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Chapter 1

Overview and motivation

Cosmology is now a precise scientific discipline, with detailed theoretical models that fit a wealth of very
accurate measurements. Of the many cosmological data sets, the cosmic microwave background (CMB) tem-
perature and polarization anisotropies provide the most stringent and robust constraints to theoretical models,
allowing us to determine the key parameters of our Universe and address fundamental questions about infla-
tion and early-universe physics. Clearly, by looking at the statistics of the CMB anisotropies with different
experiments over the past decades we have learned a lot about the Universe we live in, establishing the era of
precision cosmology, establishing the ΛCDM concordance model [2, 41].

But the hunt continues. Today we are in the position to ask exciting questions about extensions of the
standard cosmological model. For instance, what do the CMB anisotropies tell us about the era of Big Bang
Nucleosynthesis (BBN), most importantly about the primordial helium abundance, Yp? How many neutrino
species are there in our Universe, a question that often is addressed through the effective number of relativistic
degree’s of freedom, Neff . What are the neutrino masses and their hierarchy? Are there some decaying or
annihilating particles? What about dark radiation? And regarding the initial conditions of our Universe: what is
the running of the power spectrum of curvature perturbations? How about the gravitational wave background,
parametrized in form of the tensor-to-scalar ratio, r, which determines the energy scale of inflation, at least
when assuming the standard inflation scenario. And to top it up, what about dark energy and the accelerated
expansion of our Universe?

All these questions are very exciting and define todays cutting-edge research in cosmology, driving present-
day theoretical and experimental efforts. The CMB anisotropies in combination with large-scale structure, weak
lensing and supernova observations deliver ever more precise answers to these questions. But the CMB holds
another, complementary and independent piece of invaluable information: its frequency spectrum. Departures
of the CMB frequency spectrum from a pure blackbody – commonly referred to as spectral distortion – encode
information about the thermal history of the early Universe (from when it was a few month old until today).
Since the measurements with COBE/FIRAS in the early 90’s, the average CMB spectrum is known to be
extremely close to a perfect blackbody at a temperature T0 = (2.726 ± 0.001)K [23, 22] at redshift z = 0, with
possible distortions limited to one part in 105. This impressive measurement was awarded the Nobelprize in
Physics 2006 and already rules out cosmologies with extended periods of significant energy release, disturbing
the thermal equilibrium between matter and radiation in the Universe.

1.1 Why are spectral distortions interesting today?

So far no spectral distortion of the average CMB spectrum were found. Then, why is it at all interesting to
think about spectral distortions now? First of all, there is a long list of processes that could lead to spectral
distortions. These include: reionization and structure formation; decaying or annihilating particles; dissipation
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Figure 1.1: CMB spectral distortions probe the thermal history of the Universe at many stages during the pre- and post-
recombination era. Energy release at z & few × 106 only causes a change of the CMB temperature. A µ-type distortion
arises from energy release at 3 × 105 . z . few × 106, while a y-type distortions is created at z . 104. The signal caused
during the µ/y-transition era (104 . z . 3 × 105) is described by a superposition of µ- and y-distortion with some small
residual distortion that allows probing the time-dependence of the energy-release mechanism. In the recombination era
(103 . z . 104), additional spectral features appear due to atomic transitions of hydrogen and helium. These could allow
us to distinguish pre- from post-recombination y-distortions (Figure adapted from [1]).

~ 7 degree 
beam

~ 0.3 degree 
beam

~ 0.08 degree 
beam

Figure 1.2: Over the past decades CMB experiments have seen a dramatic improvement in sensitivity and angular resolu-
tion, here illustrated with a comparison of COBE, WMAP and PLANCK. In contrast, CMB spectral distortion measure-
ments are still in the state of some 20+ years ago, with COBE/FIRAS still being the standard.
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of primordial density fluctuations; cosmic strings; primordial black holes; small-scale magnetic fields; the
adiabatic cooling of matter; cosmological recombination; and several new physics examples [e.g., see 8, for
overview]. This certainly makes theorists very happy, but most importantly, many of these processes (e.g.,
reionization and cosmological recombination) are part of our standard cosmology and therefore should lead
to guaranteed signals to search for. This shows that studies of spectral distortions offer both the possibility
to constrain well-known physics but also to open up a discovery space for non-standard physics and adding
time-dependent information to the picture (Fig. 1.1).

The second reason for spectral distortion being interesting is due to technological advances. Although
measurements of the CMB temperature and polarization anisotropies have improved significantly in terms of
angular resolution and sensitivity since COBE/DMR, our knowledge of the CMB spectrum is still in a similar
state as more than 20 years ago (Fig. 1.2). This could change dramatically in the future with experimental
concepts like PIXIE [35] and PRISM [1] being discussed. These types of experiments could possibly improve
the limits of COBE/FIRAS by more than three orders of magnitude, providing a unique way to learn about
processes that are otherwise hidden from us. At this stage, CMB spectral distortion measurements are fur-
thermore only possible from space, so that in contrast to B-mode polarization science competition from the
ground is largely excluded, making CMB spectral distortions a unique target for future CMB space missions
[48]. This immense potential of spectral distortions was also recently in the NASA 30-year Roadmap study,
where improved characterization of the CMB spectrum was declared as one of the future targets [37].

1.2 Overview of the different lectures and their goals

The main goal of the lectures is to convince you that CMB spectral distortion studies will provide us with a
new and immensely rich probe of early-universe physics, making it an exciting future direction of cosmology.
In the first lecture, introduces a few simple relations for blackbody radiation and then focusses on deriving
the evolution equations for the photon field and ordinary matter (electrons + baryons). In the second lecture,
simple analytic solutions and the different types of spectral distortions will be introduced. The distortion
visibility function and approximate representations of the distortions will be discussed as well as fast but precise
numerical schemes. The third lecture will provide and overview for different sources of distortions. Particular
attention will be payed to the dissipation of small-scale perturbations and decaying particle scenarios. In the
fourth and final lecture, the physics of recombination and the recombination radiation will be discussed as well
as computation of Sunyaev-Zeldovich signals from clusters and what one may be able to learn from this.
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Chapter 2

Blackbody radiation

2.1 What is a blackbody?

When hearing the term ‘blackbody’, one usually thinks of an insulated cavity (German: Hohlraum) with per-
fectly absorbing walls that is internally in thermodynamic equilibrium at a fixed temperature T . In this case,
the radiation field inside the cavity (viewed through a tiny hole) is described by a blackbody spectrum, Bν(T ),
which only has one free parameter, the thermodynamic temperature T (Fig. 2.1).

B⌫(T )

Figure 2.1: Blackbody cavity – The radi-
ation field inside this ideal cavity is given
by the Planck law once sufficient time has
passed to reach equilibrium.

