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Chapter 1

Overview and motivation

Cosmology is now a precise scientific discipline, with detailed theoretical models that fit a wealth of very
accurate measurements. Of the many cosmological data sets, the cosmic microwave background (CMB) tem-
perature and polarization anisotropies provide the most stringent and robust constraints to theoretical models,
allowing us to determine the key parameters of our Universe and address fundamental questions about infla-
tion and early-universe physics. Clearly, by looking at the statistics of the CMB anisotropies with different
experiments over the past decades we have learned a lot about the Universe we live in, establishing the era of
precision cosmology, establishing the ACDM concordance model [2| 41]].

But the hunt continues. Today we are in the position to ask exciting questions about extensions of the
standard cosmological model. For instance, what do the CMB anisotropies tell us about the era of Big Bang
Nucleosynthesis (BBN), most importantly about the primordial helium abundance, Y¥,? How many neutrino
species are there in our Universe, a question that often is addressed through the effective number of relativistic
degree’s of freedom, Neg. What are the neutrino masses and their hierarchy? Are there some decaying or
annihilating particles? What about dark radiation? And regarding the initial conditions of our Universe: what is
the running of the power spectrum of curvature perturbations? How about the gravitational wave background,
parametrized in form of the tensor-to-scalar ratio, r, which determines the energy scale of inflation, at least
when assuming the standard inflation scenario. And to top it up, what about dark energy and the accelerated
expansion of our Universe?

All these questions are very exciting and define todays cutting-edge research in cosmology, driving present-
day theoretical and experimental efforts. The CMB anisotropies in combination with large-scale structure, weak
lensing and supernova observations deliver ever more precise answers to these questions. But the CMB holds
another, complementary and independent piece of invaluable information: its frequency spectrum. Departures
of the CMB frequency spectrum from a pure blackbody — commonly referred to as spectral distortion — encode
information about the thermal history of the early Universe (from when it was a few month old until today).
Since the measurements with COBE/FIRAS in the early 90’s, the average CMB spectrum is known to be
extremely close to a perfect blackbody at a temperature 7y = (2.726 £+ 0.001)K [23],22]] at redshift z = 0, with
possible distortions limited to one part in 10°. This impressive measurement was awarded the Nobelprize in
Physics 2006 and already rules out cosmologies with extended periods of significant energy release, disturbing
the thermal equilibrium between matter and radiation in the Universe.

1.1 Why are spectral distortions interesting today?
So far no spectral distortion of the average CMB spectrum were found. Then, why is it at all interesting to

think about spectral distortions now? First of all, there is a long list of processes that could lead to spectral
distortions. These include: reionization and structure formation; decaying or annihilating particles; dissipation
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Figure 1.1: CMB spectral distortions probe the thermal history of the Universe at many stages during the pre- and post-
recombination era. Energy release at z > few x 10° only causes a change of the CMB temperature. A u-type distortion
arises from energy release at 3 x 10° < z < few x 10°, while a y-type distortions is created at z < 10*. The signal caused
during the y/y-transition era (10* < z < 3 x 10°) is described by a superposition of u- and y-distortion with some small
residual distortion that allows probing the time-dependence of the energy-release mechanism. In the recombination era
(10° < z < 10%), additional spectral features appear due to atomic transitions of hydrogen and helium. These could allow
us to distinguish pre- from post-recombination y-distortions (Figure adapted from [[1]]).
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Figure 1.2: Over the past decades CMB experiments have seen a dramatic improvement in sensitivity and angular resolu-
tion, here illustrated with a comparison of COBE, WMAP and PLANCK. In contrast, CMB spectral distortion measure-
ments are still in the state of some 20+ years ago, with COBE/FIRAS still being the standard.
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of primordial density fluctuations; cosmic strings; primordial black holes; small-scale magnetic fields; the
adiabatic cooling of matter; cosmological recombination; and several new physics examples [e.g., see |8 for
overview]. This certainly makes theorists very happy, but most importantly, many of these processes (e.g.,
reionization and cosmological recombination) are part of our standard cosmology and therefore should lead
to guaranteed signals to search for. This shows that studies of spectral distortions offer both the possibility
to constrain well-known physics but also to open up a discovery space for non-standard physics and adding
time-dependent information to the picture (Fig. [I.T).

The second reason for spectral distortion being interesting is due to technological advances. Although
measurements of the CMB temperature and polarization anisotropies have improved significantly in terms of
angular resolution and sensitivity since COBE/DMR, our knowledge of the CMB spectrum is still in a similar
state as more than 20 years ago (Fig. [[.2). This could change dramatically in the future with experimental
concepts like PIXIE [35]] and PRISM [1]] being discussed. These types of experiments could possibly improve
the limits of COBE/FIRAS by more than three orders of magnitude, providing a unique way to learn about
processes that are otherwise hidden from us. At this stage, CMB spectral distortion measurements are fur-
thermore only possible from space, so that in contrast to B-mode polarization science competition from the
ground is largely excluded, making CMB spectral distortions a unique target for future CMB space missions
[48]]. This immense potential of spectral distortions was also recently in the NASA 30-year Roadmap study,
where improved characterization of the CMB spectrum was declared as one of the future targets [37].

1.2 Overview of the different lectures and their goals

The main goal of the lectures is to convince you that CMB spectral distortion studies will provide us with a
new and immensely rich probe of early-universe physics, making it an exciting future direction of cosmology.
In the first lecture, introduces a few simple relations for blackbody radiation and then focusses on deriving
the evolution equations for the photon field and ordinary matter (electrons + baryons). In the second lecture,
simple analytic solutions and the different types of spectral distortions will be introduced. The distortion
visibility function and approximate representations of the distortions will be discussed as well as fast but precise
numerical schemes. The third lecture will provide and overview for different sources of distortions. Particular
attention will be payed to the dissipation of small-scale perturbations and decaying particle scenarios. In the
fourth and final lecture, the physics of recombination and the recombination radiation will be discussed as well
as computation of Sunyaev-Zeldovich signals from clusters and what one may be able to learn from this.
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Chapter 2

Blackbody radiation

2.1 What is a blackbody?

When hearing the term ‘blackbody’, one usually thinks of an insulated cavity (German: Hohlraum) with per-
fectly absorbing walls that is internally in thermodynamic equilibrium at a fixed temperature 7. In this case,
the radiation field inside the cavity (viewed through a tiny hole) is described by a blackbody spectrum, B, (7T),
which only has one free parameter, the thermodynamic temperature T (Fig. 2.1)).

A theoretical explanation for the precise energy/frequency depen-
dence of B,(T) caused much confusion at the end of the nineteenth
century. The shape of B, (T) was known experimentally, but the prob-
lem was that thinking of the cavity being filled with a bunch of electro-
magnetic waves (modes) and performing simple mode counting with
E = kT per mode gives a divergent result for the photon energy den-
sity. Max Planck eventually solved the problem in 1901 by quantizing
the photon energyﬂ E = hv, yielding Planck’s law:

2h v

BAT) = 5 G =7 2.1)

Planck’s law determines the intensity of photons per unit frequency.
Intensity has units

[B,(T)] = ergs sec ' em™?Hz 'sr7! = 10V Mly sl 2.2 ) )
Figure 2.1: Blackbody cavity — The radi-

The spectrum of the Sun is approximately represented by this expres- ation field inside this ideal cavity is given
sion (let’s be a theorist and forget about all the Fraunhofer lines and by the Planck law once sufficient time has
existence of the atmosphere with all its absorption bands) with a tem- Passed to reach equilibrium.
perature Tpp ~ 6000 K (photosphere). Also, we already heard about the CMB blackbody spectrum, which is
really unbelievably close to a blackbody with Ty = 2.725 K [23]].

The shape of the blackbody spectrum for different temperatures is illustrated in Fig.[2.2] We can see that at
low frequencies, the blackbody spectrum scales as

2 2
BT " kT o v2T, (2.3)
C

which is also known as Rayleigh-Jeans law, while in the other extreme the blackbody spectrum falls off expo-
nentially, following the Wien law:

3
B, (1) "Z —2h2V e MK, (2.4)
C

!'Planck found this relation empirically but Albert Einstein later explained it in connection with the photoelectric effect.

9



10 CHAPTER 2. BLACKBODY RADIATION

107
103

1074 10000K |-

10 RN

10-6 e
107 '
10-8
10-?
10710
]Ofll
10712
‘(/J 10713
Q 10-14
Y 10715
::: 10716
]O*l?
10718
10719

10720
1021 g : \ 1
10722 /T/\HHH‘ \\HHH‘ \\HHH‘ \\\HHH‘ \\H.'-HH‘ \HHIH‘ [ H:\‘ \\HHH‘ [N
108 10° 1010 10!l 10%® 103 104 105 1016 1017

v/Hz

I TTTTI [ TTTT T TA T I T T \\HHH‘ \\HHH‘ T H\‘ \\HHH‘ T TTTT

100000K .

I

N
T
o

I

|
|

Figure 2.2: Blackbody spectrum for different temperatures. The intensity maximum is roughly at vy, = 58.8 GHzK™! T,

which for the CMB blackbody today is vima,x =~ 160 GHz or at 2 mm wavelength. For T =~ 10*K the intensity maximum
is in the visible part of the electromagnetic spectrum.
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The Rayleigh-Jeans law also follows from simple mode-counting, but it vastly overestimates the blackbody
intensity at high frequencies, leading to an ultraviolet catastrophe. In this case, the discrete quantum nature
of the photons must be taken into account. The Wien law, on the other hand, can be guessed when you think
of moving thermal charges emitting radiation: the velocity distribution (Maxwell-Boltzmann distribution) cuts
off exponentially so that the highest frequency photon distribution should also show this energy dependence.
The Planck law does the trick in both regimes.

Wien’s displacement law For a blackbody spectrum, the maximum of the intensity per unit wavelength
[I; = I,(dv/dA) = I,/(cA?)] according to Wien’s displacement law is located at

2.898 K mm
Amax * # (2.5)

In terms of intensity per unit frequency (which we will use), from Eq. (2.1) one can find

Vimax ~ 58.8 GHzK~! T ~ 160 GHz [2‘725 K], (2.6)
5.10 Kmm T -1
Ao = = 2 187 mm | 5| @7

which shows that the CMB spectrum peaks at about 2 millimeter wavelength or a frequency of about 160 GHz.

2.2 Photon occupation number, energy and number density

The Planck law specifies the spectral intensity of a blackbody. If we multiply this by 1/c, we have the specific
energy density of photons, U, = B,/c (definition of energy dE = U, dV dQdyv with dV = cdAds versus
dE = I, dA dtdQdy). This corresponds to U, = (photon energy X specific state density X mean occupation
number). The photon energy is E = hv and the specific density of states isE] 2v%/c3, where the factor of 2
accounts for the two polarizations of the photon. Thus the photon occupation number for a blackbody is

AUAT)  PBAT) 1 1 5 g
2m3 23 eI T 1 e — 17 (2.8)

np| =

where for convenience we introduced x = hv/kT (x = 1 corresponds to v = 56.8 GHz). For a blackbody, the
occupation number drops exponentially in the Wien tail and diverges as np; ~ 1/x in the Rayleigh-Jeans part of
the spectrum. The ‘-’ sign in the denominator of Eq. (2.8)) shows that photon follow Bose-statistics (they are
social and bunch up in phase space) with zero chemical potential (photons do not have a rest mass). Similarly,
for general photon distribution, with intensity I, (x, %) at location x and in different directions ¥, the photon
occupation number is given by

_ Czlv(x’ ¥)

The photon occupation number is very useful, since it is Lorentz-invariant, n, = n,, in two inertial frames §
and §" moving relative to each other. The specific intensity transforms as (I, / V'3 ) = (I,/v°) [Exercise 1].

22 d%k/@2n) = 2/@2n) x kK dkdQ = 2/(27)*(2n/A)? dR2r/A) dQ = 2(v/c)? d(v/c) dQ = (2v*/c) dv dQ
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Photon energy and number density To obtain the photon energy density, we just need to integrate the
specific energy density over all directions and frequencies,

2
p),=vadvd.Q=— EvznvddeEfEfd3p, (2.10)

3
where p = E/c = hv/c is the photon momentum. Similarly, for the number density we have

U, 2
Nyzfﬁdvdﬂz— vznvddeEffd3p- (2.11)

c3

For blackbody radiation this simply gives

2h 3 h (kT \* 3d S(kTY*
-2 [ g S [ 20 _seur

YT 3 ) er—1 3\ h ex—1  15¢3m

T \* T \*

= agT* ~ 5.10 X 1077 mec? —3( ) ~ 0.26eV —3( ) 2.12

ar Mec €M 2725k evem \3725K (2.12)
N”:Ef ” o= (T 3[ dx _ 16ng5(T)°
Y o3 et —1 A\ h er—1 c3h3
3

= bpT3 ~ 41 —3( ) 2.1

R Oem™ 3735k @.13)

where {; denotes the Riemann /-function. Here, ag = 40/c = 7.566 X 10~1 ergs ecm™3 K™* is the radiation
constant, where o is the Stefan-Boltzmann constant. We also have the useful relation psl R~ 2.701kTN$1. In
particular, we have pf! o« 7% and N} oc T2,

2.3 What do we need to do to change the blackbody temperature?

Blackbody radiation is fully characterized by one number, its temperature 7. Thus, one simple question is,
what do we have to do to change the temperature to T' # T. Let’s suppose we increase the temperature by
adding some energy to the photon field (let’s say we just move all photons upwards in frequency in some ways;
no change of the volume or photon number), € = Ap,/ pEI(T) = (T’/T)* - 1, then the expected change in the
photon temperature is

AT 1A
e A R (2.14)
T 4 p)
Clearly, if we stopped here, the new spectrum cannot be a blackbody anymore, since we did not change the
photon number density. To keep the blackbody relation Nsl oc T3 unchanged we simultaneously need to add

AN AT AN, 3A
—Ply:(T’/T)3—1=(1+e)3/4—1z3— — 2 _ 20 (2.15)
M T NS

of photons to avoid creating a non-blackbody spectrum. This condition is necessary but not sufficient, since
it does not specify how the missing photons are distributed in energy! Let us assume we add photons to the
blackbody spectrum at one frequency only. Then Ap, = hvAN, and € = (hv/2.101kT) AN,//N;)I, so that to
satisfy the condition Eq. (2.13)), we just need to tune the frequency to hv/kT = (4/3)2.70 ~ 3.60. Clearly, a
blackbody spectrum with a single line at 4v ~ 3.6 kT is no longer a blackbody even if Eq. (2.13)) is satisfied.
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Figure 2.3: Blackbody spectrum and the spectrum of a temperature shift, 707 B, = Io(T) BG(x) = —=Iy(T) x*0npy(x). For
convenience, we plot the spectrum as a function of x = hv/kT and normalize the left y-axis by Io(T) = 2h/c*)(kT/h)? ~
270 MJy st~ (T/ 2.725K)? [the shown curves are basically x3/(e* = 1) and ¥*G(x)]. The maximum of the blackbody is at
x = 2.821 (= 160GHz), while the maximum of the temperature shift is at x =~ 3.830 (= 217GHz). The upper x-axis and
right y-axis also give the corresponding frequency and spectral intensity for 7' = 2.725 K.

