri et al. 2012a; Chluba

3 See Powell (2012) and Khatri & Sunyaev (2013) for some more in depth
discussion of this challenge.

c� 0000 RAS, MNRAS 000, 000–000

JC & Sunyaev, 2011, Arxiv:1109.6552
JC, 2013, Arxiv:1304.6120

Best-fit µ + y-distortion 
was removed

The residual distortion 
contains information 
about particle lifetime!
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Figure 3. Large distortion s- and p-wave annihilation scenario. Contours
and lines are as before. Degeneracies between the parameters prevent a dis-
tinction of the signatures of both particles, even for high sensitivity.

nature should be possible, the two signals are simply too similar
and strong correlations cause large uncertainties and biases in the
parameters, which only disappear at high sensitivity. This makes
the projected 2D probability distributions shown in Fig. 3 very non-
Gaussian. At ' 20 times the sensitivity of PIXIE we find a ' 2�
detection of the s-wave annihilation signature and fann,p ' 1% from
the p-wave annihilation signal.

Considering a small distortion scenario with more compara-
ble contributions from s- and p-wave annihilations ( fann,s ' 2 ⇥
10�23 eV sec�1 and fann,p ' 10�28 eV sec�1), we find that an im-
provement of the sensitivity by a factor of ' 40 is needed to start
distinguishing the signals from both particles, rendering an analysis
along these lines more futuristic. This is because for this scenario
the signal is close to the detection limit of PIXIE, and the di↵er-
ences with respect to a pure superposition of µ- and y-distortion,
which could be used to distinguish the two cases, are only a small
correction, necessitating this large improvement of the sensitivity.

4 DECAYING PARTICLE SCENARIOS

Decaying relic particle with lifetimes ' 380 kyr (corresponding to
the time of recombination) are again tightly constrained by mea-
surement of the CMB anisotropies (Zhang et al. 2007; Giesen et al.
2012), while particles with lifetimes comparable to minutes can af-
fect the light element abundances and bounds derived from BBN
apply (Kawasaki et al. 2005; Jedamzik 2008). However, experi-
mental constraints for particles with lifetimes ' 106 � 1012 sec are
less stringent, still leaving rather large room for extra energy re-
lease �⇢�/⇢� . 10�6 � 10�5 (e.g., Hu & Silk 1993b; Kogut et al.
2011). Large energy-release rates are especially possible for very
light particles with masses . MeV. A PIXIE-type CMB experi-
ment thus has a large potential to discover the signature of some
long-lived relic particle, or at least provide complementary and in-
dependent constraints to these scenarios. If most of the energy is

(�⇤ ⌘ � � �f )

Fiducial values:

�f = 1.2 ⇥ 10�4

yre = 4 ⇥ 10�7

fX = 5 ⇥ 105 eV

zX = 5 ⇥ 104 (�X ' 1.1 ⇥ 10�8sec�1)
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Fiducial values:

�f = 1.2 ⇥ 10�4

yre = 4 ⇥ 10�7

fX = 104 eV

zX = 5 ⇥ 104 (�X ' 1.1 ⇥ 10�8sec�1)

Figure 4. Large and small distortion decaying particle scenario. Contours
and lines are as before. For large energy release the distortion can be easily
constrained, however, for small energy release the parameter space becomes
more complicated and higher sensitivity improves matters significantly.

released at z & 3 ⇥ 105 a pure µ-distortion is created, so that this
case is practically degenerate, e.g., with scenarios that include an
annihilating particle with p-wave annihilation cross section. How-
ever, for energy release around z ' 5 ⇥ 104 the distortion can di↵er
su�ciently to become distinguishable.

In Fig. 4 we show the projected constraints for a large and
small distortion scenario, with energy release �⇢�/⇢� ' 6.4 ⇥ 10�6

and �⇢�/⇢� ' 1.3⇥10�7, respectively. Since the total energy release
scales as �⇢�/⇢� / fX/zX (cf. Chluba & Sunyaev 2012), it is best
to consider the variables fX/zX and zX ' 4.8 ⇥ 109 �1/2

X sec1/2 as
parameters. This reduces the parameter covariance significantly. To
accelerate the computation we furthermore tabulate the distortion

c� 0000 RAS, MNRAS 000, 000–000
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released at z & 3 ⇥ 105 a pure µ-distortion is created, so that this
case is practically degenerate, e.g., with scenarios that include an
annihilating particle with p-wave annihilation cross section. How-
ever, for energy release around z ' 5 ⇥ 104 the distortion can di↵er
su�ciently to become distinguishable.

In Fig. 4 we show the projected constraints for a large and
small distortion scenario, with energy release �⇢�/⇢� ' 6.4 ⇥ 10�6

and �⇢�/⇢� ' 1.3⇥10�7, respectively. Since the total energy release
scales as �⇢�/⇢� / fX/zX (cf. Chluba & Sunyaev 2012), it is best
to consider the variables fX/zX and zX ' 4.8 ⇥ 109 �1/2

X sec1/2 as
parameters. This reduces the parameter covariance significantly. To
accelerate the computation we furthermore tabulate the distortion
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Tight constraints on both 
abundance & lifetime!!!