A theoretical explanation for the precise energy/frequency depen-
dence of Bν(T ) caused much confusion at the end of the nineteenth
century. The shape of Bν(T ) was known experimentally, but the prob-
lem was that thinking of the cavity being filled with a bunch of electro-
magnetic waves (modes) and performing simple mode counting with
E = kT per mode gives a divergent result for the photon energy den-
sity. Max Planck eventually solved the problem in 1901 by quantizing
the photon energy1, E = hν, yielding Planck’s law:

Bν(T ) =
2h
c2

ν3

ehν/kT − 1
. (2.1)

Planck’s law determines the intensity of photons per unit frequency.
Intensity has units

[Bν(T )] = ergs sec−1 cm−2Hz−1sr−1 = 1017 MJy sr−1. (2.2)

The spectrum of the Sun is approximately represented by this expres-
sion (let’s be a theorist and forget about all the Fraunhofer lines and
existence of the atmosphere with all its absorption bands) with a tem-
perature Tph ' 6000 K (photosphere). Also, we already heard about the CMB blackbody spectrum, which is
really unbelievably close to a blackbody with T0 = 2.725 K [23].

The shape of the blackbody spectrum for different temperatures is illustrated in Fig. 2.2. We can see that at
low frequencies, the blackbody spectrum scales as

Bν(T )
hν�kT≈ 2ν2

c2 kT ∝ ν2T, (2.3)

which is also known as Rayleigh-Jeans law, while in the other extreme the blackbody spectrum falls off expo-
nentially, following the Wien law:

Bν(T )
hν�kT≈ 2hν3

c2 e−hν/kT . (2.4)

1Planck found this relation empirically but Albert Einstein later explained it in connection with the photoelectric effect.
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10 CHAPTER 2. BLACKBODY RADIATION

2.4 Plancksches Strahlungsgesetz 13

Ab b i l d u n g 2.1: Schwarzkörperspektrum für verschiedene Temperaturen: Der kosmische Mi-
krowellenhintergrund hat das Spektrum eines schwarzen Körpers mit T ⇡ 2.7 K.

Die spektrale Intensität der Strahlung eines schwarzen Körpers ist durch

I⌫ = c u⌫ (2.34)

gegeben. In Abbildung 2.1 wurde I⌫ für schwarze Körper verschiedener Temperatur
T dargestellt. Man erkennt deutlich eine Verschiebung des Maximums mit steigendem
T zu höheren Frequenzen. Diese wird durch das W i e n s c h e V e r s c h i e b u n g s g e s e t z
beschrieben:

⌫max = 2.821
kB

h
T . (2.35)

Dieses ergibt sich aus der Lösung der transzendenten Gleichung ex(3 � x) = 3 mit
x = h⌫/kBT , welche man aus der Ableitung von (2.34) nach der Frequenz erhält.

Betrachtet man nun den hoch- bzw. niederfrequenten Bereich des Spektrums eines
schwarzen Körpers, so ergeben sich aus (2.34) für h⌫ � kBT das W i e n s c h e -Ge s e t z
und für h⌫ ⌧ kBT das R a y l e i g h -Je a n s -Ge s e t z :

IW
⌫ ⇡ 8⇡

c2
h⌫3e

� h⌫
kBT h⌫ � kBT (2.36a)

IRJ
⌫ ⇡ 8⇡

c2
kBT ⌫2 h⌫ ⌧ kBT . (2.36b)

Diese sind schon vor der Entdeckung der Planckschen Strahlungsformel experimentell
bestimmt worden und flossen direkt in die Herleitung von Planck ein. Im RJ-Limes ist
die Intensität proportional zur Temperatur des schwarzen Strahlers.

Figure 2.2: Blackbody spectrum for different temperatures. The intensity maximum is roughly at νmax ≈ 58.8 GHz K−1 T ,
which for the CMB blackbody today is νmax ' 160 GHz or at 2 mm wavelength. For T ' 104 K the intensity maximum
is in the visible part of the electromagnetic spectrum.
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The Rayleigh-Jeans law also follows from simple mode-counting, but it vastly overestimates the blackbody
intensity at high frequencies, leading to an ultraviolet catastrophe. In this case, the discrete quantum nature
of the photons must be taken into account. The Wien law, on the other hand, can be guessed when you think
of moving thermal charges emitting radiation: the velocity distribution (Maxwell-Boltzmann distribution) cuts
off exponentially so that the highest frequency photon distribution should also show this energy dependence.
The Planck law does the trick in both regimes.

Wien’s displacement law For a blackbody spectrum, the maximum of the intensity per unit wavelength
[Iλ = Iν( dν/ dλ) = Iν/(cλ2)] according to Wien’s displacement law is located at

λmax ≈ 2.898 K mm
T

. (2.5)

In terms of intensity per unit frequency (which we will use), from Eq. (2.1) one can find

νmax ≈ 58.8 GHz K−1 T ≈ 160 GHz
[ T
2.725 K

]
, (2.6)

λmax ≈ 5.10 K mm
T

≈ 1.87 mm
[ T
2.725 K

]−1
, (2.7)

which shows that the CMB spectrum peaks at about 2 millimeter wavelength or a frequency of about 160 GHz.

2.2 Photon occupation number, energy and number density

The Planck law specifies the spectral intensity of a blackbody. If we multiply this by 1/c, we have the specific
energy density of photons, Uν = Bν/c (definition of energy dE = Uν dV dΩ dν with dV = c dA dt versus
dE = Iν dA dt dΩ dν). This corresponds to Uν ≡ (photon energy × specific state density × mean occupation
number). The photon energy is E = hν and the specific density of states is2 2ν2/c3, where the factor of 2
accounts for the two polarizations of the photon. Thus the photon occupation number for a blackbody is

nPl =
c3Uν(T )

2hν3 =
c2Bν(T )

2hν3 =
1

ehν/kT − 1
=

1
ex − 1

, (2.8)

where for convenience we introduced x = hν/kT (x = 1 corresponds to ν ≈ 56.8 GHz). For a blackbody, the
occupation number drops exponentially in the Wien tail and diverges as nPl ' 1/x in the Rayleigh-Jeans part of
the spectrum. The ‘−’ sign in the denominator of Eq. (2.8) shows that photon follow Bose-statistics (they are
social and bunch up in phase space) with zero chemical potential (photons do not have a rest mass). Similarly,
for general photon distribution, with intensity Iν(x, γ̂) at location x and in different directions γ̂, the photon
occupation number is given by

nν(x, γ̂) =
c2Iν(x, γ̂)

2hν3 . (2.9)

The photon occupation number is very useful, since it is Lorentz-invariant, n′ν′ ≡ nν, in two inertial frames S
and S ′ moving relative to each other. The specific intensity transforms as (I′ν′/ν

′3) ≡ (Iν/ν3) [Exercise 1].