To go from one blackbody to another we need to have a change of the photon occupation number by

1 AT xe* AT
= —x0np] — AT/T? = —— —— AT/T)* (2.16
] " eo1 - e + 0TI = s S + OWTIT) (2.16)

An, = np|(T") — np(T) =

with x" = xT/T’. In what follows, we will frequently use the definition

for r<1

==

G(x) = —xBunp = ——— { 2.17)

(e*-1)2 |xe™* for x> 1.
which determines the spectrum of a temperature shift, TdrB, o« x3G(x), for small AT/T. Its spectral shape is
shown in Fig.[2.3]

Let’s check if Eq. (2.16)) really plays out. We first define the integrals (we already know them from above)

k
d
GP = f:_’; = kIZ(k + 1) (2.18)
2
d
GP = f; ); = 203 ~ 2.4041 (2.19)
3 d 4
GH = f r o 604 = T . 6.4939, (2.20)
e' -1 15

with the Riemann ¢ function, {(k), and compare with AG3 = f ¥G(x)dx = 4G[3’l and AG, = f XG(x)dx =
3G2Pl, implying Ap, /p,yPl = 4(AT/T) and AN, /N,l;l = 3(AT/T), which certainly satisfies Eq. (2.13).
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Adjusting the volume but leaving the photon number unchanged Let us go back to the example in which
we just move photons upwards in energy, say by some constant fractional amount (think of a batter that hits
all the photons but is more aggressive for the energetic ones), v/ = v f. The kinetic Sunyaev-Zeldovich effect
[S3] acts somewhat like this, resulting in Doppler boosts Av/v = v, /c = const, but the kSZ effect is not as
democratic and only affect a small fraction, 7 =~ 0.01, of the CMB photons. Let us also fix the number of
photons inside a given volume V. If we assume that the number of photons in each hit is not changed, after the
batting the new distribution (N, = I,/[chv])
, 2V v , 2 e

VNV:C_?’Fth/kT—f_lEVC_?’th/kT_I (2.21)
would be described by a blackbody at temperature 77 = Tf > T, if the photons are confined to a smaller
volume V' = V/f3. Without readjusting the volume, the energy density of the new distribution would be
P, = fPENT) = pSN(T f17*) > pPl(T) but the number density did not change, N, = NY'(T). After also readjusting
the volume V — V', we have o, = (V/V’) fp(T) = f*pPN(T) = p§!(T”) and N}, = (V/V")NIN(T) = NJ(T”), so
that the spectrum is a blackbody again at the higher temperature 7’ = T f inside a smaller volume V' = V/f>.

Entropy and adiabatic changes of a blackbody Assuming that the photon distribution at all stages is given
by a blackbody (in detail this may actually be pretty hard), we can also apply standard thermodynamics for a
photon gas. Combining the first and second law of thermodynamics we have

Pl
p 4 4
TdS, = dE, + P,dV = d(Vp}) + ?7 dV = Vdpy! + 2py AV = Vd(arT") + 3(arT*) 4V, (2.22)

where S, is the photon entropy, E, = V,ogl the total internal energy and P, = pgl /3 the photon pressure
(Exercise 2). From this, we have

Sy _ 4Py

= . 2.23
v 3T 2:23)

4 4 4 4
dS, = VdagT?* + 5(aRT3)dV = Vd(gaRT3) + g(aRT3)c1V = d(5 aRT3V) S

This expression implies that for adiabatic changes of a blackbody (S, = const) we have V T3 = const. This
just means that if you increase the temperature by a factor of f you need to decrease the confining volume by
a factor of 1/f3, as we already argued above. Recasting this expression in terms of PV? = const we find the
adiabatic index of photons y = 4/3. For comparison, a monoatomic ideal gas has y = 5/3 and for diatomic
idea gases one has y = 7/5.

Taking a spherical volume, V o R3, that is filled with non-relativistic electrons and radiation and increasing
the radius of the sphere to R” > R, we directly have T, o< R/R’, while for the electrons with P = NckT, o
T./V we find T. o« V=¥ oc (R/R’)>. This means that the electron temperature drops faster than the radiation
temperature if you adiabatically expand the volume. A similar process occurs in the expanding Universe but
the cooling electrons are continuously up-scattered by the CMB photons, so that they extract energy from the
photon field. This actually causes a small but inevitable spectral distortion [7, [17], as we will see below. Also,
there would be no distortion if the Universe were only filled with photons!

Exercises

Exercise 1 Show that the phase space distribution function, f, is invariant under Lorentz transformation.
Start by looking at the number of particles dN o« f(x, p)d*xd®p = f/(x', p') ¥ d*p’ = dN’.

Exercise 2 Argue that the pressure of an isotropic photon field is given by P, = p,/3. You can use the
definition of the pressure based on the distribution function, for example by starting with the energy-momentum

tensor, TH = cf &Ep p* pYf(x, p)/p°.
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Formulation of the thermalization problem
in the expanding Universe

3.1 What is the thermalization problem all about?

When considering the cosmological thermalization problem we are basically asking: how was the present
CMB spectrum really created? Assuming that everything starts off with a pure blackbody spectrum, we will
see that the uniform adiabatic expansion of the Universe (absolutely no collisions and spatial perturbations
here!) leaves this spectrum unchanged — a blackbody thus remains a blackbody at all times. However, if
some energy is transferred to or extracted from the photon field or if photons are injected or absorbed by some
process, then this inevitably creates a momentary spectral distortion. Then be big question is: was there enough
time from the creation of the distortion until today to fully restore the blackbody shape below any observable
level? — The last part of the question depends somewhat on our experimental sensitivity and the first part on
all the interactions of the matter in the Universe with the photon field. By understanding the thermalization
problem, we can then also ask: what can we learn about different early-universe processes and the thermal
history of our Universe by studying the CMB spectrum in fine detail ?

Ok, so what do we need to thermalize a distortion? We already discussed some of the requirements to
conserve a blackbody spectrum. First of all, if we transfer some energy Ap,/p, < 1 to the photon field,
we also need to change the number density by AN, /N, =~ (3/4)Ap,/py. Assuming that the volume occupied
by the photon field does not change, this means we really need to add/create photons! Two of the important
processes here are thermal Bremsstrahlung (BR) and double Compton emission (DC). As we will see below,
these processes are only efficient at low frequencies, but exponentially inefficient in the Wien tail of the CMB.
We therefore need another process that transports photons over frequency, so that low frequency BR or DC
photons can reach the high frequency part more efficiently. This is achieved by Compton scattering (CS), which
works pretty well in the pre-recombination era (z > 10°). Bottom line, if any process in the early Universe
creates a CMB spectral distortion, we need to readjust the number of photons and redistribute them in energy
to really restore full equilibrium; the crucial processes are BR, DC emission and CS, for which we need to
understand when they work efficiently and how long they take to complete the thermalization process.

3.2 General conditions and assumption

In the early Universe, photons undergo many interactions with the other particles. If we would attempt to
follow the whole evolution of the photon field from day one of the Universe, including its spatial structure in
detail this would clearly be a difficult endeavor. But we can simplify things, since it is clear that at very early
times, the thermalization process is extremely fast, so that no distortion can survive until today. We therefore
start with the minimal assumptions and then see afterwards if things work ouﬂ

IThis type of reverse engineering always goes on, even if people do not often present it that way.

15
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Figure 3.1: Sketch of the thermal history of our Universe from the paper of Dicke et al. [20], published in the same
issue with the CMB discovery paper of Penzias & Wilson [40] in 1965. Parts of this picture were already worked out
by Gamow, Alpher and Herman years earlier, but the value of Ty ~ 3.5 K fixed the energy scale for radiation. Neutrinos
decoupled at a temperature kT, ~ 1.5 MeV —2 MeV, while electron-positron annihilation finished around k7', ~ 0.5 MeV.
The light elements produced in the Big Bang Nucleosynthesis (BBN) era froze out at kT, < 0.1 MeV.
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Figure 3.2: Photon emissivities for different Bremsstrahlung and double Compton cases [55]].

3.2.1 Which epochs do we need to worry about?

A sketch of the standard thermal history is shown in Fig.[3.1] We are already far after the inflation epoch and
also past the time of reheating and the quark-gluon phase transition, which all happen at much higher redshifts.
We all know that the light elements were cooked in the BBN era, when the Universe was around 3 minutes
old. Just before that, electron-positron pairs became non-relativistic and dropped out of equilibrium with the
photon field, causing a difference between the temperature of the neutrino background (7, ~ 1.9 K today) and
the CMB due to entropy production.

Electron-positron annihilation was certainly associated with plenty of energy release, and it is actually
not trivial to really compute the possible residual distortion from this era! The big problem is that with all
these electron-positron pairs one has to deal with several Bremsstrahlung processes (e.g., e p, ete™, e*e*) and
photons from annihilations, all transitioning from the relativistic to non-relativistic regime (e.g., see Fig. [3.2).
In the pair-dominated plasma, thermalization was definitely very efficient! But what is important for us is that
even if you do the thermalization calculation assuming that electron-positron pairs are long gone, you find
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Figure 3.3: CMB temperature anisotropies as seen by the Planck satellite [41]]. The CMB monopole and motion-induced
dipole were removed (as well as all the real life things like foregrounds and our galaxy).

that any distortion should be tiny today if you inject energy at z > few x 10° (you will see this below). We
can therefore forget about searching for distortions from before z ~ 107. Electron-positron pairs are thus never
important for our problem. At that point, the temperature of the plasma had dropped below kT ~ 2keV, and we
are just dealing with non-relativistic electrons, protons and helium nuclei immersed in a bath of photons from
the CMB. We can neglect the traces of other light elements for the thermalization problem and also neutrinos
and dark matter are only important for determining the expansion rate of the Universe.

3.2.2 Perturbation in the cosmic fluid and spectral distortions

For the evolution of primordial spectral distortions, the fluctuations in density of the cosmic medium can be
neglected. This greatly simplifies the computations of the thermalization problem, but to understand this let
us take a step back and just think about the CMB temperature and polarization anisotropies. We know that
inflation sets the Universe up with tiny spatial fluctuations in the cosmic fluid (photons, baryons, neutrinos,
dark matter...). These initial perturbations then evolve under gravity to form the structure we see today. At the
time of recombination (z =~ 10°), the perturbations are all still tiny and reflected by the CMB temperature and
polarization anisotropies. Because from the CMB observations we know that the CMB temperature perturba-
tions around the CMB monopole temperature, Ty = 2.726 K, are AT, /T, ~ 107> - 107* (see Fig. , also the
CMB spectrum should vary at a similar level only. That is, however, relative to the average distortion, just like
the CMB temperature perturbations are with respect to the average CMB temperature! Because COBE/FIRAS
shows that the average distortion can be no larger than AI,/I, ~ 107 — 107, this implies that spatial variations
of the CMB spectrum at most could be visible at the level Al, /I, ~ 10719 — 1072, at least when we are only
thinking about perturbations in the cosmic fluid as source of the fluctuations. Observing fluctuations of the
CMB spectrum at this level is very futuristic.

There is a couple of ways this could be different. For example, if the source of the distortion is highly
anisotropic (think of a SZ cluster of galaxies) one can see local distortions that are much larger than the
average all-sky limit! Similarly, if you think about annihilating dark matter, then the energy release scales
like o N)Z( (ov), so that high density regions forming at the later stages could locally produce much larger
distortions. For the thermalization calculation we will consider homogeneous energy release scenarios only.

Finally, we mention that the dissipation of primordial perturbations in the photon field by Thomson scat-
tering creates a uniform spectral distortion due to the mixing of blackbodies of different temperatures. This
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Figure 3.4: Comparison of the Thomson scattering time-scale with the Hubble expansion time-scale.

process allows us to constrain the small-scale power spectrum using future CMB spectral distortion measure-
ments. In this sense, perturbations can be important for the creation of an average distortion, but they only give
tiny corrections when it comes to describing the thermalization of the average distortion.

3.2.3 Electron temperature and ordinary matter distribution functions

Also the electron and ordinary matter distributions functions turn out to be simple, so that one need not worry
about departures from equilibrium, describing all the matter using thermal Maxwell-Boltzmann distribution at
one common temperature, T = T.. This approximation works very well even until very late stages z ~ 10!
To understand this a little better let us look at some characteristic time-scales. One useful time-scale is the
Thomson scattering time-scale, t = (o-rNec)~!. It will appear many times and describes on what time-scale
photons scatter with electrons. For the standard cosmology with 24% of helium (by mass), we have

-3

X. 171 z
[m] years, (3.1)

0.16
where X, = N./Ny is the free electron fraction relative to the number of hydrogen nuclei. This sounds like

a long time between scatterings, ~ 40000 years at recombination! To put this into perspective we have to
compare with the typical expansion time-scale given by the inverse Hubble rate:

tr = (0rNee) ' 2 2.7 x 102 X711 + )72 sec ~ 4.0 x 10* [

4.8%x 101 (1 + )72 diation dominati
forp = g1~ { (1 +2)7° sec (radiation domination) (32)

8.4 x 107 (1 +2)73/? sec (matter domination),

where the transition between matter and radiation (photons + neutrinos) domination occurs around zeq =~ 3400.
From Fig. 3.4 we see that the Thomson scattering rate (shorter time-scales) is much higher than the Hubble
expansion rate until after decoupling. But even then, the time-scale for scattering only exceeds the expansion
time by a factor of ~ 10? — 10*.
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Figure 3.5: Relaxation times-scales for relativistic thermal plasma [50]]. While electrons and photons are coupled, in our
Universe we have 6, = kT./mec? = 4.6 x 10719(1 + 2) ~ 5.1 x 1077[(1 + z)/1100].