Using signal eigenmodes to compress the distortion data

JC & Jeong, 2013
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Figure 12. Expected uncertainties of A⇣ (k0 = 45 Mpc�1), nS, and nrun using
measurements of µ, µ1, and µ2. We assumed 5 times the sensitivity of PIXIE
and A⇣ = 5⇥10�8 as reference value (other cases can be estimated by simple
rescaling). For the upper panel we also varied nrun as indicated, while in the
lower panel it was fixed to nrun = 0. The corresponding error in the particle
lifetime is �tX/tX ' 2�zX/zX.

though the absolute distance between line varies relative to the er-
ror bars they seem rather constant. To show this more explicitly,
from µ, µ1, and µ2 we computed we the expected 1�-errors on
A⇣(k0 = 45 Mpc�1), nS, and nrun around the maximum likelihood
value using the Fisher information matrix, Fi j = �µ�2 @piµ @p jµ +P

k �µ
�2
k @piµk@p jµk, with p ⌘ {A⇣ , nS, nrun}. Figure 12 shows the

corresponding forecasts assuming PIXIE-setting but with 5 times
its sensitivity. If only p ⌘ {A⇣ , nS} are estimate for fixed nrun, the
errors of A⇣ and nS are only a few percent. Also trying to constrain
nrun we see that the errors increase significantly, with an absolute
error on �nrun ' 0.07 rather independent of nS. If we change the
sensitivity by a factor f = �Ic/[10�26 W m�2 Hz�1 sr�1, all curved
can be rescaled by this factor to obtain the new estimate. Similarly,
if A⇣(k0 = 45 Mpc�1) di↵ers by f⇣ = A⇣/5 ⇥ 10�8, we have to
rescale the error estimates by f �1

⇣ . Overall, our analysis shows that
CMB spectral distortion measurement provide an unique probe of
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Figure 13. Detectability of µ, µ1, µ2, and µ3. For a given particle lifetime,
we compute the required value of ✏X = fX/zX for which a 1�-detection of
the corresponding variable is possible with PIXIE. The violet shaded area is
excluded by measurements of the primordial 3He/D abundance ratio (65%
c.l., adapted from Fig. 42 of Kawasaki et al. 2005).

the small-scale power spectrum, which can be utilized to directly
constraint inflationary models.

5.2.3 Decaying relic particles

The distortion signals for the three decaying particle scenarios pre-
sented in Table 1 will all be detectable with a PIXIE-like experi-
ment. More generally, Fig. 13 shows the 1�-detection limits for µ,
µ1, µ2, and µ3, as a function of the particle lifetime. CMB spec-
tral distortions are sensitive to decaying particles with ✏X as low as
' 10�2 eV for particle lifetimes 107 sec . tX . 1010 sec. To directly
constrain tX, at least a measurement of µ1 is needed. At PIXIE sen-
sitivity this means that the lifetime of particles with 2 ⇥ 109 sec .
tX . 6⇥1010 sec for ✏X & 0.1 eV and 3⇥108 sec . tX . 1012 sec for
✏X & 1 eV will be directly measurable. Most of this parameter space
is completely unconstrained [see upper limit from measurements of
the primordial 3He/D abundance ratio2 (from Fig. 42 of Kawasaki
et al. 2005) in Fig. 13]. Higher sensitivity will allow cutting deeper
into the parameter space and widen the range over which the parti-
cle lifetime can be directly constrained.

To illustrate this even further we can again look at the µ �
⇢k-parameter space covered by decaying particles. The projections
into the µ � ⇢1 and ⇢1 � ⇢2-plane are shown in Fig. 14 for ✏X =
1 eV and PIXIE settings. Varying ✏X moves the µ�⇢1 trajectory left
or right, as indicated. Furthermore, all error bars of ⇢k have to be
rescales by f = [✏X/1 eV]�1 under this transformation. Measuring
µ and ⇢1 is in principle su�cient for determination of ✏X and the
particle lifetime, tX = [4.9⇥109/(1+zX)]2 sec, with most sensitivity
around zX ' 5 ⇥ 104 � 105 or tX ' 2.4 ⇥ 109 � 9.6 ⇥ 109 sec for
the shown scenario. For short lifetime, the signal is very close to a

2 In the particle physics community the abundance yield, YX = NX/S ,
and deposited particle energy, Evis [GeV], are commonly used. Here NX
is the particle number density at t ⌧ tX and S = 4

3
⇢

kT ' 7 N� '
2.9 ⇥ 103 (1 + z)3 cm�3 denotes the total entropy density. We thus find
✏X ⌘ (Evis YX) 109S/[NH (1 + zX)] ' 1.5 ⇥ 1019(Evis YX)/(1 + zX).
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Figure 12. Expected uncertainties of A⇣ (k0 = 45 Mpc�1), nS, and nrun using
measurements of µ, µ1, and µ2. We assumed 5 times the sensitivity of PIXIE
and A⇣ = 5⇥10�8 as reference value (other cases can be estimated by simple
rescaling). For the upper panel we also varied nrun as indicated, while in the
lower panel it was fixed to nrun = 0. The corresponding error in the particle
lifetime is �tX/tX ' 2�zX/zX.

though the absolute distance between line varies relative to the er-
ror bars they seem rather constant. To show this more explicitly,
from µ, µ1, and µ2 we computed we the expected 1�-errors on
A⇣(k0 = 45 Mpc�1), nS, and nrun around the maximum likelihood
value using the Fisher information matrix, Fi j = �µ�2 @piµ @p jµ +P

k �µ
�2
k @piµk@p jµk, with p ⌘ {A⇣ , nS, nrun}. Figure 12 shows the

corresponding forecasts assuming PIXIE-setting but with 5 times
its sensitivity. If only p ⌘ {A⇣ , nS} are estimate for fixed nrun, the
errors of A⇣ and nS are only a few percent. Also trying to constrain
nrun we see that the errors increase significantly, with an absolute
error on �nrun ' 0.07 rather independent of nS. If we change the
sensitivity by a factor f = �Ic/[10�26 W m�2 Hz�1 sr�1, all curved
can be rescaled by this factor to obtain the new estimate. Similarly,
if A⇣(k0 = 45 Mpc�1) di↵ers by f⇣ = A⇣/5 ⇥ 10�8, we have to
rescale the error estimates by f �1

⇣ . Overall, our analysis shows that
CMB spectral distortion measurement provide an unique probe of
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Figure 13. Detectability of µ, µ1, µ2, and µ3. For a given particle lifetime,
we compute the required value of ✏X = fX/zX for which a 1�-detection of
the corresponding variable is possible with PIXIE. The violet shaded area is
excluded by measurements of the primordial 3He/D abundance ratio (65%
c.l., adapted from Fig. 42 of Kawasaki et al. 2005).

the small-scale power spectrum, which can be utilized to directly
constraint inflationary models.