22 d3k/(2π)3 = 2/(2π)3 × k2 dk dΩ = 2/(2π)3(2π/λ)2 d(2π/λ) dΩ = 2(ν/c)2 d(ν/c) dΩ = (2ν2/c3) dν dΩ
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Photon energy and number density To obtain the photon energy density, we just need to integrate the
specific energy density over all directions and frequencies,

ργ =

∫
Uν dν dΩ =

2
c3

∫
E ν2nν dν dΩ ≡

∫
E f d3 p, (2.10)

where p = E/c = hν/c is the photon momentum. Similarly, for the number density we have

Nγ =

∫
Uν

hν
dν dΩ =

2
c3

∫
ν2nν dν dΩ ≡

∫
f d3 p. (2.11)

For blackbody radiation this simply gives

ρPl
γ =

2h
c3

∫
ν3

ex − 1
dν dΩ =

8πh
c3

(
kT
h

)4 ∫
x3 dx
ex − 1

=
8π5(kT )4

15 c3h3

= aRT 4 ≈ 5.10 × 10−7 mec2cm−3
( T
2.725K

)4
≈ 0.26 eV cm−3

( T
2.725K

)4
(2.12)

NPl
γ =

2
c3

∫
ν2

ex − 1
dν dΩ =

8π
c3

(
kT
h

)3 ∫
x2 dx
ex − 1

=
16πζ3(kT )3

c3h3

= bRT 3 ≈ 410 cm−3
( T
2.725K

)3
, (2.13)

where ζi denotes the Riemann ζ-function. Here, aR = 4σ/c ≈ 7.566 × 10−15 ergs cm−3 K−4 is the radiation
constant, where σ is the Stefan-Boltzmann constant. We also have the useful relation ρPl

γ ≈ 2.701kT NPl
γ . In

particular, we have ρPl
γ ∝ T 4 and NPl

γ ∝ T 3.

2.3 What do we need to do to change the blackbody temperature?

Blackbody radiation is fully characterized by one number, its temperature T . Thus, one simple question is,
what do we have to do to change the temperature to T ′ , T . Let’s suppose we increase the temperature by
adding some energy to the photon field (let’s say we just move all photons upwards in frequency in some way;
no change of the volume or photon number), ε = ∆ργ/ρ

Pl
γ (T ) ≡ (T ′/T )4 − 1, then the expected change in the

photon temperature is

∆T
T

= (1 + ε)1/4 − 1 ≈ 1
4

∆ργ

ρPl
γ

. (2.14)

Clearly, if we stopped here, the new spectrum cannot be a blackbody anymore, since we did not change the
photon number density. To keep the blackbody relation NPl

γ ∝ T 3 unchanged we simultaneously need to add

∆Nγ

NPl
γ

= (T ′/T )3 − 1 = (1 + ε)3/4 − 1 ≈ 3
∆T
T

=⇒ ∆Nγ

NPl
γ

≡ 3
4

∆ργ

ρPl
γ

(2.15)

of photons to avoid creating a non-blackbody spectrum. This condition is necessary but not sufficient, since
it does not specify how the missing photons are distributed in energy! Let us assume we add photons to the
blackbody spectrum at one frequency only. Then ∆ργ = hν∆Nγ and ε = (hν/2.701kT ) ∆Nγ/NPl

γ , so that to
satisfy the condition Eq. (2.15), we just need to tune the frequency to hν/kT ≡ (4/3) 2.70 ≈ 3.60. Clearly, a
blackbody spectrum with a single line at hν ' 3.6 kT is no longer a blackbody even if Eq. (2.15) is satisfied.
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Figure 2.3: Blackbody spectrum and the spectrum of a temperature shift, T∂T Bν = I0(T ) x3G(x) = −I0(T ) x4∂xnPl(x). For
convenience, we plot the spectrum as a function of x = hν/kT and normalize the left y-axis by I0(T ) = (2h/c2)(kT/h)3 ≈
270 MJy sr−1(T/2.725K)3 [the shown curves are basically x3/(ex − 1) and x3G(x)]. The maximum of the blackbody is at
x ≈ 2.821 (≡ 160GHz), while the maximum of the temperature shift is at x ' 3.830 (≡ 217GHz). The upper x-axis and
right y-axis also give the corresponding frequency and spectral intensity for T = 2.725 K.

To go from one blackbody to another we need to have a change of the photon occupation number by

∆nν = nPl(T ′) − nPl(T ) =
1

ex′ − 1
− 1

ex − 1
= −x∂xnPl

∆T
T

+ O(∆T/T )2 =
xex

(ex − 1)2

∆T
T

+ O(∆T/T )2 (2.16)

with x′ = x T/T ′. In what follows, we will frequently use the definition

G(x) = −x∂xnPl =
x ex

(ex − 1)2 ≈


1
x for x � 1
xe−x for x � 1.

(2.17)

which determines the spectrum of a temperature shift, T∂T Bν ∝ x3G(x), for small ∆T/T . Its spectral shape is
shown in Fig. 2.3.

Let’s check if Eq. (2.16) really plays out. We first define the integrals (we already know them from above)

GPl
k =

∫
xk dx
ex − 1

= k!ζ(k + 1) (2.18)

GPl
2 =

∫
x2 dx
ex − 1

= 2ζ3 ≈ 2.4041 (2.19)

GPl
3 =

∫
x3 dx
ex − 1

= 6ζ4 =
π4

15
≈ 6.4939, (2.20)

with the Riemann ζ function, ζ(k), and compare with ∆G3 =
∫

x3G(x) dx = 4GPl
3 and ∆G2 =

∫
x2G(x) dx =

3GPl
2 , implying ∆ργ/ρ

Pl
γ = 4(∆T/T ) and ∆Nγ/NPl

γ = 3(∆T/T ), which certainly satisfies Eq. (2.15).
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Adjusting the volume but leaving the photon number unchanged Let us go back to the example in which
we just move photons upwards in energy, say by some constant fractional amount (think of a batter that hits
all the photons but is more aggressive for the energetic ones), ν′ = ν f . The kinetic Sunyaev-Zeldovich effect
[53] acts somewhat like this, resulting in Doppler boosts ∆ν/ν ' 3p,‖/c = const, but the kSZ effect is not as
democratic and only affect a small fraction, τ ' 0.01, of the CMB photons. Let us also fix the number of
photons inside a given volume V . If we assume that the number of photons in each hit is not changed, after the
batting the new distribution (Nν = Iν/[chν])

V N′ν =
2
c3

V
f 3

ν2

ehν/kT f − 1
≡ V ′

2
c3

ν2

ehν/kT ′ − 1
(2.21)

would be described by a blackbody at temperature T ′ = T f > T , if the photons are confined to a smaller
volume V ′ = V/ f 3. Without readjusting the volume, the energy density of the new distribution would be
ρ′γ = fρPl

γ (T ) = ρPl
γ (T f 1/4) > ρPl

γ (T ) but the number density did not change, N′γ ≡ NPl
γ (T ). After also readjusting

the volume V → V ′, we have ρ′γ = (V/V ′) fρPl
γ (T ) = f 4ρPl

γ (T ) = ρPl
γ (T ′) and N′γ = (V/V ′)NPl

γ (T ) = NPl
γ (T ′), so

that the spectrum is a blackbody again at the higher temperature T ′ = T f inside a smaller volume V ′ = V/ f 3.