We can now turn to the question of the distribution functions for electrons and protons. For this not only the
scattering rates are important, since scattering itself just means isotropization of the medium. What you really
need is scattering events with energy exchange between the particles. Just like for thermalization of CMB
spectral distortions we need Compton scattering (rather than just Thomson scattering) to redistribute photons
in energy. Since we are already in the post-BBN era, the particle numbers are all fixed, so we have non-zero
chemical potentials which fixes the normalization of the distribution functions.

To estimate the efficiency of energy exchange one has to compute the energy transfer from the differential
cross sections. For two-particle interactions, this gives expressions of the form [e.g.,50]

dE,

dE,
— = (T, T)[kT, — kT{] = —, 3.3
m [T, T7)[kT, 1 ” (3.3)

where T could denote the temperature of the electrons and 7, the one of protons, for instance. The function
f(T1,T>) > 0 describes the details of the interaction. If Ty > T,, heat flows from particles N; to N>. To
get a time-scale over which things equilibrate we just look at the total out-of-equilibrium thermal energy,
AE = (3/2)N(kT, — kT) (non-relativistic limit and N = N| = N;), and compute
AE ‘ _ (3/2)N

dEi/dt]  f(T1,T2)

In Fig. [3.5] we can see the comparison of different relaxation time-scales up to the relativistic regime. The
results are all expressed in terms of the Thomson time-scale, 1. The slowest process is the electron-proton

relaxation, but even that is orders of magnitudes faster than Thomson scattering, in particular for the non-
relativistic regime (k7. < mec?) that is relevant to us.

ty = ‘ (3.4)
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An estimate of how efficiently free electrons and protons are thermally coupled can be obtained with the
Spitzer formula [49]

(1+7) 3/2

1100

my t
fep ~ \/E—p—T B ~11x10 2 (1+22~41x108 1 (3.5)

" N2 meInA ¢

Here, we assumed N, ~ N, and also T, ~ Tp. The Coulomb logarithm, In A, is determined by the minimum
momentum transfer possible (plasma frequency) and we used In A =~ 20 for the estimate.

Clearly, for free electrons and protons the thermalization timescale is very short. Thus their distributions are
expected to be given by Maxwell-Boltzmann distributions and one common temperature T =~ T},. For neutral
hydrogen and helium atoms the thermalization is slower but we have many orders of magnitudes of buffer here.
Also, the statement of equilibration is not just a simple energy independent aspect, but for our computation the
bulk of electrons and protons is important, so we are safe. Finally, for very non-thermal electrons (e.g., due
to some particle decay) many energy loss mechanisms allow degrading their energy (for example Compton
cooling) to more manageable energies in very short time. Overall, the simplest approximation for the ordinary
matter distributions functions is well-justified.

3.3 Photon Boltzmann equation in the expanding Universe

The study of the formation and evolution of CMB fluctuations in both real and frequency space begins with the
radiative transport, or Boltzmann equation for the phase space distribution, f(x*, p*). The photon Boltzmann
equation, written in abstract form as

ﬂ:

i = CU/L, (3.6)

contains a collisionless part df/dzf, which includes the effects of gravity, and collision terms C[f], which
account for its interactions with other species in the Universe. The collision terms in the Boltzmann equation
have several important effects. Most importantly, Compton scattering couples the photons and baryons, keeping
the two close to kinetic equilibrium. Bremsstrahlung and double Compton emission allow adjusting the photon
number and are especially fast at low frequencies, we explain now.

3.3.1 Liouville operator and gravitational effects

Neglecting collisions, we deal with the Vlasov-equation for the photon field. This only includes effects related
to gravity, such as gravitational redshifting due to spatial fluctuation in the density and the cosmological red-
shifting due to the Hubble expansion (‘stretching’ of the metric). The photon phase space distribution function
depends on the photon four vectors, x* = (ct, x) and p* = (E/c, p), so that we can write (sum over indices)

ﬂ—a_f%+a_fg—8_f+a_fd_xi+a;fg+a_fd_’yi=0

= = _ _ = 3.7
de ox# dr  Opt dt ot dx! dt  dp dr  9y' dt 3-7)

The gravitational effects are all hidden inside dp*/dt. Let’s do perturbation theory, but since we are interested

in the average CMB spectrum, only up to zeroth order. Because, 1 /0x' = df /9y’ = 0, we have

af N ar® dp©®
ot op drt

0, (3.8)

which is quite simple. We only need to compute dp®’/ d¢, which we can obtain from the geodesic equation
[e.g., seel21]]. In zeroth order of perturbations, no fluctuations in the density are present, so that no gravitational
redshifting (differences in the gravitational potential) or effects from fluctuations in the local curvature arise. We
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are thus only left with the cosmological redshifting effect, dp®/ dr = —H p, which arises from the stretching of
the coordinate system by the Hubble expansion, p o« (1 +z) o< 1/a. The Hubble factor H = a/a (= 8nGp/3 — k)
is given by

2
H = (;) = H3 Q1+ 2% + Qu(1 +2° + (1 +27 + Q| (3.9)

where Hy ~ 70kms™'Mpc™! and Q; = pi(z = 0)/per gives the energy density of the different universal
constituents (i.e., relativistic species, matter, curvature and cosmological constant) relative to the critical density

2

Por = ﬁ ~ 1.879 x 107%h* gem™ ~ 1.054 x 10*h%eV em™ ~ 1.123 x 107 h*my, cm™>, (3.10)
by
where h = Hy/[100km s‘lMpc‘l]. For the standard concordance cosmology we have Q. ~ 7.4 X 1073,
Qn =~ 0.32, Q ~ 0and Qp ~ 0.68 [41]]. Then Eq. (3.8) reads

(0) (0)
or0 . of

0, 3.11
o P op (3.11)

where f = f(¢, p). With this expression we can prove several properties of the average photon field. First of
all, Eq. (3.11)) shows that without collisions the photon distribution function does not change its shape so that
a blackbody spectrum always remains a blackbody spectrum. By integrating the equation over d*p [to obtain
the photon number density, Eq. (2.11))], we obtain

=0, (3.12)

which shows that the average photon number scales as N, o« (1 + z). With the blackbody law this directly
implies Ty = To(1 + z). Similarly, by integrating over E d°p [to obtain the photon energy density, Eq. (2.10)],
we obtain

o,

d 4
_ (a py) -0
ot

+AHpy = atdt 7

(3.13)

which shows that the average photon energy density scales as p, o (1 + 2)*. The r.h.s. of both Eq. (3.12) and
(3.13) will depart from zero if collisions are present. In this case, photon number and also energy density are
not conserved but depend on the energy exchange with other constituents of the Universe (e.g., electrons).

Remark: For electrons and protons, the equivalent of Eq. (3.12), d(a®N;)/ dt = 0, holds at the redshifts we
are interested in, reflecting that the number of particles is conserved. The energy density equation for baryons
is a little different. A more general form of Eq. (3.13) is [Exercise 1]

Opi

E+3H(pi+P,'):0, (314)
which reduces to Eq. (3.13) for P, = p,/3. For electron and baryons this gives d(a®p;)/ dt ~ 0, since the
pressure, P;, is subdominant. For ordinary matter we have P; = N;kT;, which implies that this condition is
correct when kT; < M;c? (thermal energy much less important than rest mass energy), which is precisely
the regime we are considering. Again, when including collisions, there can be heat transfer between different
species (which enforces T; = T, but also allows matter to be heated by photons or energy release), so that we
can derive an evolution equation for the matter temperature when considering both rest mass energy density
and thermal energy density, p; = M;ic*N; + %kT,-N,-, as we show below.
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Figure 3.6: Compton scattering angles.

3.3.2 Photon collision term

In the early Universe, photons undergo many interactions with free electrons. The most important processes
are Compton scattering (CS), double Compton (DC) scattering and Bremsstrahlung (BR), but there can also
be non-standard processes (e.g., decaying particles) that add a photon source term. Among these processes,
for most times Compton scattering is the fastest, while in particular DC and BR are only important early on.
Including these processes, the photon collision term takes the form

CLf1= Clflles + Clflpc + Clfllgr + CLfTls - (3.15)

The collision term describes local real changes to the photon distribution. We are only interested in the photon
intensity but ignore polarization effects. Below we now consider each contribution separately.

3.3.3 Compton scattering

We already know that Compton scattering is responsible for redistributing photons in energy. This problem
has been studied a lot in connection with X-rays from compact objects [42} 52] and the cosmological context
[59] 54]]. In reality, electron-photon scattering also helps isotropizing the photon field (Thomson scattering
limit), although for this energy exchange is not as crucial [12} [11]]. The reaction we are considering is

e(p) +y(k) «— e(p) + y(K) (3.16)

with the kinematic constraints between the four-momenta p + k = p’ + k’. It is pretty straightforward to show
(using p? = P’ = mee? and k2 = k’? = 0) that for given angles and energies between the scattering particles
this implies

_ 1 —Bu
1 - B + 25 (1 - pge)

ymec?

(3.17)

< | <

where B =v/c,y = 1/+/1 =% pu=cosa, i’ = cosa’ and us. = cos O (see Fig. for illustration).
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Figure 3.7: Compton scattering kernel for E = hv = 6.7 keV photons. The left panel shows cases for cold (hv > kT.)
electrons. In this case the redistribution process has significant contributions from recoil, although even for k7, ~ 0.01hv
the Doppler broadening already becomes important. The right panel shows examples for hot (hv <« kT,) electrons, where
the redistribution is dominated by Doppler broadening and boosting. Dashed lines show analytic approximations for the
kernel. The figure was taken from Sazonov & Sunyaev [47].

Recoil dominated scattering event (Compton effect).
and y = 1) from Eq. (3.17) we have the relation

Assuming that the scattering electron is at rest (8 = 0

hv<<me<r2
v 1 ! 3%
— = ~ 1- (1 — pse). (3.18)
v 1+ ﬁ(l — Use) MeC? 5

If the photon scatters in the forward direction (i = 1) there is no change in the incoming photon energy, while
for backward scattering (us. = —1), the effect is largest giving AT"/ S —2#, with the photon giving a significant
kick (recoil effect) to the electron. While the incoming photon looses energy, the initially resting electron is
now moving in the forward direction, with kinetic energy E/, = 2(hv)?/(mec?) or at a velocity 8/ ~ 2hv/ mec?.

On average the photon looses ( AT‘/> = —thz for all possible scattering angles.

Doppler dominated scattering. If we are in the regime when hv < m.c? but electrons are moving fast, then
from Eq. (3.17) we have the other extreme

B<l1
v 1 _ﬁ/“l ! ’ AN
— = ;= L= pu— ) == + OB,
v 1-Bu
In this regime, photons can both loose energy in the scattering event but also gain energy (Doppler boost).
At lowest order in 8, no net effect remains when you average over all possible angles and assume that the

A_v'>2<ﬁ%2>,

v

(3.19)

electron distribution is isotropic, but at second order in S one finds < Assuming a normal

Maxwell-Boltzmann distribution for the electron velocity distribution, one has <ﬁ2> = 3kT./mec?, so that

AT"/> ~ kTe/mec* = 6.. While for the recoil dominated case this simple procedure gave the correct result, for
the Doppler dominated case one also has to include the dependence of the scattering probably (scattering cross
section) on the angles and electron velocity, so that the net gain do to Doppler boosting in fact is <A7V> ~ 40,.
In addition, we will see that an initially narrow photon distribution broadens due to electron scattering. These

two effects can be described using a diffusion approximation.
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Compton collision term. Let us take a look at the Compton collision term. The general starting point is

1 ’ ’ 4 ’ ’ ’
Clflies = 55 f DpDp’ DK 2m)*'6W(p + k- p' = k) IMP F(p.k, p' . K), (3.20)
3
where Dp = #2?5(17) and so on. The 6-function ensure energy and momentum conservation in the process,

|M|? denotes the Lorentz-invarant matrix element of the Compton process, and F (p, k, p’, k') is the statistical
factor, which for non-degenerate electrons (no Fermi-blocking) reads

F(p.k, p' k) = fe(P) DL + f(O)] = fe(p) f(ROLL + f(K)]. (3.21)

Here, the factors o (1 + f) account for the effect Bose-bunching of photons, which leads to induced scattering.
Also, f.(p) is the isotropic Maxwell-Boltzmann distribution function for electrons. By eliminating the d*p’
and k" dk’ integralf] this equation can be recast in terms of the differential Compton cross section

do - N
Clfles = ¢ f 5Pk )Epdy, (3:22)

where 9" denotes the direction of the scattered photon. For explicit expressions of do/dQ see for example
Appendix C2 of Chluba et al. [12]], but in general this is not very illuminating; especially because analytic
expression for different orders in the energy exchange and electron temperature can be obtained using computer
algebra programs. If the scattering electron is at rest and the energy exchange can be neglected, we have the
simple Thomson cross section

do 3ot
dQ 16
which shows the characteristic cos? ® angle-dependence of the scattering. Beyond this limit, the expressions
become complicated. However, we can just proceed and try to understand which integrals over the scattering
cross section are actually needed when we assume that the change in the energy of the scattered photon is small
and that the distribution functions are all smooth functions of the energies only. This gives us a Fokker-Planck
approximation for the Compton collision term.
Let us start by rewriting the statistical factor, 7. We have f.(E") = fo(E)e E~B/Kle = £ () =/
because of energy conservation, so that

F/fe = FOOL+ FO)] = fFOL + fO)] = @ = 1) fFOOIL + fO + /) = ), (3.24)

with Axe = h(v' — v)/kT.. We now assume that Av/v < 1 (the change in the photon energy per scattering is
small), which gives

(1 + ), (3.23)

1 2002 ( Axe
(f/fezf+v8VfA+§v O, fA" — f+|Axe(f(v) + vO, fA) + > f)[1+f]

1 A?
~ X0y fA + = x205 fA” + X ( A+ x.0, fA? + Yo f) [1+f], (3.25)

with A = Av/v and x, = hv/kT. To obtain the final result, we need the averages of A and A? over the scattering
cross section and velocity distribution function (‘moments’ of the energy shift). This is a little cumbersome,
but one can find [e.g., 47]

kT. h

M ~a=e - g 4—x) (3.26)
MeC?  mec?
kT,

<A2> ~2—S =20, (3.27)
MeC

2Especially for the k' dk’ integral one has be careful with the -function.
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Figure 3.8: Comparison of the Comptonization and Compton cooling time-scale with the Hubble expansion time-scale.

at lowest order in 0. = kT./mec* and hv/mec?. These expressions are per AT = corN.At, which defines the
Thomson optical depth, 7. Inserting this into Eq. (3.25), with x = hv/kT, we obtain [Exercise 2]

O 0 4
N ——X.
cs  x2Oxe

of
or

0 60 lo Ty
[a—xef+f(1+f) =25 [axf+ Tef(1+f) ; (3.28)

which is the famous Kompaneets equation [36]]. It can be used to describe the repeated scattering of photons
by thermal electrons in the isotropic medium. The first term in the brackets describes Doppler broadening
and Doppler boosting and the last term accounts for the recoil effect and stimulated recoil. These terms are
especially important for reaching full equilibrium in the limit of many scatterings.