5.2.3 Decaying relic particles

The distortion signals for the three decaying particle scenarios pre-
sented in Table 1 will all be detectable with a PIXIE-like experi-
ment. More generally, Fig. 13 shows the 1�-detection limits for µ,
µ1, µ2, and µ3, as a function of the particle lifetime. CMB spec-
tral distortions are sensitive to decaying particles with ✏X as low as
' 10�2 eV for particle lifetimes 107 sec . tX . 1010 sec. To directly
constrain tX, at least a measurement of µ1 is needed. At PIXIE sen-
sitivity this means that the lifetime of particles with 2 ⇥ 109 sec .
tX . 6⇥1010 sec for ✏X & 0.1 eV and 3⇥108 sec . tX . 1012 sec for
✏X & 1 eV will be directly measurable. Most of this parameter space
is completely unconstrained [see upper limit from measurements of
the primordial 3He/D abundance ratio2 (from Fig. 42 of Kawasaki
et al. 2005) in Fig. 13]. Higher sensitivity will allow cutting deeper
into the parameter space and widen the range over which the parti-
cle lifetime can be directly constrained.

To illustrate this even further we can again look at the µ �
⇢k-parameter space covered by decaying particles. The projections
into the µ � ⇢1 and ⇢1 � ⇢2-plane are shown in Fig. 14 for ✏X =
1 eV and PIXIE settings. Varying ✏X moves the µ�⇢1 trajectory left
or right, as indicated. Furthermore, all error bars of ⇢k have to be
rescales by f = [✏X/1 eV]�1 under this transformation. Measuring
µ and ⇢1 is in principle su�cient for determination of ✏X and the
particle lifetime, tX = [4.9⇥109/(1+zX)]2 sec, with most sensitivity
around zX ' 5 ⇥ 104 � 105 or tX ' 2.4 ⇥ 109 � 9.6 ⇥ 109 sec for
the shown scenario. For short lifetime, the signal is very close to a

2 In the particle physics community the abundance yield, YX = NX/S ,
and deposited particle energy, Evis [GeV], are commonly used. Here NX
is the particle number density at t ⌧ tX and S = 4

3
⇢

kT ' 7 N� '
2.9 ⇥ 103 (1 + z)3 cm�3 denotes the total entropy density. We thus find
✏X ⌘ (Evis YX) 109S/[NH (1 + zX)] ' 1.5 ⇥ 1019(Evis YX)/(1 + zX).
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Figure 12. Expected uncertainties of A⇣ (k0 = 45 Mpc�1), nS, and nrun using
measurements of µ, µ1, and µ2. We assumed 5 times the sensitivity of PIXIE
and A⇣ = 5⇥10�8 as reference value (other cases can be estimated by simple
rescaling). For the upper panel we also varied nrun as indicated, while in the
lower panel it was fixed to nrun = 0. The corresponding error in the particle
lifetime is �tX/tX ' 2�zX/zX.

though the absolute distance between line varies relative to the er-
ror bars they seem rather constant. To show this more explicitly,
from µ, µ1, and µ2 we computed we the expected 1�-errors on
A⇣(k0 = 45 Mpc�1), nS, and nrun around the maximum likelihood
value using the Fisher information matrix, Fi j = �µ�2 @piµ @p jµ +P

k �µ
�2
k @piµk@p jµk, with p ⌘ {A⇣ , nS, nrun}. Figure 12 shows the

corresponding forecasts assuming PIXIE-setting but with 5 times
its sensitivity. If only p ⌘ {A⇣ , nS} are estimate for fixed nrun, the
errors of A⇣ and nS are only a few percent. Also trying to constrain
nrun we see that the errors increase significantly, with an absolute
error on �nrun ' 0.07 rather independent of nS. If we change the
sensitivity by a factor f = �Ic/[10�26 W m�2 Hz�1 sr�1, all curved
can be rescaled by this factor to obtain the new estimate. Similarly,
if A⇣(k0 = 45 Mpc�1) di↵ers by f⇣ = A⇣/5 ⇥ 10�8, we have to
rescale the error estimates by f �1

⇣ . Overall, our analysis shows that
CMB spectral distortion measurement provide an unique probe of
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Figure 13. Detectability of µ, µ1, µ2, and µ3. For a given particle lifetime,
we compute the required value of ✏X = fX/zX for which a 1�-detection of
the corresponding variable is possible with PIXIE. The violet shaded area is
excluded by measurements of the primordial 3He/D abundance ratio (65%
c.l., adapted from Fig. 42 of Kawasaki et al. 2005).

the small-scale power spectrum, which can be utilized to directly
constraint inflationary models.