Entropy and adiabatic changes of a blackbody Assuming that the photon distribution at all stages is given
by a blackbody (in detail this may actually be pretty hard), we can also apply standard thermodynamics for a
photon gas. Combining the first and second law of thermodynamics we have

T dS γ = dEγ + Pγ dV = d(VρPl
γ ) +

ρPl
γ

3
dV = V dρPl

γ +
4
3
ρPl
γ dV = V d(aRT 4) +

4
3

(aRT 4) dV, (2.22)

where S γ is the photon entropy, Eγ = VρPl
γ the total internal energy and Pγ = ρPl

γ /3 the photon pressure
(Exercise 2). From this, we have

dS γ = V 4aRT 2 +
4
3

(aRT 3) dV = V d
(
4
3

aRT 3
)

+
4
3

(aRT 3) dV = d
(
4
3

aRT 3V
)

=⇒ S γ

V
=

4
3

ρPl
γ

T
. (2.23)

This expression implies that for adiabatic changes of a blackbody (S γ ≡ const) we have V T 3 = const. This
just means that if you increase the temperature by a factor of f you need to decrease the confining volume by
a factor of 1/ f 3, as we already argued above. Recasting this expression in terms of PVγ = const we find the
adiabatic index of photons γ = 4/3. For comparison, a monoatomic ideal gas has γ = 5/3 and for diatomic
idea gases one has γ = 7/5.

Taking a spherical volume, V ∝ R3, that is filled with non-relativistic electrons and radiation and increasing
the radius of the sphere to R′ > R, we directly have Tγ ∝ R/R′, while for the electrons with Pe = NekTe ∝
Te/V we find Te ∝ V1−γ ∝ (R/R′)2. This means that the electron temperature drops faster than the radiation
temperature if you adiabatically expand the volume. A similar process occurs in the expanding Universe but
the cooling electrons are continuously up-scattered by the CMB photons, so that they extract energy from the
photon field. This actually causes a small but inevitable spectral distortion [7, 17], as we will see below. Also,
there would be no distortion if the Universe were only filled with photons!

Exercises

Exercise 1 Show that the phase space distribution function, f , is invariant under Lorentz transformation.
Start by looking at the number of particles dN ∝ f (x, p) d3x d3 p ≡ f ′(x′, p′) d3x′ d3 p′ = dN′.

Exercise 2 Argue that the pressure of an isotropic photon field is given by Pγ = ργ/3. You can use the
definition of the pressure based on the distribution function, for example by starting with the energy-momentum
tensor, T µν = c

∫
d3 p pµ pν f (x, p)/p0.



Chapter 3

Formulation of the thermalization problem
in the expanding Universe
3.1 What is the thermalization problem all about?

When considering the cosmological thermalization problem we are basically asking: how was the present
CMB spectrum really created? Assuming that everything starts off with a pure blackbody spectrum, we will
see that the uniform adiabatic expansion of the Universe (absolutely no collisions and spatial perturbations
here!) leaves this spectrum unchanged – a blackbody thus remains a blackbody at all times. However, if
some energy is transferred to or extracted from the photon field or if photons are injected or absorbed by some
process, then this inevitably creates a momentary spectral distortion. Then be big question is: was there enough
time from the creation of the distortion until today to fully restore the blackbody shape below any observable
level? – The last part of the question depends somewhat on our experimental sensitivity and the first part on
all the interactions of the matter in the Universe with the photon field. By understanding the thermalization
problem, we can then also ask: what can we learn about different early-universe processes and the thermal
history of our Universe by studying the CMB spectrum in fine detail?

Ok, so what do we need to thermalize a distortion? We already discussed some of the requirements to
conserve a blackbody spectrum. First of all, if we transfer some energy ∆ργ/ργ � 1 to the photon field,
we also need to change the number density by ∆Nγ/Nγ ≈ (3/4)∆ργ/ργ. Assuming that the volume occupied
by the photon field does not change, this means we really need to add/create photons! Two of the important
processes here are thermal Bremsstrahlung (BR) and double Compton emission (DC). As we will see below,
these processes are only efficient at low frequencies, but exponentially inefficient in the Wien tail of the CMB.
We therefore need another process that transports photons over frequency, so that low frequency BR or DC
photons can reach the high frequency part more efficiently. This is achieved by Compton scattering (CS), which
works pretty well in the pre-recombination era (z > 103). Bottom line, if any process in the early Universe
creates a CMB spectral distortion, we need to readjust the number of photons and redistribute them in energy
to really restore full equilibrium; the crucial processes are BR, DC emission and CS, for which we need to
understand when they work efficiently and how long they take to complete the thermalization process.

3.2 General conditions and assumption

In the early Universe, photons undergo many interactions with the other particles. If we would attempt to
follow the whole evolution of the photon field from day one of the Universe, including its spatial structure in
detail this would clearly be a difficult endeavor. But we can simplify things, since it is clear that at very early
times, the thermalization process is extremely fast, so that no distortion can survive until today. We therefore
start with the minimal assumptions and then see afterwards if things work out1.

1This type of reverse engineering always goes on, even if people do not often present it that way.

15
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Figure 3.1: Sketch of the thermal history of our Universe from the paper of Dicke et al. [20], published in the same
issue with the CMB discovery paper of Penzias & Wilson [40] in 1965. Parts of this picture were already worked out
by Gamow, Alpher and Herman years earlier, but the value of T0 ' 3.5 K fixed the energy scale for radiation. Neutrinos
decoupled at a temperature kTγ ' 1.5 MeV−2 MeV, while electron-positron annihilation finished around kTγ ' 0.5 MeV.
The light elements produced in the Big Bang Nucleosynthesis (BBN) era froze out at kTγ . 0.1 MeV.
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Figure 3.2: Photon emissivities for different Bremsstrahlung and double Compton cases [55].

3.2.1 Which epochs do we need to worry about?

A sketch of the standard thermal history is shown in Fig. 3.1. We are already far after the inflation epoch and
also past the time of reheating and the quark-gluon phase transition, which all happen at much higher redshifts.
We all know that the light elements were cooked in the BBN era, when the Universe was around 3 minutes
old. Just before that, electron-positron pairs became non-relativistic and dropped out of equilibrium with the
photon field, causing a difference between the temperature of the neutrino background (Tν ' 1.9 K today) and
the CMB due to entropy production.

Electron-positron annihilation was certainly associated with plenty of energy release, and it is actually
not trivial to really compute the possible residual distortion from this era! The big problem is that with all
these electron-positron pairs one has to deal with several Bremsstrahlung processes (e.g., e−p, e+e−, e±e±) and
photons from annihilations, all transitioning from the relativistic to non-relativistic regime (e.g., see Fig. 3.2).
In the pair-dominated plasma, thermalization was definitely very efficient! But what is important for us is that
even if you do the thermalization calculation assuming that electron-positron pairs are long gone, you find
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Figure 3.3: CMB temperature anisotropies as seen by the Planck satellite [41]. The CMB monopole and motion-induced
dipole were removed (as well as all the real life things like foregrounds and our galaxy).

that any distortion should be tiny today if you inject energy at z & few × 106 (you will see this below). We
can therefore forget about searching for distortions from before z ' 107. Electron-positron pairs are thus never
important for our problem. At that point, the temperature of the plasma had dropped below kT ' 2 keV, and we
are just dealing with non-relativistic electrons, protons and helium nuclei immersed in a bath of photons from
the CMB. We can neglect the traces of other light elements for the thermalization problem and also neutrinos
and dark matter are only important for determining the expansion rate of the Universe.