We will discuss various analytic solutions of the Kompaneets equation in Chapter @] Here, a couple of
words about limitations of this equation. First of all, we assumed that the change in the energy of the photon
by the scattering is small. For hot electrons this is no longer correct and one has to go beyond the lowest orders
in A. This is for example important for the Sunyaev-Zeldovich effect of very hot clusters [29, 146/, 6], but this
procedure only converges asymptotically [e.g.,!13| [18]]. The second limitation is that if the photon distribution
has very sharp features (more narrow than the width of the scattering kernel) then the shape of the scattered
photon distribution is not well represented with the diffusion approximation. In this case, a scattering kernel
approach can be used to describe the scattering problem [e.g., 47]], although efficient numerical scheme for
many scatterings are cumbersome.
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Comptonization and Compton cooling. Some of the simple properties of Compton scattering are directly
reflected by the Kompaneets equation. For example, scattering conserves the number of photons and it is
straightforward to show that dN, / df|cs o f x*d f/dtlcs dx = 0, as it should be. The second aspect is energy
exchange between electrons and photons. Computing dp,/ df|cs o f xd f/ dt|cs dx one finds

[xfA+ frdx  p [V +fHdv
4[3fdx k4 [vifdy

7!
~ 406py[1 - T ] with  T¢1=T,

(S

Opy

ot

, (3.29)

CS

where T¢ defines the so called Compton equilibrium temperature [58]] in a given radiation field f(x). If
T¢d > Te, electrons are heated and photons loose energy. No energy exchange happens if Te? = T, which
does not necessarily mean that the photon field is a blackbody though. If f(x) = 1/(e* — 1) then To! = T,. The
time-scale on which electrons transfer energy to the photons is

+z|

1
t
T ] ~1.2x 1021 + 7)™ sec. (3.30)

1
for = 20 = 49x10° 17 [m
Comparing this with the Hubble rate one finds that at zx ~ 5 x 10*, Comptonization becomes inefficient (see
Fig.[3.8). At this redshift, the characteristic of spectral distortions changes, as we will see below.

The Comptonization time-scale is is quite long compared to the time-scale over which electrons are heated
by photons. The big difference is that every electron has ~ 1.9x 10° photons to scatter with, making the number
of interactions much larger. From py, = (3/2) X; NikT. = (3/2)Nu(1 + fue + Xe) kT, for the thermal energy of
the plasma we have

_ P, 3Na( A fie + Xe)

e = — t1~031tr(1+2)7' ~7.3x 101 + 7)™ sec. 3.31
ye 0y ey 8py J(mac?) T T ( 2) ( 7)) sec ( )

where the estimate was evaluated for X, = 1 + 2 fyye (fully ionized) and fye ~ Y,,/[4(1 - Y};,)] =~ 0.079. Before
recombination, the Compton cooling time is about ~ 1.6x10? times shorter than the Comptonization time. This
means that electrons and baryons (through Coulomb scatterings) remain in full thermal contact with the photon
field until very late. From Fig. (3.8) one can see that thermal decoupling is expected to happen somewhere
around z =~ 100 — 200 [56]]. This is when the earliest signals from the 21cm era are produced [43]].

Remark about Compton drag. Another very important moment in the cosmic history is when photons no
longer can stop electrons and baryons from falling into the dark matter potential wells. The relevant Compton
drag time-scale is slightly shorter than the Thomson scattering time-scale and is related to the coupling of the
CMB dipole with the baryon bulk velocity (— linear order momentum exchange). The associated time-scale
follows directly from the evolution equation of the baryon velocity, giving f4a; ~ Rtr, where R = 3py/4p, ~
673/(1 +z) is the baryon loading of the fluid. Comparing it with the expansion time-scale, the redshift at which
Compton drag stops is determined by zgpag =~ 136/ X2° which is a little lower than the decoupling redshift.

3.3.4 Bremsstrahlung

Thermal Bremsstrahlung is the first and most obvious suspect for photon production and absorption in the
early Universe. It turns out that in our Universe double Compton emission is much more important [[19], but
nevertheless, at late times BR has to be included for precise computations. We already understand that we
only need to worry about electron-proton (or a little more general, electron-ion) Bremsstrahlung, since e”e™
Bremsstrahlung is very inefficient at low temperatures (cf. Fig.[3.2). Considering hydrogen ions as an example,
this process has the form

P e(p) + H*(h) > e(p') + H* (W) + y(k), (332)
where the forward process results in BR emission and the backward process describes BR absorption. Without
the extra photon this process is basically like a Coulomb scattering event. BR emission and absorption are thus
the lowest order radiative correction with the photon number changing.
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Figure 3.9: Bremsstrahlung process.

Before trying to understand things a bit more rigorously, let’s follow the classical estimate using the dipole
approximation. Imagine an electron passing a charge Ze* at some impact parameter b (see Fig.[3.9|for illustra-
tion). At the closest encounter the acceleration of the electron is a =~ Ze?/(m.b*) and the time it takes to pass
the charge is At ~ 2b/v. Then the change in the velocity of the electron is Av =~ 2Ze? /(mebv) (if you integrate
the force along a straight path at impact parameter b this is actually what you get). Then the total radiated
energy in one single encounter is roughly given by

dE 4, ,  16Z%¢°

—— - ~ = 3.33
A 33 3m2c3v2h? (533)

At frequencies v > 1/At ~ v/(2b) [short wavelength limit], hardly any power is emitted, so that dE/df ~ 0 in
that regime.

Now lets assume there is density N; of ions with charge Ze™ and we have N, electrons. The flux of electrons
incident per unit time and area on the ions is Ncv, and the cross section at fixed impact parameter is 27b db.
Then the total emission of energy per unit volume, unit time and unit frequency is

dE
dvdrdy

6
NeNjv f % b db ~ 33’2;0 Z2N.N; f %. (3.34)
Formally, the integral over the impact parameter diverges, but an upper cut-off is introduced at by.x =~ v/v (for
a fixed frequency, not much power is emitted there according to the approximations). A lower limit on the
impact parameter is introduced when (i) the straight line approximation breaks down (Av =~ v) or (ii) when the
classical limit is no longer valid. Overall, these complications can be shoveled into the Bremsstrahlung Gaunt
factor, gg(v, v), for which tables exist [e.g.,132]]. In this way, we have

dE 327%°
dVdrdv B 3\/§m%c3v

for the BR emission at a single velocity. By averaging over a Maxwell-Boltzmann distribution at a temperature
T., one can find

Z>NeN; gt (v, v) (3.35)

dE 32n%eb 2me v ) ~12
~ i “*e gg(Te, Z°NeN; T e, 3.36
dvdrdy 3\/§mgc3 elVi kT, e g(Te,v) elNile = € ( )
Here, we used (1/v) ~ fk—”}z e % and that the minimal velocity required for the production of a photon of

energy hv is vmin = V2hv/m.. Extensive tables for the thermally averaged Gaunt factor, gg(Te, v), can be found
in Karzas & Latter [32] and Itoh et al. [30]. Overall, the Gaunt factor varies slowly with photon energy (see
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Figure 3.10: Thermally averaged Gaunt factor in the non-relativistic limit. Here, u = kth and y? = w. The figure

is taken from Itoh et al. [30] and a modern version of computations by Karzas & Latter [32]].

Fig. [3.10), and the strongest dependence of the photon emission is due to the exponential cut-off at photon
energies hv > kT., simply because very few electrons could really emit photons at that energy. For estimates
one can use gg(Te, V) = %g In(2.25/x.) for x, < 0.37 and gg(Te, v) ~ 1 otherwise.

With Eq. (3.36) the problem is already solved (at least approximately)! To write down the change of the
photon distribution function due to BR emission, we only need to convert from change in the energy density
to photon occupation, which gives a factor of = 8;;3. Here, we assumed that the BR emission process is
isotropic. Since photons are social, we also need to multiply by (1 + f) to account for stimulated emission.

Then the change in the photon occupation number due to BR emission is

af 8 €6 ZzNeN,' _ v
O lem 3 ¢ " &Il = ex(v, To)[1 . 3.37
0t lem 3 mehv3 ~ommokT, e e gg(Te, V) [1 + f(V)] = ex(v, Tl + fF(V)] (3.37)

For the inverse process (BR absorption) we can use the detailed balance argument: in full equilibrium there
should be not net emission and absorption. The absorption term has the form df/0t,,, = NeN; a(Te,v)f and
by setting 0f/0t|ps = Of /0t]ey, for f(v) = (e — 1)~ we find Of [0t = €x(v, Te) €™ f(v). In total this gives

of

ot

N w81 R ZPNeNi e gn(Te,v) Lo
et ex(v, Te)[1 — fe™ - 1)] = 3 mekTo NommkT. 3 [1-f(*-1)]. (3.38)
We cheated, since nobody actually told us that away from equilibrium one should have a factor ~ e* for
the absorption term instead of e*! However, the argument is that the emission and absorption are driven
energetically by the thermal electrons, so that the BR emission and absorption are driven into equilibrium
at the electron temperature T.. Even if T, # T., at (very) low frequencies equilibrium will still be reached
and it is controlled by the electrons and ions, so we actually need e rather than e*. Notice also, that in the
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approximation the energy required to produce the photon comes solely from the electron! The energy of the
ion does not change (it only carries away momentum but no energy) by the process.

We can rewrite Eq. (3:38)) in terms of the Thomson rate, tr = (07Nec)™'. The Thomson cross section is
given by ot = (87/ 3)r§ = (871/3)[€*/mec?]? ~ 6.65 x 1072 cm?. If we also use the Compton wavelength,
Ao = h/mec ~ 2.43 x 10710 cm and fine-structure constant, & = 2re?/hc ~ 1/137, this yields

5f - Kgre™

e [1- f(e™—1)] (3.39)
(&)
a /l Qbh ~1/2
% 22N g0 (Zi Te,v) = 1.4 % 107 [ ] 1+ 12, 3.40
bR = \/&07/22 g(Zi. Te. v) 30 [0_022 (1+2) (3.40)

With these expressions we can ask on what time-scale the distribution function is brought into equilibrium with
the electrons under BR emission and absorption at any given frequency x.. The time-scale is

x T e -1 Qbh2 -l x
~——¢ " ~16x10% [—] © _(1+2)7"% sec. 41
RN g ey~ POXAOTISE] 1002 | Toem (T see (3.41)

This expression shows that at higher redshifts BR is more efficient, which of course should not surprise us
much because the density increases. But also, the lower frequencies you look at, the faster photons thermalize.
To give an example, at x. < 1072, one can thermalize within less than a Hubble time at z > 10° using BR alone.

Explicit Collision integral. Similar to Compton scattering, the Bremsstrahlung collision term reads

1 /’ /7 /7 /’ ’ ’
Clfllsr = 5 | DpDhDp’ Dh QY s (p+h—p — 1 —k) M F(p,h,p' 1, k), (3.42)

where the statistical factor takes the form

F(p.h,p' 1 k) = fe(p) f(WIL + f(R)] = fe(P) fo(B)) f (k). (3.43)

For isotropic distributions, one can furthermore write fo(p)fo(h") = fo(p)fo(h) e//kTe 50 that the collision
term directly takes the form C[f]|gg < I(Te, k)[1 — f(k)(e*™ — 1)]. With these expressions one can in principle
compute the full problem. The standard simplification is that the ion does not exchange any energy with the
electron or the photon, since it is so heavy. It does, however, carry away some of the momentum, because a
process of the form e(p) «— e(p’) + y(k) is kinematically not allowed.

3.3.5 Double Compton scattering

In Fig. [3.2] the double Compton emissivity is a couple of orders of magnitude smaller than the emissivity of
BR. However, BR emission scales like o« N.N;, while double Compton depends on oc NeN,. Due to the huge
specific entropy of our Universe this means that double Compton emission actually dominates as a source of
photons, at least at early times (due to its temperature dependence which we discuss now).

The DC process has the form

e(p) +y(k) < e(p) + y(K') + y(k2). (3.44)

The differential cross section for this process was first calculated by Mandl & Skyrme [39]] and several useful
expressions can be found in the book of Jauch & Rohrlich [31]. Like BR is the first radiative correction to
Coulomb scattering, DC is the first radiative correction to Compton scattering, where y(k;) is usually though
of as a soft photon with hvy < hv and v =~ v'. In this limit, the photon y(k’) plays the role of the scattered
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photon and y(k;) can be distinguished because of its energy. There is no classical analogue like for BR, but
in the soft photon limit the DC cross section becomes rather simple. In this approximation, Lightman [3§]
derived the kinetic equation for the DC process which takes a form that is very similar to that of BR. In the first
computations of the cosmological thermalization problem only BR was included [54] and later Danese & de
Zotti [19] added DC to this, showing that thermalization is more rapid than just with BR.