5.2.3 Decaying relic particles

The distortion signals for the three decaying particle scenarios pre-
sented in Table 1 will all be detectable with a PIXIE-like experi-
ment. More generally, Fig. 13 shows the 1�-detection limits for µ,
µ1, µ2, and µ3, as a function of the particle lifetime. CMB spec-
tral distortions are sensitive to decaying particles with ✏X as low as
' 10�2 eV for particle lifetimes 107 sec . tX . 1010 sec. To directly
constrain tX, at least a measurement of µ1 is needed. At PIXIE sen-
sitivity this means that the lifetime of particles with 2 ⇥ 109 sec .
tX . 6⇥1010 sec for ✏X & 0.1 eV and 3⇥108 sec . tX . 1012 sec for
✏X & 1 eV will be directly measurable. Most of this parameter space
is completely unconstrained [see upper limit from measurements of
the primordial 3He/D abundance ratio2 (from Fig. 42 of Kawasaki
et al. 2005) in Fig. 13]. Higher sensitivity will allow cutting deeper
into the parameter space and widen the range over which the parti-
cle lifetime can be directly constrained.

To illustrate this even further we can again look at the µ �
⇢k-parameter space covered by decaying particles. The projections
into the µ � ⇢1 and ⇢1 � ⇢2-plane are shown in Fig. 14 for ✏X =
1 eV and PIXIE settings. Varying ✏X moves the µ�⇢1 trajectory left
or right, as indicated. Furthermore, all error bars of ⇢k have to be
rescales by f = [✏X/1 eV]�1 under this transformation. Measuring
µ and ⇢1 is in principle su�cient for determination of ✏X and the
particle lifetime, tX = [4.9⇥109/(1+zX)]2 sec, with most sensitivity
around zX ' 5 ⇥ 104 � 105 or tX ' 2.4 ⇥ 109 � 9.6 ⇥ 109 sec for
the shown scenario. For short lifetime, the signal is very close to a

2 In the particle physics community the abundance yield, YX = NX/S ,
and deposited particle energy, Evis [GeV], are commonly used. Here NX
is the particle number density at t ⌧ tX and S = 4

3
⇢

kT ' 7 N� '
2.9 ⇥ 103 (1 + z)3 cm�3 denotes the total entropy density. We thus find
✏X ⌘ (Evis YX) 109S/[NH (1 + zX)] ' 1.5 ⇥ 1019(Evis YX)/(1 + zX).
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Figure 12. Expected uncertainties of A⇣ (k0 = 45 Mpc�1), nS, and nrun using
measurements of µ, µ1, and µ2. We assumed 5 times the sensitivity of PIXIE
and A⇣ = 5⇥10�8 as reference value (other cases can be estimated by simple
rescaling). For the upper panel we also varied nrun as indicated, while in the
lower panel it was fixed to nrun = 0. The corresponding error in the particle
lifetime is �tX/tX ' 2�zX/zX.

though the absolute distance between line varies relative to the er-
ror bars they seem rather constant. To show this more explicitly,
from µ, µ1, and µ2 we computed we the expected 1�-errors on
A⇣(k0 = 45 Mpc�1), nS, and nrun around the maximum likelihood
value using the Fisher information matrix, Fi j = �µ�2 @piµ @p jµ +P

k �µ
�2
k @piµk@p jµk, with p ⌘ {A⇣ , nS, nrun}. Figure 12 shows the

corresponding forecasts assuming PIXIE-setting but with 5 times
its sensitivity. If only p ⌘ {A⇣ , nS} are estimate for fixed nrun, the
errors of A⇣ and nS are only a few percent. Also trying to constrain
nrun we see that the errors increase significantly, with an absolute
error on �nrun ' 0.07 rather independent of nS. If we change the
sensitivity by a factor f = �Ic/[10�26 W m�2 Hz�1 sr�1, all curved
can be rescaled by this factor to obtain the new estimate. Similarly,
if A⇣(k0 = 45 Mpc�1) di↵ers by f⇣ = A⇣/5 ⇥ 10�8, we have to
rescale the error estimates by f �1

⇣ . Overall, our analysis shows that
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Figure 13. Detectability of µ, µ1, µ2, and µ3. For a given particle lifetime,
we compute the required value of ✏X = fX/zX for which a 1�-detection of
the corresponding variable is possible with PIXIE. The violet shaded area is
excluded by measurements of the primordial 3He/D abundance ratio (65%
c.l., adapted from Fig. 42 of Kawasaki et al. 2005).

the small-scale power spectrum, which can be utilized to directly
constraint inflationary models.

5.2.3 Decaying relic particles

The distortion signals for the three decaying particle scenarios pre-
sented in Table 1 will all be detectable with a PIXIE-like experi-
ment. More generally, Fig. 13 shows the 1�-detection limits for µ,
µ1, µ2, and µ3, as a function of the particle lifetime. CMB spec-
tral distortions are sensitive to decaying particles with ✏X as low as
' 10�2 eV for particle lifetimes 107 sec . tX . 1010 sec. To directly
constrain tX, at least a measurement of µ1 is needed. At PIXIE sen-
sitivity this means that the lifetime of particles with 2 ⇥ 109 sec .
tX . 6⇥1010 sec for ✏X & 0.1 eV and 3⇥108 sec . tX . 1012 sec for
✏X & 1 eV will be directly measurable. Most of this parameter space
is completely unconstrained [see upper limit from measurements of
the primordial 3He/D abundance ratio2 (from Fig. 42 of Kawasaki
et al. 2005) in Fig. 13]. Higher sensitivity will allow cutting deeper
into the parameter space and widen the range over which the parti-
cle lifetime can be directly constrained.