3.2.2 Perturbation in the cosmic fluid and spectral distortions

For the evolution of primordial spectral distortions, the fluctuations in density of the cosmic medium can be
neglected. This greatly simplifies the computations of the thermalization problem, but to understand this let
us take a step back and just think about the CMB temperature and polarization anisotropies. We know that
inflation sets the Universe up with tiny spatial fluctuations in the cosmic fluid (photons, baryons, neutrinos,
dark matter...). These initial perturbations then evolve under gravity to form the structure we see today. At the
time of recombination (z ' 103), the perturbations are all still tiny and reflected by the CMB temperature and
polarization anisotropies. Because from the CMB observations we know that the CMB temperature perturba-
tions around the CMB monopole temperature, T0 = 2.726 K, are ∆Tγ/Tγ ' 10−5 − 10−4 (see Fig. 3.3), also the
CMB spectrum should vary at a similar level only. That is, however, relative to the average distortion, just like
the CMB temperature perturbations are with respect to the average CMB temperature! Because COBE/FIRAS
shows that the average distortion can be no larger than ∆Iν/Iν ' 10−5 − 10−4, this implies that spatial variations
of the CMB spectrum at most could be visible at the level ∆Iν/Iν ' 10−10 − 10−9, at least when we are only
thinking about perturbations in the cosmic fluid as source of the fluctuations. Observing fluctuations of the
CMB spectrum at this level is very futuristic.

There is a couple of ways this could be different. For example, if the source of the distortion is highly
anisotropic (think of a SZ cluster of galaxies) one can see local distortions that are much larger than the
average all-sky limit! Similarly, if you think about annihilating dark matter, then the energy release scales
like ∝ N2

X 〈σ3〉, so that high density regions forming at the later stages could locally produce much larger
distortions. For the thermalization calculation we will consider homogeneous energy release scenarios only.

Finally, we mention that the dissipation of primordial perturbations in the photon field by Thomson scat-
tering creates a uniform spectral distortion due to the mixing of blackbodies of different temperatures. This
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Figure 3.4: Comparison of the Thomson scattering time-scale with the Hubble expansion time-scale.

process allows us to constrain the small-scale power spectrum using future CMB spectral distortion measure-
ments. In this sense, perturbations can be important for the creation of an average distortion, but they only give
tiny corrections when it comes to describing the thermalization of the average distortion.

3.2.3 Electron temperature and ordinary matter distribution functions

Also the electron and ordinary matter distributions functions turn out to be simple, so that one need not worry
about departures from equilibrium, describing all the matter using thermal Maxwell-Boltzmann distribution at
one common temperature, T = Te. This approximation works very well even until very late stages z ' 10!
To understand this a little better let us look at some characteristic time-scales. One useful time-scale is the
Thomson scattering time-scale, tT = (σTNec)−1. It will appear many times and describes on what time-scale
photons scatter with electrons. For the standard cosmology with 24% of helium (by mass), we have

tT = (σTNec)−1 ' 2.7 × 1020 X−1
e (1 + z)−3 sec ' 4.0 × 104

[ Xe

0.16

]−1 [ z
1100

]−3
years, (3.1)

where Xe = Ne/NH is the free electron fraction relative to the number of hydrogen nuclei. This sounds like
a long time between scatterings, ' 40 000 years at recombination! To put this into perspective we have to
compare with the typical expansion time-scale given by the inverse Hubble rate:

texp = H−1 '


4.8 × 1019 (1 + z)−2 sec (radiation domination)
8.4 × 1017 (1 + z)−3/2 sec (matter domination),

(3.2)

where the transition between matter and radiation (photons + neutrinos) domination occurs around zeq ' 3400.
From Fig. 3.4 we see that the Thomson scattering rate (shorter time-scales) is much higher than the Hubble
expansion rate until after decoupling. But even then, the time-scale for scattering only exceeds the expansion
time by a factor of ' 102 − 104.
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Figure 3.5: Relaxation times-scales for relativistic thermal plasma [50]. While electrons and photons are coupled, in our
Universe we have θe = kTe/mec2 ' 4.6 × 10−10(1 + z) ' 5.1 × 10−7[(1 + z)/1100].

We can now turn to the question of the distribution functions for electrons and protons. For this not only the
scattering rates are important, since scattering itself just means isotropization of the medium. What you really
need is scattering events with energy exchange between the particles. Just like for thermalization of CMB
spectral distortions we need Compton scattering (rather than just Thomson scattering) to redistribute photons
in energy. Since we are already in the post-BBN era, the particle numbers are all fixed, so we have non-zero
chemical potentials which fixes the normalization of the distribution functions.

To estimate the efficiency of energy exchange one has to compute the energy transfer from the differential
cross sections. For two-particle interactions, this gives expressions of the form [e.g., 50]

dE1

dt
= f (T1,T2)[kT2 − kT1] ≡ − dE2

dt
, (3.3)

where T1 could denote the temperature of the electrons and T2 the one of protons, for instance. The function
f (T1,T2) > 0 describes the details of the interaction. If T1 > T2, heat flows from particles N1 to N2. To
get a time-scale over which things equilibrate we just look at the total out-of-equilibrium thermal energy,
∆E = (3/2)N(kT2 − kT1) (non-relativistic limit and N ≡ N1 = N2), and compute

t12 =

∣∣∣∣∣
∆E

dE1/ dt

∣∣∣∣∣ =
(3/2)N

f (T1,T2)
. (3.4)

In Fig. 3.5, we can see the comparison of different relaxation time-scales up to the relativistic regime. The
results are all expressed in terms of the Thomson time-scale, tT. The slowest process is the electron-proton
relaxation, but even that is orders of magnitudes faster than Thomson scattering, in particular for the non-
relativistic regime (kTe � mec2) that is relevant to us.
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An estimate of how efficiently free electrons and protons are thermally coupled can be obtained with the
Spitzer formula [49]

tep ≈
√
π

2
mp

me

tT
ln Λ

θ3/2
e ' 1.1 × 10−12 tT (1 + z)3/2 ' 4.1 × 10−8 tT

[
(1 + z)
1100

]3/2

(3.5)

Here, we assumed Ne ≈ Np and also Te ≈ Tp. The Coulomb logarithm, ln Λ, is determined by the minimum
momentum transfer possible (plasma frequency) and we used ln Λ ≈ 20 for the estimate.

Clearly, for free electrons and protons the thermalization timescale is very short. Thus their distributions are
expected to be given by Maxwell-Boltzmann distributions and one common temperature Te ' Tp. For neutral
hydrogen and helium atoms the thermalization is slower but we have many orders of magnitudes of buffer here.
Also, the statement of equilibration is not just a simple energy independent aspect, but for our computation the
bulk of electrons and protons is important, so we are safe. Finally, for very non-thermal electrons (e.g., due
to some particle decay) many energy loss mechanisms allow degrading their energy (for example Compton
cooling) to more manageable energies in very short time. Overall, the simplest approximation for the ordinary
matter distributions functions is well-justified.

3.3 Photon Boltzmann equation in the expanding Universe

The study of the formation and evolution of CMB fluctuations in both real and frequency space begins with the
radiative transport, or Boltzmann equation for the phase space distribution, f (xµ, pµ). The photon Boltzmann
equation, written in abstract form as

d f
dt

= C[ f ], (3.6)

contains a collisionless part d f / dt, which includes the effects of gravity, and collision terms C[ f ], which
account for its interactions with other species in the Universe. The collision terms in the Boltzmann equation
have several important effects. Most importantly, Compton scattering couples the photons and baryons, keeping
the two close to kinetic equilibrium. Bremsstrahlung and double Compton emission allow adjusting the photon
number and are especially fast at low frequencies, we explain now.