DC emission in the soft photon limit. To compute the production of photons by the DC process, we can
start with resting electrons and assume that the scattering photon does not lead to a large recoil of the electron,
hy < mec?. In this limit, we have v ~ v/ + v,, which means that after the scattering event the electron is
basically still at rest and also that the energy is shared between to two outgoing photons. In principle y(k;) and
(k) are completely equivalent photons, but assuming that v/ ~ v (this restricts the scattering angles close to
forward scattering) one can label the photons and use the soft photon limit of the DC cross section. From Jauch
& Rohrlich [31]], we then have

2 o,
do 4a (hv) 0% v)’ (3.45)

dvdy dvy ~ go-T Mec? )

where we already averaged over all possible angles of the incoming electron and photon and the scattered
photon. This expression shows that for very low energy photons, the DC emission is suppressed by (hv/m.c?)?.
Thus, for a distribution of photons (say a blackbody), most of the emission arises from the high frequency tail

of the spectrum. To get the net emission in terms of number of photons around v, we have

87v3 Af(v2)
c3 ot

2
~ cN, f _ 4o 807 FONL + fFONII + fO)] dvdy, (3.46)

dvdv’ dvy, 3

em

where the factors of (1 + f) account for stimulated DC emission. Thus, the DC emission term is

3 4 2wy 4a 5 I
fa(vz) L f %( V2) FONL+ FON + F)dv = = 6221 + f(x)] (3.47a)
T lem 3r V5 \MMeC 3 X,
4
Iy = f PO+ f(0)]dx ~ - f 0, fon(x) = 4GE! = 4115 ~ 25.98. (3.47b)

For the approximation of I3 we assumed that the seed photons are given by the CMB blackbody spectrum.
This should be a good approximation since the distortions only add a very small correction. This expression
also shows that without photons present initially, no DC emission occurs!

By using the detailed balance argument, we can then write

0 K;
_f ~ D€ [1-f*-1)] (3.48a)
otlpc x3
da -20 2
Kpc = gey Iie = 1.7 x 1077 (1 + 2)°. (3.48b)

The DC emission coefficient, Kpc, is a strong function of temperature, but in the soft photon limit it does
not depend on frequency. Comparing with BR, we can find that in our Universe DC emission becomes more
important than BR emission at z > 3.7 x 10°. As we will see, this means that bulk of the thermalization process
is controlled by DC emission!
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Figure 3.11: Enhancement of the DC emissivity due to thermal motions of the electrons. The approximation Eq. (3:49)
works extremely well even to high temperatures. The figure is taken from Chluba et al. [14].
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Figure 3.12: Suppression of the DC emissivity for larger incoming photon energy wy = hvy/mec>. The approximation
Eq. (3:30) works extremely well even to large energies. The figure is taken from Chluba et al. [14].
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Beyond the Lightman approximation — Temperature corrections. For the derivation of Eq. (3.48), we
assumed that (i) the electrons are initially at rest and (ii) the incoming (= scattering) photon does not loose
much of its energy (no recoil & hv < mec?) so that the ‘emitted’ photon is very soft. One can go beyond these
approximations defining DC Gaunt factors based on analytic expressions. At early times (z > few x 10°) and
when hv, ~ hy (— Gould-factor), this makes a significant difference.

Let us first consider corrections due to the fact that the electrons can be moving. In the rest frame of the
electron, a incoming mono-energetic photon has an energy v, =~ yv, so that the DC production rate is expected
to be y> = 1/(1 — 8%) times larger if the electron is moving. Taking all angular dependencies into account, you
find the photon production rate to be increased by G(8) ~ (1 + %)/(1 — %) [14]. Averaging over a relativistic
thermal distribution one finds the enhancement factor

2 2
G(6e) = 1240 1Ko/ 25/8::)[1 HOIKA/0) 4 60, + 1562 + ?92 - ?9@ LO@).  (3.49)
The comparison with the numerical result for the DC enhancement factor caused by moving electrons is illus-
trated in Fig. 3.11] The approximation Eq. (3.49) clearly works extremely well even to high temperatures.
If we instead crank up the energy of the incoming (scattering) photon, we expect the DC emission rate
to decrease just like the Compton scattering cross section decreases in the Klein-Nishina regime. In terms of

w = hv/mec* < 1 one can find the correction factor [14]]

G(w)—l—gw 357 W — 7618 I 21498 o' + 0(W) ~ . 1241
5 25 175 175 1+ 5 Lo+ 22;5 - 807_50)3 + Zggg 4
The comparison with the numerical result for the DC suppression factor is illustrated in Fig. [3.12] Again the
approximation works very well in particular when using the inverse formula that was deduced by inspecting
the terms of the Taylor series. For comparison, the suppression of the total Compton scattering cross section is
o =~ o1(l — 2w), which shows that the effective suppress of the DC rate is about twice as large.

Obviously, one can also find approximations when both electrons are moving and the energy of the incom-
ing photon increases. Analytic approximation for this case are given in Chluba et al. [14], with enhancement
terms due to the electrons motion fighting the suppression for larger photon energy. To include all effects
for blackbody photons as source, one again has to perform a Fokker-Planck expansion of the DC collision
term. This becomes quite complicated and details can be found in Chluba [[7]] and Chluba et al. [14]. A useful
expression that approximates the reduction of the DC emissivity relative to the Lightman approximation for
blackbody radiation with temperature takes the form [/7]]

by
1 1
Guac(0y,0c) = :
ac(0y, be) 1+19.7396, — 557976, 1+ 14.160,

A comparison with the numerical result is shown in Fig.[3.13] illustrating the performance of the approximation.
It also improves over previous fit given by Svensson [S5] given for Wien spectra only, because Eq. (3.51)
includes both stimulated DC emission and differences in the electron and photon temperature.

(3.50)

14

e

Il

(3.51)

Beyond the soft photon limit. In the previous paragraph we considered corrections in 6, and w = x6,. But
we still worked in the soft photon limit, v, << v and v ~ /. Assuming again resting electrons and hv < mec?,
one can readily give the general expression for all energies of 0 < hv, < hv. The frequency-modulation of the

DC emissivity is captured by the Gould factorE] [24]
Hac(va /) ~ 22 Ho (2) (3.52)

where Hg(w) = [1 — 3y + 3y%/2 — y3]/y with y = w[1 — w]. In the limit v»/v — 0, one finds Hy.(x) — 1 and
similarly for v, /v — 1 (due to symmetry around v, /v = 1/2). Again this factor was simply obtained by setting
B = 0in the full DC cross section, expanding to lowest order in w < 1 (so that v = v’ +v;) and then performing
all the angle integrals.

3Note that Hg(w) is 1/2 of F(w) given by Eq. (27) of Gould [24]]. The factor of 2 is to avoid double counting of photons.
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Figure 3.13: Double Compton Gaunt factor for Planckian photons at a temperature 6, and electrons at temperature
6. = p 6,. Approximation Eq. (3.5T) represents the full numerical result extremely well, especially for 6, ~ 6,. The figure

is taken from Chluba [7]].
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The figure is taken from Chluba [7]].
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Figure 3.15: Gould factor for different different temperatures and wy = 0.05. For increasing &, electrons transfer some
energy to the high frequency photon due to Doppler boosts, leading to scattering correction to the Compton process. The
figure is taken from Chluba [7]].

In Fig. we illustrate the functional shape of the Gould factor. For low incoming photon energy the
shape of Hyc is clearly represented very well with the Gould formula. However, for larger w, corrections
related to the energy redistribution of the scattering photon become important. In this case, v # v’ + v, but
some energy is transferred to the initially resting electron. Thus, in particular the range (1 + 2w)™' < w/v < 1
shows significant structure. However, at v, < v/2 the shape of Hg. is very well represented by the Gould
formula and the suppression of the DC emissivity can be captured by G(w) given in Eq. (3.50), so that overall
Hge ~ 2 Hg (2) G(w).

Similarly, if we allow the electrons to have non-zero temperature, the factor G(6.) given in Eq. (3.49)
allows capturing the enhancement of the DC emissivity at low energies. In this case, Doppler boosts from
the electron allow the high frequency photon to gain energy above it initial value (see Fig. [3.16), so that the
high frequency tail of the DC spectrum has a more complicated structure. For the thermalization problem this
additional redistribution can be neglected.

To account for corrections beyond the soft photon limit on the DC emissivity, we have to modify the DC
integral, Iygc = f x* F([1 + f(x)] dx, over the incoming photon distribution. We know that photons emitted at
frequency x, = hv,/kT, are produced by incoming photons at frequency x > 2x, with the stimulated factor
[1+ f(x)] = [1+ f(x — x2)]. The modified DC emission integral, assuming small distortions, is thus

00

1
Hel) ~ — | dap1 + npi(x — )] [QHG (2) dx (3.53a)
de J2x, X X
3 29 11 5
-2 2 3 4
~e 21+ 70 + a0 + 6% + Exz] . (3.53b)

The approximation (Exercise 4) was given in Chluba & Sunyaev [17] and represents the numerical result very
well. It significantly improves the previous approximation Hy.(x) ~ e */? given by Burigana et al. [4].



36 CHAPTER 3. FORMULATION OF THE THERMALIZATION PROBLEM

L1 S .

\
\
0.9 \ |
\\
\
\
0.8 |
\
\\
‘
0.7 \ —
‘
:

J
\
\
0.6~ \ —
\
\
\

H, /exp(-x/2)

\
\
]
0.4 3 _|
\
\

\
\
03 \ —
\
\

02 full integral \\‘\ n
P —— analytic approximation 1
01k e Burigana 1991 1

1 10
x:hV/kTY

Figure 3.16: Effective double Compton correction factor Hy.(x). We compare the result from a full integration of a
blackbody spectrum with the approximation given by Eq. (3.33). For comparison, we also show the approximation
Hy.(x) ~ e™*/? given by Burigana et al. [4]. Close to the maximum of the CMB blackbody spectrum the differences are
~ 20% — 40% and at high frequencies the expression of Burigana et al. [4]] overestimates the DC emission significantly.
The figure is taken from Chluba & Sunyaev [17].

3.4 Final set of evolution equations

We now have all the ingredients together to write down the photon and electron evolution equations. For the
photons we perform one more step by transforming to x = hv/kT,, with T, = To(1 + z), instead of p or v itself.
This allows us to absorb the redshifting term, —Hpd, f, in Eq. (3.T1), so that with dr = o"rN.c dt we have

0 6. 0 0 T K —Xe K —2x
O 00 M p s 2 paa |+ BRET N pene m )+ KOS pen - D)as(ny) (3.540)
or x20x |0Ox T. x X3
a /7.2 2 ViNo 5
Kpr = m T2 6l Z Z;N; gt(Zi, Te, Ty, xe), Kpc = In 0y Lac 8ac(Te, Ty, x) (3.54b)
N g ln(zfs) for x. <0.37 1+ %x + %xz + %—éﬁ + %x4 (3.540)
Xe) ® e , ~ .
S otherwise 84 ¥ T119.7396, — 5.57976,

where f = f(t, x), Igc = fx4f(1 + f)dx ~ 4n*/15, g4 ~ G4 Hyce> with Gy and Hy. taken from Eq. (3.51))
and (3.53b)), respectively. The DC Gaunt factor, gq4., should provide a very good approximation for our pur-
poses. For the BR Gaunt factors, gg, we use fits from Itoh et al. [30] in numerical calculations or the above
approximation for estimates. We also explicitly added a photon source term, S (7, x), although the specific
shape depends on the process. This term adds both energy and photons to the photon field.

Equation (3.54) needs to be augmented by an evolution equation for the electron temperature. This equation
can be readily derived from Eq. (3.14) adding non-zero collision terms (Exercise 5). It has contributions from

the adiabatic expansion of the Universe, which drives 7. « a~2. The adiabatic cooling is counteracted by
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Compton heating, which drives the electron temperature always extremely close to the photon temperature
until z =~ 10? (see Fig. . It is thus useful to use pe = T¢/T, as a variable. In addition, when spectral
distortions are present, the matter cools/heats via DC and BR, but the effect is small and can be neglected.
Finally, if some significant energy is released, this will in addition heat the medium. Putting all this together
the evolution equation for the electron temperature reads [compare, [17]]

% _ d(Te/Ty) _ ITQ + 4&
(04

eq 4ﬁ7
e’ —Pel — —Hpcpr(pe) — H t1 pe. (3.55)
dr dr anby ah

Here, we introduced the heat capacity of the mediunﬂ kap = %k[Ne + Ny + Nyge] = %kNH[l + fue + Xel;

the energy injection rate (per mqc?), Q, which for example could be caused by some decaying particles; and
the energy density of the photon field in units of electron rest mass, p, = p, /mec?. We furthermore defined
pd =T T,, where T¢% is the Compton equilibrium temperature, Eq. (3.29). The BR and DC heating integral,
Hpc r, can be directly computed using the corresponding terms in the photon Boltzmann equation, Eq. (3.54).

It is rather straightforward to solve the photon Boltzmann and temperature equations for a given energy
release scenario numerically. One flexible code if] CosmoTHERM [[17], with several scenarios implemented.
The departure from equilibrium are created purely by the electron heating term, o« Q, and the photon source
term, S (7, x). One of the great simplifications we will discuss below is that all distortions are expected to be
small, so that the problem can be linearized. In this case, one can resort to a Greens function method [9], which
allows us to compute the distortion signal for different energy release scenarios efficiently, as we explain below.
Under simplifying assumptions, additional insight can be found analytically, as we explain in the next section.

Exercises

Exercise 1 Prove Eq. (3:14) using the conservation law 7%, , = 0 of the energy momentum tensor for the
isotropic Universe. You will need the Christoffel symbols for the FRW metric, which you can find in Dodelson
[21]], but you can also explicitly compute them (if you like).

Exercise 2 Explicitly derive the Kompaneets equation, using Eq. (3.25) and the moments Eq. (3.26).

Exercise 3 Estimate by how much the DC emissivity is reduced at redshift z = 10° and 107. Given that
thermalization becomes very slow at z ~ few x 10° and very rapid at z > 2 x 10°, how large a correction to the
thermalization problem do you expect?

Exercise 4 Can you derive the approximation Eq. (3.53b)? Think about which photons produce most of the
emission. Does this allow you to simplify the integral?

Exercise 5 Derive the evolution equation for the electron temperature, Eq. (3.55)) starting from Eq. (3.14)) for
all ordinary matter species. Due to Coulomb interactions protons, electron, hydrogen atoms and helium ions
behave as one fluid with the number of particles not changing anymore. Injecting some energy into one of the
species means that the energy is shared among all of them. Can you give the explicit form of the term due to
DC and BR emission.