To illustrate this even further we can again look at the µ �
⇢k-parameter space covered by decaying particles. The projections
into the µ � ⇢1 and ⇢1 � ⇢2-plane are shown in Fig. 14 for ✏X =
1 eV and PIXIE settings. Varying ✏X moves the µ�⇢1 trajectory left
or right, as indicated. Furthermore, all error bars of ⇢k have to be
rescales by f = [✏X/1 eV]�1 under this transformation. Measuring
µ and ⇢1 is in principle su�cient for determination of ✏X and the
particle lifetime, tX = [4.9⇥109/(1+zX)]2 sec, with most sensitivity
around zX ' 5 ⇥ 104 � 105 or tX ' 2.4 ⇥ 109 � 9.6 ⇥ 109 sec for
the shown scenario. For short lifetime, the signal is very close to a

2 In the particle physics community the abundance yield, YX = NX/S ,
and deposited particle energy, Evis [GeV], are commonly used. Here NX
is the particle number density at t ⌧ tX and S = 4

3
⇢

kT ' 7 N� '
2.9 ⇥ 103 (1 + z)3 cm�3 denotes the total entropy density. We thus find
✏X ⌘ (Evis YX) 109S/[NH (1 + zX)] ' 1.5 ⇥ 1019(Evis YX)/(1 + zX).

c� 0000 RAS, MNRAS 000, 000–000

Distortions could shed light on decaying (DM) particles!

JC & Jeong, 2013

Kawasaki et al., 2005

Estimated 1σ detection 
limits for PIXIE

             

PRISM sensitive to 
lifetime over even 
wider range!

Complementary to 
CMB anisotropies!



The dissipation of small-scale acoustic modes



Dissipation of small-scale acoustic modes



Dissipation of small-scale acoustic modes



Hu & White, 1997, ApJ

Silk-damping is 
equivalent to 
energy release!

Dissipation of small-scale acoustic modes



Energy release caused by dissipation process

‘Obvious’ dependencies:
• Amplitude of the small-scale power spectrum

• Shape of the small-scale power spectrum

• Dissipation scale → kD ~ (H0 Ωrel1/2 Ne,0)1/2 (1+z)3/2 at early times

not so ‘obvious’ dependencies:
• primordial non-Gaussianity in the ultra squeezed limit                          

(Pajer & Zaldarriaga, 2012; Ganc & Komatsu, 2012)

• Type of the perturbations (adiabatic ↔ isocurvature)                               
(Barrow & Coles, 1991; Hu et al., 1994; Dent et al, 2012, JC & Grin, 2012)

• Neutrinos (or any extra relativistic degree of freedom)
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• Dissipation scale → kD ~ (H0 Ωrel1/2 Ne,0)1/2 (1+z)3/2 at early times

not so ‘obvious’ dependencies:
• primordial non-Gaussianity in the ultra squeezed limit                          

(Pajer & Zaldarriaga, 2012; Ganc & Komatsu, 2012)

• Type of the perturbations (adiabatic ↔ isocurvature)                               
(Barrow & Coles, 1991; Hu et al., 1994; Dent et al, 2012, JC & Grin, 2012)

• Neutrinos (or any extra relativistic degree of freedom)

CMB Spectral distortions could add additional numbers beyond 
‘just’ the tensor-to-scalar ratio from B-modes!



Superpositions of blackbody spectra

Zeldovich, Illarionov & Sunyaev, 1972 
JC & Sunyaev 2004
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Superpositions of blackbody spectra

Zeldovich, Illarionov & Sunyaev, 1972 
JC & Sunyaev 2004

ΔT/T0 = 0.4

 Blackbody T2=T0+ΔT

 Blackbody T1=T0-ΔT



Superpositions of blackbody spectra

Zeldovich, Illarionov & Sunyaev, 1972 
JC & Sunyaev 2004

 Average spectrum is NOT 
a blackbody at the 
average temperature T0 !
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 Average spectrum is NOT 
a blackbody at the 
average temperature T0 !

y-distortionstemperature shift



Distortion caused by superposition of blackbodies

• average spectrum

⇒  

• known with very high precision 

JC & Sunyaev, 2004
JC, Khatri & Sunyaev, 2012
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Distortion caused by superposition of blackbodies

• average spectrum

⇒  

• known with very high precision 

JC & Sunyaev, 2004
JC, Khatri & Sunyaev, 2012
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• CMB dipole ( βc ~ 1.23x10-3)

⇒  

• electrons are up-scattered
• can be taken out at the level 

of ~ 10-9

�Tsup ' T
�2

c

3
⇡ 1.4µK

y ' �2
c

6
⇡ 2.6⇥ 10�7

COBE/DMR: ΔT = 3.353 mK



• Effective heating rate from full 2x2 Boltzmann treatment (JC, Khatri & Sunyaev, 2012)

Effective energy release caused by damping effect

JC, Khatri & Sunyaev, 2012

gauge-independent dipole effect of polarization higher multipoles

hXY i =
Z

k2dk

2⇡2
P (k)X(k)Y (k)

Primordial power spectrum
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2
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• quadrupole dominant at high z
• net dipole important only at 

low redshifts
• polarization ~5% effect
• contribution from higher 

multipoles rather small

nS = 0.96

Units: Aς H / σT Ne c

Scale factor a=1/(1+z)



Which modes dissipate in the µ and y-eras?

JC, Erickcek & Ben-Dayan, 2012

• Modes with wavenumber                  
50 Mpc-1 < k < 104 Mpc-1  
dissipate their energy 
during the µ-era

• Modes with k < 50 Mpc-1 
cause y-distortion

• Single mode with 
wavenumber k 
dissipates its energy at 

    

  zd ~ 4.5x105(k Mpc/103)2/3
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But this is not all that one could look at !!!