3.3.1 Liouville operator and gravitational effects

Neglecting collisions, we deal with the Vlasov-equation for the photon field. This only includes effects related
to gravity, such as gravitational redshifting due to spatial fluctuation in the density and the cosmological red-
shifting due to the Hubble expansion (‘stretching’ of the metric). The photon phase space distribution function
depends on the photon four vectors, xµ = (ct, x) and pµ = (E/c, p), so that we can write (sum over indices)

d f
dt

=
∂ f
∂xµ

dxµ

dt
+
∂ f
∂pµ

dpµ

dt
=
∂ f
∂t

+
∂ f
∂xi

dxi

dt
+
∂ f
∂p

dp
dt

+
∂ f
∂γi

dγi

dt
≡ 0. (3.7)

The gravitational effects are all hidden inside dpµ/ dt. Let’s do perturbation theory, but since we are interested
in the average CMB spectrum, only up to zeroth order. Because, ∂ f (0)/∂xi = ∂ f (0)/∂γi = 0, we have

∂ f (0)

∂t
+
∂ f (0)

∂p
dp(0)

dt
≡ 0, (3.8)

which is quite simple. We only need to compute dp(0)/ dt, which we can obtain from the geodesic equation
[e.g., see 21]. In zeroth order of perturbations, no fluctuations in the density are present, so that no gravitational
redshifting (differences in the gravitational potential) or effects from fluctuations in the local curvature arise. We
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are thus only left with the cosmological redshifting effect, dp(0)/ dt = −H p, which arises from the stretching of
the coordinate system by the Hubble expansion, p ∝ (1 + z) ∝ 1/a. The Hubble factor H = ȧ/a (= 8πGρ/3− κ)
is given by

H2 =

( ȧ
a

)2
= H2

0

[
Ωr(1 + z)4 + Ωm(1 + z)3 + Ωk(1 + z)2 + ΩΛ

]
, (3.9)

where H0 ' 70 km s−1Mpc−1 and Ωi = ρi(z = 0)/ρcr gives the energy density of the different universal
constituents (i.e., relativistic species, matter, curvature and cosmological constant) relative to the critical density

ρcr =
3H2

0

8πG
' 1.879 × 10−29h2 g cm−3 ' 1.054 × 104h2eV cm−3 ' 1.123 × 10−5 h2mp cm−3, (3.10)

where h ≡ H0/[100 km s−1Mpc−1]. For the standard concordance cosmology we have Ωr ' 7.4 × 10−5,
Ωm ' 0.32, Ωk ' 0 and ΩΛ ' 0.68 [41]. Then Eq. (3.8) reads

∂ f (0)

∂t
− H p

∂ f (0)

∂p
≡ 0, (3.11)

where f ≡ f (t, p). With this expression we can prove several properties of the average photon field. First of
all, Eq. (3.11) shows that without collisions the photon distribution function does not change its shape so that
a blackbody spectrum always remains a blackbody spectrum. By integrating the equation over d3 p [to obtain
the photon number density, Eq. (2.11)], we obtain

∂Nγ

∂t
+ 3HNγ =

d(a3Nγ)
a3 dt

≡ 0, (3.12)

which shows that the average photon number scales as Nγ ∝ (1 + z)3. With the blackbody law this directly
implies Tγ = T0(1 + z). Similarly, by integrating over E d3 p [to obtain the photon energy density, Eq. (2.10)],
we obtain

∂ργ

∂t
+ 4Hργ =

d(a4ργ)
a4 dt

≡ 0, (3.13)

which shows that the average photon energy density scales as ργ ∝ (1 + z)4. The r.h.s. of both Eq. (3.12) and
(3.13) will depart from zero if collisions are present. In this case, photon number and also energy density are
not conserved but depend on the energy exchange with other constituents of the Universe (e.g., electrons).

Remark: For electrons and protons, the equivalent of Eq. (3.12), d(a3Ni)/ dt = 0, holds at the redshifts we
are interested in, reflecting that the number of particles is conserved. The energy density equation for baryons
is a little different. A more general form of Eq. (3.13) is [Exercise 1]

∂ρi

∂t
+ 3H (ρi + Pi) = 0, (3.14)

which reduces to Eq. (3.13) for Pγ = ργ/3. For electron and baryons this gives d(a3ρi)/ dt ≈ 0, since the
pressure, Pi, is subdominant. For ordinary matter we have Pi = NikTi, which implies that this condition is
correct when kTi � Mic2 (thermal energy much less important than rest mass energy), which is precisely
the regime we are considering. Again, when including collisions, there can be heat transfer between different
species (which enforces Ti ≡ Te but also allows matter to be heated by photons or energy release), so that we
can derive an evolution equation for the matter temperature when considering both rest mass energy density
and thermal energy density, ρi ≈ Mic2Ni + 3

2 kTiNi, as we show below.
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Abbildung 2.4: Geometrie der Comptonstreuung eines Photons an einem bewegten Elektron

Inverse Comptonstreuung

Begri✏ich bedeutet inverse Comptonstreuung, daß nicht die Photonen Energie an die
Elektronen abgeben, sondern umgekehrt. Voraussetzung dafür ist, daß sich das Elektron
vor dem Stoß in Bewegung befindet. In diesem Fall ist der Viererimpuls des Elektrons
durch pe = �mec(1,�) gegeben. Setzt man dies in (2.44) ein, so ergibt sich

⌫ 0 =
⌫ (1 � � cos↵)

1 � � cos↵0 + h⌫
�mec2

(1 � cos⇥)
. (2.49)

Hier sind ↵ und ↵0 die Winkel zwischen der Bewegungsrichtung des Elektrons und der
Ausbreitungsrichtung des einfallenden bzw. auslaufenden Photons (vgl. Abb.2.4).

An (2.49) sieht man, daß ein niederenergetisches Photon (h⌫ ⌧ �mec
2) von einem

bewegten Elektron in bestimmten Fällen Energie aufnehmen kann:

⌫ 0

h⌫
�mec2

⌧1

#⇡ ⌫(1 � � cos↵)

1 � � cos↵0

�⌧1

#⇡ ⌫(1 � � cos↵)(1 + � cos↵0)

⇡ ⌫
�
1 + �(cos↵0 � cos↵)

�
. (2.50)

Für cos↵ = 0 und cos↵0 = 1 wird z.B. die Frequenz des gestreuten Photons und damit
dessen Energie um einen Faktor 1 + � größer.