“We neglected relativistic corrections to the heat capacity of the electrons, which at z ~ 107 would be of order percent [[7].
Swww . Chluba.de/CosmoTherm/
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Chapter 4

Simple Analytic Approximations

In this chapter, we discuss simple analytic approximations for the spectral distortions caused by early energy
release. We start by introducing the Compton-y and u-distortions, which are the classical types of distortions
first studied by Zeldovich & Sunyaev [59] and Sunyaev & Zeldovich [54]. In the y-distortion era (z < 5 X 10%),
DC and BR emission and photon transport from low to high frequencies are already inefficient, so that at
high frequencies the distortion shape is purely determined by Compton scattering. In contrast, during the u-
era (z 2 5 x 10%), thermalization works very well and the amplitude of the distortion evolves significantly.
The efficiency of thermalization is described by the distortion visibility function, which is close to unity at
z < 2 x 10° but drops exponentially at higher redshifts, as we explain in more detail here.

4.1 Compton-y distortion and the thermal Sunyaev-Zeldovich effect

In section [3.3.3] we learned that around zx ~ 5 x 10* the Comptonization time-scale (transfer of energy from
electrons to photons) becomes longer than the Hubble time. It is clear that this marks an important transition
in the efficiency of Compton scattering and redistribution of photons. Let us try to quantify this a little better
by looking at the photon evolution equation. If we neglect DC and BR emission processes, we have

of| 6.0 4

o T
Otles = 2 ax" [af"‘ Tef(“'f) , 4.1)

in the expanding Universe, with f = f(t, x). This equation has no general analytic approximation, but we can
solve it for limiting cases.

4.1.1 Scattering of CMB photons in the limit of small y.
Assuming that at 7 = 0 we start with f = f, = 1/(e* — 1), then after a very short time A7 <« 1 we find

AT@@ 0 4 0 T’y
Afm e 0| L L Y
f 2 o [axfbb T Job(1 + fob)

A6, 6) 8

2 ax“fbb(] + fob)

~ AT(0y = 0e) [4xfin(1 + fo) = 2 fin(1 + fin)(1 + 2fi)|

il i - 4] = A1(0 — 6,) Ysz(x), (4.2)

~ At(6e — 0y) G(x) [x oo

where we used 0 fi, = — fin(1 + fop) = —€*/(e* — 1)? = —=G(x)/x and (1 +2fip) = (e°+ 1)/(e* — 1) = coth(x/2).
This is the definition of the so called Compton-y distortion, Ysz(x), which arises in the limit of scatterings with
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inefficient energy exchange. This distortion of the CMB was first studied by Zeldovich & Sunyaev [59] and
then applied to hot electrons residing inside the potential wells of clusters of galaxies, giving rise to the thermal
Sunyaev-Zeldovich (SZ) effect. The important time-scale is determined by the Compton-y parameter

7 k(T — ' k(Te — T
y = f M dr’ = f MO’]‘NGC dr, (4.3)
0 Mec? 0 MeC?

which depends on the number of scattering (related to 7) and the net energy exchangeﬂ Av/v = 4(6. - 6,), per
scattering. Clearly, for 7. = T, one has y = 0 and Af = 0, no matter how many scattering actually take place!
The solution Eq. (4.2) for the distortion is thus valid as long as y < 1, which also ensures that the electron
temperature does not change much by the scattering.

One possible way to violate this condition even if the number of scattering is tiny (7 < 1) is by having a
very large difference in the electron and photon temperature. Note, however, that 6, < 1 is needed since oth-
erwise relativistic corrections to the Compton process appear, which are not accounted for by the Kompaneets
equation. For the cosmological thermalization problem, we are always in the situation that the y-parameter
is increased beyond unity by increasing the number of scatterings. In this case, Compton scattering pushes
electrons and photons into kinetic equilibrium until a u-distortion is formed (Sect. 4.2).

Assuming that we are in the regime |y| < 1, there are two cases of interest:

e y > (: so that overall energy is transferred from the electrons to the photons — Comptonization
e y < 0: where energy flows from the photons to the electrons — Compton cooling

For most conditions in our Universe, y > 0 is relevant, since most processes tend to heat the matter in the
Universe. Therefore negative y-distortions are usually not being considered, however, the adiabatic cooling of
matter in the expanding Universe (in the absence of heating) allows T, < T, so that y < 0 does occur [[7, [17]].

In Fig. .1 we illustrate frequency dependence of the y-distortion for 7o = 2.725 K. It has a very charac-
teristic shape, with a deficit of photons in the Rayleigh-Jeans part and an increment of photon in the Wien tail
of the CMB spectrum. The limiting behaviors are

Yer() G()[ e’ +1 —)% for x<1 4.4)
x) = G(x) |x —4| = .
57 e* -1 x(x —4)e™* for x> 1.

This corresponds to Al/I ~ AT/T =~ -2y for x < 1 and AT/T =~ (x — 4)y for x > 1. The y-distortion
vanishes close to v ~ 217GHz (= x ~ 3.830), which in principle makes it distinguishable from the u-distortion
(Sect.[4.2)). One can easily verify that for a y-distortion

AN, =0 o f x*Ysz(x) (4.52)
Apy =4y ph! o f x> Ysz(x) dx. (4.5b)

Clearly, Compton scattering should not change the number of photons, as reflected by Eq. (4.53). Equa-
tion implies that 4y = Ap,/ pgl defines the fractional energy exchange of the electrons with the initial
blackbody spectrum. Thus, starting from a pure blackbody, by computing y = (1/4)Ap7/p51 < 1 one can
directly give an approximation for the distortion [59]. In detail, it may be a little more involved to compute
Apy/ pgl for some process, but all one really needs to know is how much energy was pumped into the CMB by
energy exchange with the thermal electrons.

K(Te=T)
mec?

'In a sense it would be better to write y = % j; 4 dt’, so that 4y = Ap, /p, evidently gives the total amount of energy transfer.
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Figure 4.1: Comparison of a Compton y-distortion, Ysz(x), and u-distortion, M(x), with the blackbody spectrum and
temperature shift, G(x). For convenience, we plot the spectrum as a function of x = hv/kT and normalize the left
y-axis by Io(T) = (2h/c*)(kT/h)* ~ 270MJysr~'(T/2.725K)3. The y-distortion has its crossover frequency around
x =~ 3.830(= 217GHz), while the yu-distortion has its zero around x =~ 2.192 (= 124GHz). The upper x-axis and right
y-axis also give the corresponding frequency and spectral intensity for 7 = 2.725 K.

4.1.2 Thermal Sunyaev-Zeldovich effect

Clusters of galaxies are the largest virialized objects in our Universe, with typical masses M ~ (103 —10'*)M,,
(Mg ~ 2 x 103 g) and up to ~ 10° galaxies. Cluster also host a hot plasma with free electrons at temperature
T. ~ few x 10’K (= few x keV) at typical densities No =~ 1073 cm™3. We know this already for a while since
clusters show a X-ray glow produced by thermal Bremsstrahlung. The hot electrons can scatter CMB photons
and create a Compton-y distortion. The typical y-parameter of massive clusters is y =~ few x 107 — 10™* with
0. ~ few x 1072 and 7 ~ few x 1073, Because for clusters T > T,, the y-parameter reads

T kT,
y=f e2 dr' ~ 0. v
0 MeC

and thus directly probes the integrated electron pressure, P, ~ f N.T. dl, through the cluster medium.

One of the great properties of the thermal SZ effect that is it independent of redshift (ignoring evolutionary
effects) [53| 144, |S]. The reason is that CMB temperature increases o« (1 + z) with redshift, so that the ‘light
bulb’ illuminating the hot electrons residing inside the cluster becomes brighter the higher the redshift. The
cosmological redshift dimming of the signals, which for example reduces the X-ray fluxes for high redshift
clusters, is therefore compensated since the CMB itself is brighter, and no matter what the redshift of the
cluster is it will have the same signal relative to the CMB. It is interesting to point out that if we could go back
to z = 1, in terms of the bolometric luminosity all clusters would be brighter by 2* = 16 (as the CMB itself
would), even if we did not change the clusters! The redshift-independence of the SZ signal thus refers to how
clusters at different redshifts are seen by the observer but the same cluster signal is brighter if the observer is a
higher redshift. The redshift-independence of the SZ signal makes SZ clusters a powerful cosmological probe,

(4.6)
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since one can in principle track the growth of structures out to high redshifts (z ~ 1 — 2) and thus constrain
cosmological parameters and the evolution of dark energy [3, 1]

But the thermal SZ effect is even more rich. For a cluster with k7. = 5keV, the thermal velocities of the
electrons are vy, =~ V20.c ~ 0.14c. That is quite fast and relativistic corrections become important. In this
regime the Kompaneets equation is no longer valid and one has to include higher order corrections [6, 46, 29]],
which we will discuss later. In addition, if the cluster is moving with respect to the CMB, the Doppler kick
adds a change in the CMB temperature towards the cluster by Al ~ 8.7 Tdr B, (T), also knows as kinematic SZ
effect [53l]. This can in principle be used to study large-scale bulk flows in the Universe.

4.2 Chemical potential or u-distortion

We now understand that for inefficient energy exchange between electrons and photons the shape of the distor-
tion is determined by the y-parameter and has a spectral dependence, Ysz(x) = G(x)[x coth(x/2) — 4], shown in
Fig.[4.1] Let us now consider the other extreme, when many scatterings are taking place and the redistribution
of photons in frequency is very efficient. In the early Universe, this regime is found at z 3 5 x 10* and the
distortion is given by the u-distortion.

4.2.1 Compton equilibrium solution

When many scattering occur, the spectrum is driven towards an equilibrium with respect to Compton scattering.
Neglecting emission and absorption processes, the kinetic equation thus becomes quasi-stationary
6. 0 4|0 T,
X ——X|—f+=—=—fA+/f). 4.7
ot gt D (“7)
One solution of this equation is fy, = 1/(e* = 1) if Te = T, since 0 fob = — fob(1 + fob), as it should be for full

equilibrium. However, this is not the general solution of the problem! To find the general solution we have to
solve the equation

Ty
0uf = - FA+ ). (48)
€
The factor T, /T, can be absorbed by redefining the frequency scaling x — X so that d,, f = —f(1 + f). This
can be integrated to In(1 + f) — In(f) = x. + const, or

1
feq_

= S T 4.9
where we introduced the integration constant pg. This is a Bose-Einstein spectrum with constant chemical
potentia]E] to. Let’s pause for a moment. Photons have no rest mass, so the chemical potential should vanish?
This statement is only true if we are in full equilibrium, i.e., we have a blackbody at the temperature of the
medium. More generally, for fixed photon number the chemical potential can be non-zero.

The chemical potential can in principle be both positive or negative:

e 1o > 0: fewer photons than in a blackbody at temperature T, — energy release / photon destruction
e 1o = 0: blackbody at temperature 7T, — full equilibrium

o (g < 0: more photons than in a blackbody at temperature T, — energy extraction / photon injection

In practice, the solution o < 0 is unphysical unless g is actually a function of frequency. The reason is that
Xe + Mo can vanish at x, = —yp > 0, but this state is never reached or even passed though during the evolution,
since instead excess photons would form a Bose-condensate at x = 0 with g = 0 elsewhere [57,160]]. In a real
plasma, BR and DC emission will prevent this from happening though [28| 34].

ZNotice that the sign is different from the normal convention used in thermodynamics.
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4.2.2 Definition of the u-distortion

In the previous paragraph, we showed that f = 1/(e**#0 — 1) is approached if you have many scatterings in the
plasma. But how do we fix the constant ug and what is the definition of the distortion really? Let us assume
we start with a blackbody and electrons at temperature T, = T. = T;. Let us change the number and energy
density of the photon field by some ey = AN, /N};I(Ti) and €, = Ap, /pil(Ti), respectively, and then wait until
everything has equilibrated by Compton scattering (no DC or BR emission). We then have the conditions

NN Ty)  x2dxe
BE _ a/P1 _ Y f
NJE = NT)(L + e) = = f e (4.10a)
2
P1 3
Py (Ty) x; doxy
Py =P T+ ) == f e (4.10b)

3

where T is the final temperature of the electrons in the distorted (Bose-Einstein spectrum) radiation field and
x¢ = hv/kTr. These two equations allow us to fix 7y and ug as a function of the parameters ey and €,. The
general solution is determined by

A+ep*  2dw V7 (A+ren* [ xdg
Pl Xe+Ho — = Pl X+ — (41 la)
G, e 1 G, e 1
5 1/3
T; s 1 Xp dx;
7 ep ) e @i

which is fun to play with but is not as illuminating. Assuming that all changes are small we have

NEE ~ NINTp) 1 = poMS| ~ NNT)

AT
1+ 3T —,qug] (4.12a)

oy" = T |1 = o M5| ~ Py (T)

AT
1442l ﬂomg] , (4.12b)
i

where M = kG}' | /G}!, so that we have MS ~ 1.3684 and M ~ 1.1106. With the conditions Eq. @10), we
then find [54, 26]]

3 [Ap, 4AN Ao, 4AN
,uoz—c[—py———y]% 1.401 [—py———y] (4.13a)
K| py 3N, py 3N,
AT  MSAp, M AN A AN | AN
AL 0y B2 0638922 — 05185 ~ 0.4561 0 + ~ — (4.13b)
T; K py kK N, Dy N, 3 N,

with k¢ = 4M5 — 3MS ~ 2.1419. From Eq. we see that for Ap,/p, = (4/3)AN, /N, we have no
distortion (o = 0), as we already understood from the adiabatic condition, Eq. (2.15). In this case, only the
temperature of the blackbody is increased after scattering redistributed all photons, AT /T; ~ %ANY /Ny.

In Fig. we illustrate a Bose-Einstein spectrum with yo = 0.5 and T; = Ty = 2.726 K. Only energy was
added to the photons but the number of photons was not changed with respect to the initial CMB spectrum.
One can see that in the Rayleigh-Jeans tail of the CMB the Bose-Einstein spectrum shows a deficit of photons,
while in the Wien tail more photons than in the CMB blackbody spectrum are present. We have fgg ~ fup at
ver & 124 GHz although for large chemical potential v¢, = 124 GHz (1 — 0.304 u In y) is more accurate [[10].
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Figure 4.2: Bose-Einstein spectrum for large chemical potential 4 = 0.5 and T; = Ty = 2.726 K. Only energy was added to
the photon field, but the number of photons was not changed with respect to the initial CMB spectrum. For large chemical
potential, the cross over frequency shifts towards higher frequencies according to v, = 124GHz (1 — 0.304 uInpu) =
158 GHz. The figure was taken from Chluba [10].