Distortions provide additional power spectrum constraints!

• Amplitude of power spectrum rather uncertain at k > 3 Mpc-1

• improved limits at smaller scales can rule out many inflationary models

Bringmann, Scott & Akrami, 2011, ArXiv:1110.2484 

CMB et al.

rather model dependent

e.g., JC, Khatri & Sunyaev, 2012; JC, Erickcek & Ben-Dayan, 2012; JC & Jeong, 2013



Distortions provide additional power spectrum constraints!

• Amplitude of power spectrum rather uncertain at k > 3 Mpc-1

• improved limits at smaller scales can rule out many inflationary models

Bringmann, Scott & Akrami, 2011, ArXiv:1110.2484 

CMB et al.

rather model dependent

CMB distortions

• CMB spectral distortions would extend our lever arm to k ~ 104 Mpc-1

• very complementary piece of information about early-universe physics

             

e.g., JC, Khatri & Sunyaev, 2012; JC, Erickcek & Ben-Dayan, 2012; JC & Jeong, 2013

Probe extra 
≃10 e-folds 
of inflation!
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Probing the small-scale power spectrum
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type experiment is unable to constrain the lifetime of the particle.
The degeneracy is already broken at twice the sensitivity of PIXIE,
yielding ' 29% error on fX/zX and ' 17% error on zX. This fur-
ther improves to ' 14% uncertainty in fX/zX and a ' 9% error on
zX for four times the sensitivity of PIXIE. This energy-release sce-
nario corresponds to �⇢�/⇢� ' 6.4 ⇥ 10�7, so that the distortion is
comparable in amplitude to the y-signal from late times. Assuming
that less energy is liberated by the decaying particle increases the
errors (and hence the degeneracy), and conversely, for larger decay
energy the errors diminish. Overall, a PIXIE-type experiment will
provide a pretty good probe for long-lived particles with lifetimes
tX ' 6 ⇥ 108 sec � 1010 sec and fX/zX & 1 eV.

5 DISSIPATION OF SMALL-SCALE ACOUSTIC MODES

The prospect of accurate measurements of the CMB spectrum with
a PIXIE-type experiment spurred renewed interests in how primor-
dial perturbations at small-scales dissipate their energy (Chluba
& Sunyaev 2012; Khatri et al. 2012a; Pajer & Zaldarriaga 2012;
Chluba et al. 2012b; Dent et al. 2012; Ganc & Komatsu 2012;
Chluba et al. 2012a; Powell 2012; Khatri & Sunyaev 2013; Chluba
& Grin 2013). It was shown, that this e↵ect can be used to place
tight limits on the amplitude and shape of the power spectrum at
scales far smaller than what is probed with measurements of the
CMB anisotropies, in principle allowing to discover the distortion
signatures from several classes of early universe models (e.g., see
Chluba et al. 2012a).

Taking a conservative perspective, one can assume that the
power spectrum of curvature perturbations is fully determined by
CMB anisotropy measurements at large scales, implying an ampli-
tude A⇣ ' 2.2 ⇥ 10�9, spectral index nS ' 0.96, and its running
nrun ' �0.02, at pivot scale k0 = 0.05 Mpc�1 (Planck Collaboration
et al. 2013b). This is a significant extrapolation from wavenumbers
k < 1 Mpc�1 all the way to k ' few⇥104 Mpc�1, and it was already
argued that for a PIXIE-type experiment the signal remains just
short of the 1�-detection limit (Chluba & Sunyaev 2012; Chluba
et al. 2012b). Improving the sensitivity a few times will allow a de-
tection of this signal, however, given that the errors on A⇣ and nS

from CMB data are now . 1%, to use spectral distortion alone as
a competitive probe, we find that a factor of ' 100 � 200 improve-
ment in the sensitivity is necessary. The strongest dependence of
the distortion signal is due to nrun (see Fig. 6 for illustration), since
small changes a↵ect the amplitude of the small-scale power spec-
trum and hence the associated spectral distortion by a large amount
(Khatri et al. 2012a; Chluba et al. 2012b), providing some ampli-
fication. Still, this application of spectral distortion measurements
remains futuristic, being comparable to the challenge of measuring
the cosmological hydrogen and helium recombination features with
high precision.

Both from the theoretical and observational point of view,
there is, however, no reason to believe that the small-scale power
spectrum is described by what is dictated by large-scale measure-
ments. There is no shortage of models that create, bumps, kinks,
steps, or oscillatory features in the primordial power spectrum (e.g.,
Salopek et al. 1989; Starobinskij 1992; Ivanov et al. 1994; Ran-
dall et al. 1996; Stewart 1997b; Copeland et al. 1998; Starobinsky
1998; Chung et al. 2000; Hunt & Sarkar 2007; Joy et al. 2008;
Barnaby et al. 2009; Barnaby 2010a; Ben-Dayan & Brustein 2010;
Achúcarro et al. 2011; Céspedes et al. 2012), and direct observa-
tional constraints (e.g., see Bringmann et al. 2012, for overview)
leave large room for excess power at k & few ⇥Mpc�1. The recent
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Figure 6. E↵ective heating rate (upper panel) and associated spectral dis-
tortion (lower panel) caused by the dissipation of small-scale acoustic
modes in di↵erent scenarios. For reference we show a y-distortion with
y = 2 ⇥ 10�9. For the standard power spectrum we used A⇣ = 2.2 ⇥ 10�9

and nS = 0.96 at pivot scale k0 = 0.05 Mpc�1. All but one case are without
running. The two scenarios with a step and bend of the primordial power
spectrum lead to rather similar distortions (modulo and overall factor), and
thus become hard to distinguish, although each model should be detectable
with a PIXIE-like experiment at more than 5�-confidence.

results obtained with Planck, e.g., from limits to non-Gaussianity
(Planck Collaboration et al. 2013e), certainly further reduce the
allowed parameter space for di↵erent models, but the existence
of large-scale anomalies (Planck Collaboration et al. 2013d), and
possible small-scale power spectrum features (Planck Collabora-
tion et al. 2013c) indicate that matters might be more complex. A
PIXIE-type experiment will therefore open up a new window to
early-universe models, no matter if a distortion is detected or not.