Im Mittel über alle Einfalls- und Ausfallsrichtungen ergibt sich in 1.Ordnung von �
kein Energietransfer. Erst die 2.Ordnung liefert einen Nettotransfer. Das kann man sich
folgendermaßen klarmachen: Ein Elektron bewege sich im System K entlang der positi-
ven x-Achse mit der Geschwindigkeit v. Zur Vereinfachung wird in das Ruhesystem K 0

des Elektrons transformiert. Die Frequenz ⌫ 0 des Photons in K 0 ergibt sich aus der Dopp-
lerformel (2.13). Unter der Annahme, daß h⌫ 0 ⇡ �h⌫ ⌧ mec

2 erfüllt ist, kann die Fre-
quenzänderung durch die Streuung vernachlässigt werden (⌫sc ⇡ ⌫ nach (2.45)). Daher
geht der Klein-Nishina-Wirkungsquerschnitt (2.46) in den Thomson-Streuquerschnitt
(2.42) über und der Streuprozeß läßt sich durch Thomsonstreuung beschreiben. Fällt
unpolarisierte Strahlung auf das Elektron ein, so ist die gestreute Gesamtleistung in K 0

durch

P 0
sc =

dE0

dt0
= �TcU 0

gegeben (vgl. (2.40)). Diese ist eine Lorentzinvariante, da sich Energie und Zeit beide wie
die Null-Komponente eines Vierervektors transformieren. Die einfallende Energiedichte

Figure 3.6: Compton scattering angles.

3.3.2 Photon collision term

In the early Universe, photons undergo many interactions with free electrons. The most important processes
are Compton scattering (CS), double Compton (DC) scattering and Bremsstrahlung (BR), but there can also
be non-standard processes (e.g., decaying particles) that add a photon source term. Among these processes,
for most times Compton scattering is the fastest, while in particular DC and BR are only important early on.
Including these processes, the photon collision term takes the form

C[ f ] = C[ f ]|CS + C[ f ]|DC + C[ f ]|BR + C[ f ]|S . (3.15)

The collision term describes local real changes to the photon distribution. We are only interested in the photon
intensity but ignore polarization effects. Below we now consider each contribution separately.

3.3.3 Compton scattering

We already know that Compton scattering is responsible for redistributing photons in energy. This problem
has been studied a lot in connection with X-rays from compact objects [42, 52] and the cosmological context
[59, 54]. In reality, electron-photon scattering also helps isotropizing the photon field (Thomson scattering
limit), although for this energy exchange is not as crucial [12, 11]. The reaction we are considering is

e(p) + γ(k)←→ e(p′) + γ(k′) (3.16)

with the kinematic constraints between the four-momenta p + k = p′ + k′. It is pretty straightforward to show
(using p2 = p′2 = mec2 and k2 = k′2 = 0) that for given angles and energies between the scattering particles
this implies

ν′

ν
=

1 − βµ
1 − βµ′ + hν

γmec2 (1 − µsc)
, (3.17)

where β = 3/c, γ = 1/
√

1 − β2, µ = cosα, µ′ = cosα′ and µsc = cos Θ (see Fig. 3.6 for illustration).
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FIG. 12.ÈSame as Fig. 11 (hl \ 50 keV), but for a higher electron temperature, keVkT
e
\ 25

First, let us compare the line proÐle as calculated from equation (19) with the usual Gaussian proÐle that, e.g., may result
from Doppler broadening of an emission line in the presence of thermal or turbulent motions of ions. To simplify this
comparison, let us assume that For a given plasma temperature, it is natural to adopt for thehl > kT

e
. *lD \ l(2g)1@2

Doppler shift,1 i.e., The mean (rms) frequency shift, S(*l)2T1@2, is lg1@2 for the Doppler proÐle. TheN D exp [[(l@ [ l)2/*lD2].
corresponding value for the Compton-scattered line is l[2g(1 ] 23.5g)]1@2 (as results from the value of the second moment
given by eq. [25]). The width of the single-scattering proÐle at half-maximum (FWHM) is approximately equal to
2l( ln 2g)1@2 \ 1.66lg1@2. The corresponding value for the Doppler proÐle is 2l( ln 2g)1@2, i.e., times more, which is oppositeJ2
to the situation with the rms shift. Thus, in the case of the line forming by Compton scattering, relatively few photons appear
in the upper part of the proÐle (above half-maximum), and an accordingly large fraction of the scattered radiation emerges in
the wings of the line. It is also worth noting that the Doppler proÐle is symmetric, while the proÐle due to Compton scattering
is not.

1 Note that the width used, is times the thermal width of lines of an ion of mass M.*lD, (M/m
e
)1@2 \ 43(M/m

p
)1@2

FIG. 13.ÈSpectra resulting from the single scattering of isotropic monochromatic radiation of energy hl \ 6.7 keV on low-temperature (hl [ 4kT
e
)

thermal electrons, for di†erent values of In this case, the Compton-recoil shift is larger than the Doppler shift. The results of Monte Carlo simulationskT
e
.

(solid lines) are compared with the results of the calculation by the approximate eq. (31) for the mildly relativistic kernel P@ (dashed lines). For the casekT
e
\ 0

(cold electrons), only the Monte Carlo result (double-peaked proÐle) is shown, since our approximation for the kernel is not valid in this case.
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FIG. 14.ÈSame as Fig. 13 (hl \ 6.7 keV), but for high-temperature electrons, In this case, the Doppler shift is larger than the recoil shift.hl \ 4kT
e
.

Now let us consider the peak of the single-scattering proÐle, a detail that makes it so peculiar. In the vicinity of the
maximum ( o l@ [ l o > lg1@2), the spectrum is well approximated by the following expression, which results from equation (19) :

P(l ] l@)
`,~ \ l~1 11
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1 [ hl
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e

B
g1@2 ] ...

D] ...
B

, (35)

where the indices plus and minus signs correspond to the right and left wings, respectively.
We see that the spectrum has a cusp at l@ \ l (a break in the derivative occurs there). Near the cusp, on both sides, the

spectrum can be approximated as a power law, the slopes in the right and left wings [the coefficient at (l@/l [ 1) in eq. (35)]

FIG. 15.ÈSpectra resulting from the single scattering of isotropic monochromatic radiation on weakly relativistic electrons, keV, for di†erentkT
e
\ 10

photon energies. The results of Monte Carlo simulations (solid lines) are compared with the results of the calculation by the approximate eq. (31) for the
mildly relativistic kernel P@ (dashed lines). One can observe how the e†ect of Compton recoil on the spectrum increases as the photon energy becomes higher.
The case of the 122 keV nuclear line produced by 57Co is beyond the scope of our analytical approximation for the isotropic kernel.

Figure 3.7: Compton scattering kernel for E = hν = 6.7 keV photons. The left panel shows cases for cold (hν � kTe)
electrons. In this case the redistribution process has significant contributions from recoil, although even for kTe ' 0.01hν
the Doppler broadening already becomes important. The right panel shows examples for hot (hν � kTe) electrons, where
the redistribution is dominated by Doppler broadening and boosting. Dashed lines show analytic approximations for the
kernel. The figure was taken from Sazonov & Sunyaev [47].