But how do we define the distortion? To derive the expressions from above, we used

11 G

eretho — | e — |

foE = o +O(sd). (4.14)

€

This suggest that Af = —G(x.)uo/xe could be called the distortion with respect to the blackbody part at
temperature T and in fact this kind of definition has be used frequently. However, since also the final electron
temperature, T = T ¢, depends on py, this definition does not separate the distortion cleanly. Motivated by the
fact that Compton scattering conserves photon number, one natural definition is to fix the u-distortion such that
[ x*M(x)dx = 0. Integrating Af gives [ x*Af dx = =2u9 [ xdx/(e*~1) = =2G¥'ug = —po n*/3 ~ —3.2899 g,
so that M(x) = G(x)[ay, — 1/x] with ey, = 2G¥"/3G! = 7?/18£(3) ~ 0.4561 fulfills [x*M(x)dx = 0. If we
in addition normalize the relative change of the photon energy density to unity (Apy/p" = 1), we find the
spectral shape of the p-distortion

. 3 3 1 1 — 1401 for x<1
M*(x) = =M(x) = =G(x) |a, — - | ~ 1.401G(x) [0.4561 — — | ~ x (4.15)
K© 'S X X 0.6390 xe™™ for x> 1.

This implies A/l ~ AT/T ~ —ugp/x for x < 1 and AT /T ~ 0.4561 g at x > 1. The frequency dependence
of M(x) is illustrated in Fig. (4.1)) in comparison with the y-distortion and spectrum of a temperature shift.
The important feature of a p-distortion is that it is shifted towards lower frequencies with respect to the y-
distortion. This makes is distinguishable and observing a u-distortion is a clear indication for a signal created
in the pre-recombination era, deep into the thermal history of our Universe.
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Figure 4.3: Simplest zeroth order picture for the formation of primordial distortions. At low redshifts (z < 5 x 10%), a
y-distortion is formed, while at high redshifts we expect a u-distortion. At this point we have not included any photon
production and we will see that this strongly attenuates the amplitude of the u-distortion at z > 2 x 10°.

4.2.3 Simple zeroth order description of primordial distortions

We now have all the pieces for the simplest zeroth order description of primordial distortions together. At late
times, (z < zx = 5 X 10%), the redistribution of photons by Compton scattering becomes inefficient and a y-type
distortion is formed, in the other extreme we have a u-distortion (see Fig.[4.3) with the approximations

1A
yxg it (4.162)
oy |,
A 4 AN
go ~ 1401 | 22| _ 220 | (4.16b)
Py |, 3 N, B

so that the total distortion is given by Af = Ysz y+ M(x) uo. Here, we indicate that to estimate the distortion one
needs to consider the partial energy release and photon production in the respective y- and u-era. If photons are
injected in the y-era, the distortion is not just a y-distortion, since these extra photons are not redistributed very
efficiently, but in the p-era they are ingested and modify the effective chemical potential. We can, however,
treat the problem of photon injection during the y-era approximately (Sect. 4.3).

Two important aspects are still missing. Firstly, we have not included any photon production into the
picture but assumed that only Compton scattering changes the photon field. This will be mostly relevant for the
evolution of u-distortions, since not all energy release or photon production eventually is visible as a distortion.
That is, the distortion visibility function is smaller than unity because thermalization reduces the effective
amount of energy release that survives as a distortion. This is implicitly hidden in the definition of Ap, /p, and
AN, /N,. We will consider this problem in Sect. @ The second point is that the transition between y and y
distortions is not abrupt but occurs over a range of redshifts where in the intermediate regime the distortion
is not only given by the superposition of ¢ and y-distortion. This makes the distortion signal much richer, as
pointed out only recently [[17, 33 9]. We will consider this problem in Sect.[5.1]
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4.3 Evolution of the photon distribution by Compton scattering

The thermalization problem with photon production in the y-era (z < 5 X 10%) can be treated approximately
using different analytic solutions describing the Compton scattering of photons. No exact solution valid in all
regimes was found so far, but still progress can be made in different limiting cases.

4.3.1 Doppler-dominated scattering

One classic solution of the Compton scattering problem was given by Zeldovich & Sunyaev [59]] for cases
when recoil terms (< f(1 + f)) can be neglected in the Kompaneets equation. One example is the scattering of
CMB photons by hot electrons, since then T,/Te =~ 1077, so that from Eq. @.I)) we have

af
otlc

0 0 40
~)62(3)6 Ox

= (4.17)

Defining y. = f e dr and introducing £ = In x we have 0y, f = 8§ f +30:f. By transforming to z = £ + 3y. we
arrive at 0y, f = 63 f, which is the simple diffusion equation. Thus, the solution is [59]

_ (In[x/x1+3ye)? dx
fOe, X) T ohe ff(O x')Gp(ye, x’ — x)dx’. (4.18)
This shows that
_ (nfx/x'1+3ye)? 3 _ (nlx/x']-3ye)?
Gpe ¥ > x)= e X ™ (4.19)
D(Ves == 5 —F .
¢ \anrye X’ 3 Vanye x’

is the Green’s function of the Doppler-dominated Comptonization problem, describing how a narrow line
broadens and shifts due to the thermal motions of the electrons. Starting with £(0,x) = A&(x — xo)/x?, it
is straightforward to show that p,(y.) = p,(0) e, The positions of the maximum in N, = x%f(ye,x) is
xo(ye) = xgee, while for I, = X f(ye, x) it is at xp(Ye) = Xo ee. Similarly, the FWHM of the distribution
increases as Av/v = 2e% sinh(2 \/ye In2) =~ 4 /yc In 2.

The solution is illustrated in Fig. for an initially narrow line at low and intermediate frequencies. The
approximation, Eq. (4.18), represents the numerical solution very well until recoil terms become important.
This leads to a significant deviation of the photon distribution at high frequencies, which for the consider
problems starts being important for y. > 1 and illustrates the limitations of the approximation.

4.3.2 Recoil-dominated scattering

The other simple solution can be obtained in the limit Av > kT.. In this case, Doppler redistribution is
negligible and one has

iy 60,
otlc xzax

A+ = ——w4f(1+f) (4.20)

with w = hv/mec?. If we assume f < 1, then the equation can be solved analytically, giving

f(0. %)

[1-wt]*’

f(r,w) = (4.21)
For an initially narrow line, f5(0,w) = A d(w — wop)/ w?, located at wy, this just means that the line will move
along wo(1) = wo/(1+woT), or f5(1, w) = A d[lw—we(T)]/ w?. Atlowest order in w, this means Av/vy ~ —woT,
as we already know from the discussion in Sect.[3.3.3] The solution does, however, not include the broadening
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Figure 4.4: Time-evolution of AN, = v?An for different values of the y-parameter but neglecting stimulated scattering.
The left panel shows the case, for an initially narrow line which was injected at x.o = 1072, while the right panel shows
the solution for injection at x.o = 107!, In both figures, we present the results as obtained by numerically solving the
Kompaneets equation. In addition, we give the analytic solution according to Zeldovich & Sunyaev [59], Eq. @.18). The
figure is taken from Chluba & Sunyaev [15]].

of the line by the scattering event. Even for 7. = 0, recoil-dominated scattering leads to line broadening
<Av2/ v2> = %aﬂ [477]], which is neglected in the Kompaneets equation, being higher order in w <« 1. Including
this effect, one has the diffusion equation [47]]
of
or

R —— + —w,f]. 4.22
cs  w? aww (f 10w wf) ( )
Analytic solutions of this equation were discussed by Grebenev & Syunyaev [25] and are relevant for the
scattering of hard X-ray lines by cold electrons.

Finally, when stimulated effects dominate (f> > f and hv > kT.), the solution of the evolution equation
O f ~ w20,w* f? is determined by the implicit equation [57, 51]]

v =¢(s) — 5 TS, 4.23)
MeC

with s(w, T1) = w? f(w, T) and where ¢(z) can be found from the initial condition (¢(z) = s, 1(z), where 5y 1(2)

is the inverse function of s(w, 7) at T = 0). The non-linear nature of this problem can lead to the appearance of

shock waves in the photon field, e.g. as explained in Zeldovich & Levich [57]] and Zeldovich & Sunyaev [60].

4.3.3 Background-induced stimulated scattering

The previous solutions were all derived for the total photon field. For the evolution of spectral distortions, we
are, however, in the situation that the distortion is a small perturbation around the huge CMB blackbody photon
bath. In this case, one can rewrite the Kompaneets equation as

0 0, 0 0
UV« G- 0)Vsz0+ 22| L ap+ af(1+2w)] 424)
0t lcs x20x" |Ox

where we separated the blackbody (background) and distortion part, f = fu, + Af, and kept only linear order
terms (Af < 1 and (Te—T,)/T, < 1). We can see that there are two relevant time-scales: (i) y = f (0 —06,)dr,
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Figure 4.5: Time-evolution of AN, = v?>An for different values of the y-parameter including the effect of stimulated
scattering in the blackbody ambient radiation field. The left panel shows the case, for an initially narrow line which was
injected at frequency x.o = 1072, while the right panel shows the solution for injection at x.o = 10~!. In both figures we
show the results as obtained by numerically solving Kompaneets equation with T, = T.. In addition, we give the analytic
solutions of the linearized problem, Eq. (.23)), according to Eq. (#.26). The figure is taken from Chluba & Sunyaev [15].

which determines how the y-type distortion is sourced by the difference in the electron and photon temperature,
and (i) y, = f 6, dr, which determines how the additional distortion, Af, broadens and shifts. As long as
yyy < 1, these two parts of the problem can be treated separately.

Thus, let us assume that initially we have a low-frequency frequency feature in the much larger blackbody
spectrum with T, = T,. Then, for fi, ¥ 1/x > 1, we may write [15]]

oaf
ot |cs

b0
xz(')x

[ Af + —Af] : (4.25)

This equation describes the evolution of the distortion but including the background-induced stimulated scat-
tering effect. This case is relevant for example for the evolution of hydrogen and helium recombination lines
[43] [16] emitted around z ~ 103 in the Rayleigh-Jeans tail of the CMB [I3]. Transforming to & = In x and
s = XAf, we find Oy, s = c’)g%s — Ogs. By setting z = £ — y,, we arrive at d,, s = 855, which has the solution [[15]]

(inf/x’}-yy)? dx
Fy,x) = f fO,x)e P ff(O x")Gp(yy, ¥ — x)dx’, (4.26)

with the Green’s function

_ (nlx/x'1-yy)?
’ 7 e “y
Ge(yy, X' > X)) = —4 ———. 4.27)

x? \amy, X’

This is very similar to the solution, Eq. (4.19), but with the different shift of the photon caused by stimu-
lated scattering in the blackbody field. Starting with f(0,x) = A&(x — xo)/x?, it is straightforward to show
that p,(y,) = p,(0) e?r. The positions of the maximum in N, = x? Sy, x) is xo(y,) = xpe™, while
for I, = x° f(y,x) it is at xo(y,) = xoe’. Similarly, the FWHM of the photon distribution increases as
Av[v = 2’7 sinh(2 \/y, In2) ~ 4 ,/y, In2. Overall this means that the blackbody-induced stimulated scattering
effect slows down the motion of photons towards higher energies. The photon distribution still gains energy
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Figure 4.6: Dependence of the y-parameters, y, and y., on redshift. After recombination the y-parameters drop strongly
since the number of free electrons decreases exponentially. At late times, electrons drop out of equilibrium with the
photons so that y. < y,. Around zx = 5 X 10*, we have y, =~ ¥y = 0.1. The line-broadening, Av/v = 2 4/y, In2, is also
illustrated. After recombination it becomes much smaller than Av/v ~ 1073,

but only Ap,/p, = e? instead of Apy/py = e*e when neglecting stimulated scattering. The line-broadening
caused by the Doppler effect is similar to the case without induced scattering. For N, = x>, this is illustrated
in Fig.[4.5] In this case, photons move towards lower frequencies rather than higher.

Efficiency of redistribution. At late times, redistribution of photons in energy by Compton scattering be-
comes very inefficient. To quantify this statement a little more, we can compute the scattering y-parameter,
Yy = f 6, dr. At high redshifts (z > 10%), it scales like

(1+2)° ~4.84x107'1(1 + 2)°. (4.28)

v, = fz oTNeC dz ~ orNu(l + 2fge)c kT
v TH(1 +72) 2HoVQ  mec?

This implies that around z =~ 1.4 x 10° the y-parameter becomes smaller than unity. The dependence of Vy
on redshift is illustrated in Fig. 4.6 It is clear that after recombination redistribution by scattering is already
negligible. The amount of Doppler broadening, however, still reaches ~ 1% — 10% between z ~ 10> — 10*. For
the calculation of the helium recombination lines it is thus important [45].

The above analysis shows that for scenarios with late photon production, one can practically neglect Comp-
ton scattering at z < 107, unless the initial photon energy is very large so that recoil will become significant.
In this case, the largest effect will manifest itself as heating of the electrons. At redshifts z ~ 10° — 5 x 104,
one can apply the analytic solutions discussed above to get an estimate for the distortion, while at z > 5 x 10*
the approximation, Eq. (4.16D)), for y, should become applicable, although we still have to include the effect of
photon production on the final amplitude of u.
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Figure 4.7: Absorption optical depth for BR at different redshifts and frequencies x. At low frequencies, the rough scaling
is 74 = x~2. For x =~ 107*, the Universe becomes transparent (7 =~ 1) around recombination. For x =~ 1073 this transition
happens around z ~ 1700 and for x ~ 0.01 itis z =~ 10°.