Given the range of possibilities, we shall pick a few illustrative
cases, representing simple classes of models. Detailed constraints
on specific models should be derived in a case-by-case basis, how-
ever, our selection provides some intuition for what could be possi-
ble in the future. We start with a simple step, �A⇣ > 0, in the ampli-
tude of the curvature power spectrum at di↵erent k & few⇥Mpc�1,
assuming a spectral index n0S. If n0S ' 1 and ks ' 3 Mpc�1, from
the practical point of view this case is degenerate with the spectral
distortion produced by s-wave annihilation [both have a heating

c� 0000 RAS, MNRAS 000, 000–000
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tection of this signal, however, given that the errors on A⇣ and nS

from CMB data are now . 1%, to use spectral distortion alone as
a competitive probe, we find that a factor of ' 100 � 200 improve-
ment in the sensitivity is necessary. The strongest dependence of
the distortion signal is due to nrun (see Fig. 6 for illustration), since
small changes a↵ect the amplitude of the small-scale power spec-
trum and hence the associated spectral distortion by a large amount
(Khatri et al. 2012a; Chluba et al. 2012b), providing some ampli-
fication. Still, this application of spectral distortion measurements
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spectrum is described by what is dictated by large-scale measure-
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spectrum lead to rather similar distortions (modulo and overall factor), and
thus become hard to distinguish, although each model should be detectable
with a PIXIE-like experiment at more than 5�-confidence.

results obtained with Planck, e.g., from limits to non-Gaussianity
(Planck Collaboration et al. 2013e), certainly further reduce the
allowed parameter space for di↵erent models, but the existence
of large-scale anomalies (Planck Collaboration et al. 2013d), and
possible small-scale power spectrum features (Planck Collabora-
tion et al. 2013c) indicate that matters might be more complex. A
PIXIE-type experiment will therefore open up a new window to
early-universe models, no matter if a distortion is detected or not.

Given the range of possibilities, we shall pick a few illustrative
cases, representing simple classes of models. Detailed constraints
on specific models should be derived in a case-by-case basis, how-
ever, our selection provides some intuition for what could be possi-
ble in the future. We start with a simple step, �A⇣ > 0, in the ampli-
tude of the curvature power spectrum at di↵erent k & few⇥Mpc�1,
assuming a spectral index n0S. If n0S ' 1 and ks ' 3 Mpc�1, from
the practical point of view this case is degenerate with the spectral
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many models with excess 
small-scale power can be ruled 
out already with a PIXIE-type 
experiment!



Dissipation scenario: 1σ-detection limits for PIXIE

JC & Jeong, 2013

Distortion PCA 11
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Figure 10. 1�-detection limits for µ, µ1, µ2, and µ3 caused by dissipation
of small-scale acoustic modes for PIXIE-like settings. We used the standard
parametrization for the power spectrum with amplitude, A⇣ , spectral index,
nS, and running nrun around pivot scale k0 = 45 Mpc�1. The heavy lines are
for nrun = 0, while all other lines are for nrun = {�0.1, 0.1} in each group.
For reference we marked the case nrun = 0.1.

tor & 200 over PIXIE will be necessary, making this application of
spectral distortions very futuristic (see also Chluba 2013a).

The exact shape and amplitude of the small-scale power spec-
trum are, however, unknown, and a large range of viable early-
universe models producing enhanced small-scale power exist (see,
Chluba et al. 2012a, for examples). Observationally, the amplitude
of the small-scale power spectrum is limited to A⇣ . 10�7 � 10�6 at
wavenumber 3 Mpc�1 . k . few ⇥ 104 Mpc�1 (the range that is of
most interest for CMB distortions) using ultra-compact minihalos
(Bringmann et al. 2012; Scott et al. 2012). Although not absolutely
model-independent, this leaves lots of room for non-standard dissi-
pation scenarios.

Shifting the pivot scale to k0 = 45 Mpc�1 (corresponding to
heating around zdiss ' 4.5 ⇥ 105[k/103 Mpc�1]2/3 ' 5.7 ⇥ 104) and
using the standard parameterization for the power spectrum, we can
ask, how large A⇣(k0 = 45 Mpc�1) has to be to obtain a 1�-detection
of µ, µ1, µ2, and µ3, respectively. The results of this exercise are
shown in Fig. 10 for PIXIE settings. Around nS ' 1, detections of
µ are possible for A⇣ & 10�9, while A⇣ & 6 ⇥ 10�9 is necessary
to also have a detection of µ1. In this case two of the three model-
parameters can in principle be constrained independently. To also
access information from µ2 and µ3 one furthermore needs A⇣ &
10�7. In this case we could expect to break the degeneracy between
all three parameters.

These statements can be phrased in another way. Assuming
A⇣ ' 10�9, at least a factor of 5 improvement over PIXIE sensitivity
is needed to allow constraining combinations of two power spec-
trum parameters. To measure all p = {A⇣(k0 = 45 Mpc�1), nS, nrun}
independently an overall factor of ' 200 improvement over PIXIE
sensitivity is required, although in this (very conservative) case the
corresponding constraints would still not be competitive with those
reached at large scales using CMB anisotropy measurements.