4.4 Evolution under free-free absorption only

As we just explained, after recombination Compton scattering can be neglected. In this case, the photon
distribution only evolves according to BR, since even DC is already inefficient. The kinetic equation for the
photons thus reads

8f N Kgre™

or - xg
where we included a possible photon source term, S(7, x). The change of the electron temperature by BR
emission is very small and can be neglected. Let us also neglect the difference of the photon and electron
temperature, so that the evolution equation for a distortion to the CMB blackbody becomes

OAf  Kpr(t,0)(1 —e™)

o 3 Af +S(@@ ). (4.30)

Between z = 0 and z;, this equation has the simple solution

[1-f™-D]+S(r,x), (4.29)

Zi
Af(x,0) ~ Af(x,z;)e ) 4 f e ) §(7 x)dz 4.31)
0

(n2) = f “ Kpr(z, x)(1 —e™) o1Nccdz 4.32)
0

x3 H(1+7)’

where we introduced the new source function, S (z, x), with respect to redshift. The free-free absorption optical
depth can be calculated using the result from CosmoREc for the ionization history. We illustrate the result in
Fig. for several values of x. In the post recombination era (z < 10%), signals produced at x > 10™* (= 6 MHz)
are not significantly attenuated by free-free absorption. For percent-level precision, one does furthermore need
to include the effect of free-free absorption at x < 0.1 (= 6 GHz) at 7 ~ 10° - 10°.
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4.5 Inclusion of photon production and the distortion visibility function

In the previous sections, we discussed several analytic solutions that allow describing the distortions created by
photon injection and heating. However, at early times, Compton scattering and photon emission and absorption
have to be considered simultaneously. How can we proceed in this case? Matters are simplified because CS
is still very efficient when photon production is important. We can thus hope to make progress by solving the
problem along a sequence of quasi-stationary stages for the chemical potential.

Let us assume that a non-zero constant chemical potential fully characterizes the distortion for the period
of interest. In that case from Eq. (#.13a)), we can directly deduce

d 3 dlna* 4 dlna®N.
S 2 2ndpy = SRy (4.33)
dr KC dr KE dr

with «° = 2.1419. The right hand side describes the increase of the chemical potential by energy release and the
reduction by photon production. Since photons and ordinary matter are tightly coupled until z ~ 100, heating
of the electrons means heating of the photons, so that one part of the energy release term follows directly from
the matter heating rate. Additional photon production [the source term in Eq. (3.54)] contributes to both energy
release and change of the photon number. DC and BR emission occur mostly at very low frequencies so that
they mainly contribute to changing the photon number density.

To make progress, we have to determine the terms on the right hand side of Eq. (¢.33)) from the photon
Boltzmann equation, Eq. (3.54). Pure energy exchange appears only from the Compton scattering term due
to interactions with the electrons. Energy injection related to the source term, S (7, x), and DC / BR emission
terms adds to this. Assuming that no extra source term of photons is present, this means that

dIna* )}
SRR o 46— )+ Hom ~ =

. 4.34
— - (434)

where 651 = kT4 /mec? and Hem describes the effect on the energy density of the photons related to DC and BR
emission. This term is small and can be neglected right away, also because it actually cancels identically when
computing the equilibrium electron temperature correctly [10]. Here, O} denotes the effective heating rate (=
energy per volume and Thomson scattering time) of electrons and baryons by the considered process. This
rate is slightly smaller than the direct heating rate because the adiabatic cooling of matter always extracts some
amount of energy [17,[10], as we will discuss below. Also, at late times after recombination, not all heating of
the electrons actually directly reaches the photon field, an aspect that has to be included [17].

For the photon production term in Eq. (4.33)), only the source term and the DC / BR emission terms are
relevant, since CS conserves the photon number. For simplicity, we again omit the source term. We also know
that at low frequencies, the CMB spectrum is pushed into equilibrium with the electrons, so that it is best to
describe the distortion with respect to a blackbody at the electron temperature, f = fup(Te) + Af. Since the
electron and photon temperature are close to each other, at linear order this gives

dIna’N, 1 (AT —e™) 1 A(x,Ty)
— T Afdx~ — | ——2% u(t, x), 4.35
dr GY X fdx G J x(e* - D -0 *39)

where we used Af ~ —G(x)u(t, x)/x and defined A(x,T,) = Kgr(x,T,) + Kpc(x,T,)e™*. Now we see a
problem: for x < 1 the integral diverges unless u(¢, x) vanishes faster than A(x)/ x? =~ —1In(x)/x>. Assuming
constant chemical potential is therefore insufficient here! But there is a simple trick according to Sunyaev &
Zeldovich [54]: energetically the high frequency part of the spectrum is important. In that regime, photon
production is negligible, so that one can expect u(z, x) ~ uo(f) [x > 1]. That means that Eq. (4.33) should be
enough to describe the energetic aspects of the problem, while to obtain an expression for the photon production
rate at low frequencies, we do need to look at the kinetic equation again.
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Figure 4.8: Critical frequency, x. as a function of z. Photon transport is inefficient below z ~ 2 x 10° so that the
distortion visibility function quickly approaches unity. DC temperature corrections become noticeable at z > 10%. The
approximations are from Eq. (#.38) and (#39). The figure is taken from Chluba [10].

4.5.1 Quasi-stationary solution for the shape of the chemical potential distortion at x < 1

It is quite straightforward to obtain a solution for the frequency dependence of the chemical potential at x < 1.
We first linearize the problem, assuming that 4 < 1. We furthermore describe the distortion with respect to
the Rayleigh-Jeans spectrum, which is given by a blackbody at the electron temperature, 7. Finally, we take
the limit x < 1, keeping only leading order terms. Assuming that the solution becomes quasi-stationary, from
Eq. (3:34), we find (Exercise 1)

A(t, x)/0,

1, (4.36)

0~ x> +2xu —

X

where we expressed the distortion part in terms of u(¢, x). This equation was first derived by Sunyaev &

Zeldovich [54]. The DC and BR emission coefficients are only weakly dependent on frequency once x < 1.

We can thus replace it by A(z, x) = A(t, x.) = nyg, where the critical frequency can be determined numerically.
Then the equation takes the form [54]

2
0~ 0,20 - 2 p, 4.37)
X

which has the simple solution u(t, x) =~ uo(f) e (/> This shows that at x > x, the chemical potential indeed
becomes constant, while at low frequencies it vanishes exponentially, with a smooth transition between these
regimes around x =~ x.. The solution thus has the expected limiting behavior, even if strictly speaking it is only
valid at low frequencies. Indeed, the correct high frequency behavior is u(z, x) = p(7) + C(2) In x, where the
coefficient, C(¢), is related to the time derivative of the electron temperature [10].
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Critical frequency. To complete the problem, we still need to determine the critical frequency, x, in Eq. (4.37).
For DC, one can solve the problem analytically, finding [19} 4} 27]]

4
x5 01 ~ 860107

where corrections due to the DC Gaunt factor were neglected. These can be included following Chluba [10].
The results are illustrated in Fig.[4.8] At high redshifts, the temperature correction reduces the critical frequency
notably in comparison with Eq. (4.38). This implies that thermalization should be less efficient, since the
frequency at which most photons are produced decreases. At the thermalization redshift z =~ 2 x 10°, the
temperature correction to the critical frequency x. is roughly 0.5% and it reaches ~ 1% at z ~ 4 x 10°.
Although this appears to be small, since the critical frequency enters the problem through an integral, the
cumulative effect matters so that the correction is amplified and hence significant (see below).

For BR alone, we determined the critical frequency numerically using the expressions from Itoh et al. [30]
and assuming a helium mass fraction of ¥, = 0.24. We ﬁncﬂ

1/2

1
b ) (4.38)

2 x 106

-0.672
1+z

MR~ 1.23x107° | ———
2 x 106

(4.39)

to work very well. Comparing with Eq. (#38), we can see that at the thermalization redshift z ~ 2 x 10°, BR
contributes about 10% to the value of the critical frequency. However, the contribution drops rapidly towards
higher redshifts (Fig. . To percent precision, the total critical frequency is xg ~ (x]CDC)2 + (X?R)Z [27]. Also,
by comparing the redshift dependence of the DC and BR critical frequency, we can see that neglecting DC
strongly underestimates the thermalization efficiency.

Approximate photon production term and solution for o(f). We now can compute the photon production
term, Eq. (#.33)), using the solution u(t, x) ~ uo(t) e *V/* Tt is straightforward to show (Exercise 2) that

dIn a3N,, 0y xc @ (4.40)
i ~ Gzpl Ho(T). .

Inserting this into Eq. (4.33), and using Eq. (#.34), we find

duo Q8 gy
dr ppy N UyXc 1o
Yo =3/K° ~ 1401, yy = 4/(G5'K°) ~ 0.7769, (4.41)

where k¢ ~ 2.1419. Then, by introducing the thermalization optical depth

Z ’
orNecdz
7,(2) ~ Oy xe————, 4.42
H@ nyo T H(1+2) @42

and assuming that there is no initial distortion at very early times, we can finally write

02 oD gy
py H(1+7)

10(2) ~ 1.401 f ) (4.43)

with 7,(z,2) = 74(2) — 74(z’). The scaling of 7, with redshift depends on the photon production process. For
any given effective energy release rate, Q7, one can thus directly estimate the final amplitude of the u-distortion.

3Note that again we can evaluate A assuming 7, = T,.
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4.5.2 Single energy release and the distortion visibility function

Assuming only a single energy injection of Ap,/p, at some heating redshift zy, from Eq. (4.43) we find [54]

A
po(@) = 1401 =60 = 1y 2y, ) (4.44)
Y

Here, we defined u, = 1.401Ap, /p,. The factor J(zn,2) = e @D defines the spectral distortion visibility
between the heating redshift z; and z. It determines the fraction of energy injected at z;, that is still visible as a
distortion at z. For J(zn,z) =~ 1, most of the energy is still stored in the distortion, while for 9 (zn, z) < 1, most

of the energy was thermalized and converted into a temperature shift. In this picture, we have the fractional
contributions to the photon energy density

Doy (T A fw dQe/py) s (4.45)
Dy : Py H(+72) z dz

Syl _ f " AQelPy) e g (4.45b)
Py lgise Yz dz

Ayl _ f = dQc/py) (1- e e’ = Aoy _ Apy (4.45¢)
oy lp J: dz Py Py las

so that yg = 1.401 Ap,,/p,,|dist and AT /T =~ (1/4) Apy/py
tion redshift z, > zx =~ 5 x 10*.

7 atleast for energy released above the Comptoniza-

So what does the distortion visibility function look like? To give the distortion visibility function, we need
to compute the thermalization optical depth, 7,(z) in Eq. (#.42)). If we only include DC emission, the integral
is simple, giving [[19}, 4} 27]]

Ipc(a) = Tc(nz = 0) = exp (-[zn/zac]”?). (4.46)

with DC thermalization redshift [e.g.,[27]]

(4.47)

211 Ty 1MS[A =Yy
0.022 [2.7251(] 0.88 .

Zde ~ 1.98 x 106[

assuming Neg = 3.046. At 7 > zq4., thermalization is very efficient and the distortion visibility drops exponen-
tially. If alternatively we only include BR emission, we find [54} [19, [27]

Tor(zn) = exp (—[zn/z0r]" ) (4.48)

with zpr ~ 5.27x 10°. In the classical result, given first by Sunyaev & Zeldovich [54], the power-law coefficient
is 5/4 = 1.25 because a different approximation for the BR Gaunt factor was utilized. This shows that the
thermalization redshift is significantly higher when only BR is included. In addition, the distortion visibility
function drops less steeply at z > 5.27 x 106.

In Fig. 4.9 we compare the distortion visibility functions for DC and BR only with the numerical result
obtained from CosmoTHERM [[17,[10]]. Clearly, DC emission increases the thermalization efficiency significantly.
If only BR were taken into account, we would still expect to see some small distortion even from the tail of the
electron-positron annihilation era around z =~ 2 x 107! This would be quite complicated to compute, but luckily
the distortion visibility is exceedingly small, even if only DC is included, providing a rough but tiny upper
limit. Comparing with the full numerical result, Jpc(zn), provides a very good approximation, which, for
simple estimates, is more than sufficient. In Sect.[4.6|we will discuss some improvements for 7, but for refined
computations it seems more reasonable to simply using the Green’s function method described in Sect. [5
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Figure 4.10: Improved picture for the formation of primordial distortions. At low redshifts (z < zx =~ 5 x 10%), a y-
distortion is formed with distortion visibility close to unity, while at high redshifts a u-distortion appears. The energy
release has to be weighted with distortion visibility function which drops exponentially at z4. 2 2 X 10%, leading to a pure
temperature shift in that regime from inside the cosmic photosphere.
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4.5.3 Improved description of primordial distortions

We can now add the first improvement to the picture for the formation of primordial distortions, presented in
Sect. and Fig. The transition between u and y-distortion is still abrupt around z ~ zg =~ 5 x 10%,
but the distortion visibility at z > zx is no longer unity, which accounts for the effect of thermalization on the
distortion amplitude. We can now write the change of the CMB spectrum with respect to the initial blackbody
at very early times as Af = Yszy + M(x) up + G(x) Ay, where Ay = AT/T = (1/4) Apy/p7|T. Using the
definitions of Eq. (.43), we may write

A © d(OF
20y o f dQe/py) s (4.49a)
Py 0 dz
A © d(0*
Apy| _ f dQelpy) &y (4.49b)
Py i Jo dz

where J,(2) ~ On(zk — 2), Ju(@) ~ Ou(z — 2x) exp(—[z/zac)”?) and Jr(2) ~ 1 = Fu(2). Here, On(x) is
the Heaviside step function, ®g(x) = 1 for x > 0 and ®y(x) = 0 otherwise. The visibility functions, .73,
determine the fractions of energy that go into 7, u and y distortion parts. By construction, one has }}; J; = 1
(see Fig. 4.10] for illustration).

In Sect. we will discuss the last refinement that takes into account that the transition between u and y
distortions is not abrupt but occurs over a range of redshifts where in the intermediate regime the distortion is
not only given by the superposition of u and y-distortion.

4.6 Refined computation of the distortion visibility function

Exercises

Exercise 1 Derive Eq. (4.36) from the photon evolution equation, Eq. (3.54).

Exercise 2 Derive the approximation Eq. (4.40) for the photon production term. How large are the corrections
when you numerically compute the emission term using DC only.



Chapter 5

Computation of the distortions using the
distortion Green’s function

5.1 Spectral distortion in the transition between the i and y-eras
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