We can also ask the question of how well the power spec-
trum parameters can be constrained for di↵erent cases. If only µ is
available, then the corresponding constraints on small-scale power
spectrum parameters remain rather weak, but could still be used to
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Figure 11. Parameter range of µ, µ1, and µ2 for dissipation scenarios. We
assumed PIXIE settings with 5 times its sensitivity, and power spectrum
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open symbols mark nS in steps �nS = 0.1. The blue symbols with error
bars (tiny in the upper panel) are for nS = {0.5, 1, 1.5, 1.8} and nrun = 0 and
illustrate how the error scales in di↵erent regions of the parameter space.
Measurements in the µ � ⇢1 plane can be used to fix the overall amplitude
of the small-scale power spectrum for a given pair nS and nrun, but no in-
dependent constraint on nS and nrun can be deduced. The constraints on ⇢1
and ⇢2 allow to partially break the remaining degeneracy.

limit the parameters space (e.g., Chluba et al. 2012b,a). If µ and µ1

can be accessed, we can limit the overall amplitude of the power
spectrum for given pairs of nS and nrun. This can be seen from the
upper panel of Fig. 11, where we illustrate the possible parameter
space of µ, ⇢1 / µ1/µ and ⇢2 / µ2/µ in some range of nS and
nrun. For the considered sensitivity, the errors on µ and ⇢1 are very
small, but since the overall amplitude, A⇣ , can be adjusted without
a↵ecting ⇢1, the measurement is not independent of nS and nrun.

If in addition µ2 can be constrained the degeneracy can be bro-
ken. As Fig. 11 (lower panel) indicates, the relative dependence
on nrun seems rather similar in all parts of parameter space: al-

c� 0000 RAS, MNRAS 000, 000–000

Notice different 
pivot scale



The cosmological recombination radiation



Simple estimates for hydrogen recombination

Hydrogen recombination:

• per recombined hydrogen atom an energy 
 of ~ 13.6 eV in form of photons is released 

• at z ~ 1100  Δε/ε ~ 13.6 eV Nb / (Nγ 2.7kTr) ~ 10-9 -10-8  

 recombination occurs at redshifts z < 104

 At that time the thermalization process doesn’t work anymore!

 There should be some small spectral distortion due to  
additional Ly-α and 2s-1s photons! 

   (Zeldovich, Kurt & Sunyaev, 1968, ZhETF, 55, 278; Peebles, 1968, ApJ, 153, 1) 

 In 1975 Viktor Dubrovich emphasized the possibility to 
observe the recombinational lines from n > 3 and Δn << n!



First recombination computations completed in 1968!

Yakov Zeldovich

Vladimir Kurt 
(UV astronomer)

Rashid Sunyaev Jim Peebles

Moscow Princeton
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Another way to do CMB-based cosmology!
Direct probe of recombination physics!



Planck Collaboration, 2013, paper XXII

Importance of recombination for inflation constraints

• Analysis uses refined recombination model (CosmoRec/HyRec)



Planck Collaboration, 2013, paper XXII

Importance of recombination for inflation constraints

• Analysis uses refined recombination model (CosmoRec/HyRec)

Without improved recombination 
modules people would be talking 
about different inflation models!
(e.g., Shaw & JC, 2011)
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Dark matter annihilations / decays

JC, 2009, arXiv:0910.3663
•  Additional photons at all frequencies
•  Broadening of spectral features

•  Shifts in the positions
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What would we actually learn by doing such hard job?

Cosmological Recombination Spectrum opens a way to measure:
  the specific entropy of our universe (related to Ωbh2)

  the CMB monopole temperature T0

  the pre-stellar abundance of helium Yp

  If recombination occurs as we think it does, then the lines can be predicted   
with very high accuracy! 

  In principle allows us to directly check our understanding of the standard 
recombination physics

If something unexpected or non-standard happened:
  non-standard thermal histories should leave some measurable traces
  direct way to measure/reconstruct the recombination history!
  possibility to distinguish pre- and post-recombination y-type distortions
  sensitive to energy release during recombination
  variation of fundamental constants



Other extremely interesting new signals

• Scattering signals from the dark ages 
(e.g., Basu et al., 2004; Hernandez-Monteagudo et al., 2007; Schleicher et al., 2009)

- constrain abundances of chemical elements at high redshift

- learn about star formation history

• Rayleigh / HI scattering signals
(e.g., Yu et al., 2001; Rubino-Martin et al., 2005; Lewis 2013)

- provides way to constrain recombination history

- important when asking questions about Neff and Yp

• Free-free signals from reionization
(e.g., Burigana et al. 1995; Trombetti & Burigana, 2013)

- constrains reionization history

- depends on clumpiness of the medium

Rayleigh scattering 

Constraints on various elements

All these effects give spectral-spatial 
signals, and an absolute spectrometer 
will help with channel cross calibration!



Conclusions

• CMB spectral distortions will open a new window to 
the early Universe

• new probe of the inflation epoch and particle physics

• complementary and independent source of 
information not just confirmation

• in standard cosmology several processes lead to 
early energy release at a level that                         
will be detectable in the future

• extremely interesting future for                            
CMB-based science!



Conclusions

• CMB spectral distortions will open a new window to 
the early Universe

• new probe of the inflation epoch and particle physics

• complementary and independent source of 
information not just confirmation

• in standard cosmology several processes lead to 
early energy release at a level that                         
will be detectable in the future

• extremely interesting future for                            
CMB-based science!

We should make use of 
all this information!
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