Recoil dominated scattering event (Compton effect). Assuming that the scattering electron is at rest (β = 0
and γ = 1) from Eq. (3.17) we have the relation

ν′

ν
≈ 1

1 + hν
mec2 (1 − µsc)

hν�mec2

↓≈ 1 − hν
mec2 (1 − µsc). (3.18)

If the photon scatters in the forward direction (µsc = 1) there is no change in the incoming photon energy, while
for backward scattering (µsc = −1), the effect is largest giving ∆ν′

ν ' −2 hν
mec2 , with the photon giving a significant

kick (recoil effect) to the electron. While the incoming photon looses energy, the initially resting electron is
now moving in the forward direction, with kinetic energy E′e = 2(hν)2/(mec2) or at a velocity β′ ≈ 2hν/mec2.
On average the photon looses

〈
∆ν′
ν

〉
' − hν

mec2 for all possible scattering angles.

Doppler dominated scattering. If we are in the regime when hν � mec2 but electrons are moving fast, then
from Eq. (3.17) we have the other extreme

ν′

ν
≈ 1 − βµ

1 − βµ′
β�1
↓≈ 1 − β(µ − µ′) − β2(µ − µ′)µ′ + O(β3). (3.19)

In this regime, photons can both loose energy in the scattering event but also gain energy (Doppler boost).
At lowest order in β, no net effect remains when you average over all possible angles and assume that the

electron distribution is isotropic, but at second order in β one finds
〈

∆ν′
ν

〉
' 〈β2〉

3 . Assuming a normal

Maxwell-Boltzmann distribution for the electron velocity distribution, one has
〈
β2

〉
= 3kTe/mec2, so that〈

∆ν′
ν

〉
' kTe/mec2 ≡ θe. While for the recoil dominated case this simple procedure gave the correct result, for

the Doppler dominated case one also has to include the dependence of the scattering probably (scattering cross
section) on the angles and electron velocity, so that the net gain do to Doppler boosting in fact is

〈
∆ν′
ν

〉
' 4θe.

In addition, we will see that an initially narrow photon distribution broadens due to electron scattering. These
two effects can be described using a diffusion approximation.
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Compton collision term. Let us take a look at the Compton collision term. The general starting point is

C[ f ]|CS =
1

2E

∫
Dp Dp′Dk′ (2π)4δ(4)(p + k − p′ − k′) |M|2 F (p, k, p′, k′), (3.20)

where Dp =
d3 p

(2π)32E(p) and so on. The δ-function ensure energy and momentum conservation in the process,
|M|2 denotes the Lorentz-invarant matrix element of the Compton process, and F (p, k, p′, k′) is the statistical
factor, which for non-degenerate electrons (no Fermi-blocking) reads

F (p, k, p′, k′) = fe(p′) f (k′)[1 + f (k)] − fe(p) f (k)[1 + f (k′)]. (3.21)

Here, the factors ∝ (1 + f ) account for the effect Bose-bunching of photons, which leads to induced scattering.
Also, fe(p) is the isotropic Maxwell-Boltzmann distribution function for electrons. By eliminating the d3 p′

and k′ dk′ integrals2 this equation can be recast in terms of the differential Compton cross section

C[ f ]|CS = c
∫

dσ
dΩ
F (p, k, γ̂′) d3 p d2γ̂′, (3.22)

where γ̂′ denotes the direction of the scattered photon. For explicit expressions of dσ/ dΩ see for example
Appendix C2 of Chluba et al. [12], but in general this is not very illuminating; especially because analytic
expression for different orders in the energy exchange and electron temperature can be obtained using computer
algebra programs. If the scattering electron is at rest and the energy exchange can be neglected, we have the
simple Thomson cross section

dσ
dΩ
≈ 3σT

16π
(1 + µ2

sc), (3.23)

which shows the characteristic cos2 Θ angle-dependence of the scattering. Beyond this limit, the expressions
become complicated. However, we can just proceed and try to understand which integrals over the scattering
cross section are actually needed when we assume that the change in the energy of the scattered photon is small
and that the distribution functions are all smooth functions of the energies only. This gives us a Fokker-Planck
approximation for the Compton collision term.

Let us start by rewriting the statistical factor, F . We have fe(E′) = fe(E) e−(E′−E)/kTe = fe(E) eh(ν′−ν)/kTe ,
because of energy conservation, so that

F / fe = e∆xe f (ν′)[1 + f (ν)] − f (ν)[1 + f (ν′)] = (e∆xe − 1) f (ν′)[1 + f (ν)] + f (ν′) − f (ν), (3.24)

with ∆xe = h(ν′ − ν)/kTe. We now assume that ∆ν/ν � 1 (the change in the photon energy per scattering is
small), which gives

F / fe ≈ f + ν∂ν f ∆ +
1
2
ν2∂2

ν f ∆2 − f +

(
∆xe( f (ν) + ν∂ν f ∆) +

∆x2
e

2
f
)

[1 + f ]

≈ xe∂xe f ∆ +
1
2

x2
e∂

2
xe

f ∆2 + xe

(
f ∆ + xe∂xe f ∆2 + xe

∆2

2
f
)

[1 + f ], (3.25)

with ∆ = ∆ν/ν and xe = hν/kTe. To obtain the final result, we need the averages of ∆ and ∆2 over the scattering
cross section and velocity distribution function (‘moments’ of the energy shift). This is a little cumbersome,
but one can find [e.g., 47]

〈∆〉 ≈ 4
kTe

mec2 −
hν

mec2 = θe(4 − xe) (3.26)

〈
∆2

〉
≈ 2

kTe

mec2 = 2θe (3.27)

2Especially for the k′ dk′ integral one has be careful with the δ-function.
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Figure 3.8: Comparison of the Comptonization and Compton cooling time-scale with the Hubble expansion time-scale.

at lowest order in θe = kTe/mec2 and hν/mec2. These expressions are per ∆τ = cσTNe∆t, which defines the
Thomson optical depth, τ. Inserting this into Eq. (3.25), with x = hν/kTγ we obtain [Exercise 2]

∂ f
∂τ

∣∣∣∣∣
CS
≈ θe

x2
e

∂

∂xe
x4

e

[
∂

∂xe
f + f (1 + f )

]
≡ θe

x2

∂

∂x
x4

[
∂

∂x
f +

Tγ
Te

f (1 + f )
]
, (3.28)

which is the famous Kompaneets equation [36]. It can be used to describe the repeated scattering of photons
by thermal electrons in the isotropic medium. The first term in the brackets describes Doppler broadening
and Doppler boosting and the last term accounts for the recoil effect and stimulated recoil. These terms are
especially important for reaching full equilibrium in the limit of many scatterings.

We will discuss various analytic solutions of the Kompaneets equation in Chapter 4. Here, a couple of
words about limitations of this equation. First of all, we assumed that the change in the energy of the photon
by the scattering is small. For hot electrons this is no longer correct and one has to go beyond the lowest orders
in ∆. This is for example important for the Sunyaev-Zeldovich effect of very hot clusters [29, 46, 6], but this
procedure only converges asymptotically [e.g., 13, 18]. The second limitation is that if the photon distribution
has very sharp features (more narrow than the width of the scattering kernel) then the shape of the scattered
photon distribution is not well represented with the diffusion approximation. In this case, a scattering kernel
approach can be used to describe the scattering problem [e.g., 47], although efficient numerical scheme for
many scatterings are cumbersome.
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Comptonization and Compton cooling. Some of the simple properties of Compton scattering are directly
reflected by the Kompaneets equation. For example, scattering conserves the number of photons and it is
straightforward to show that dNγ/ dt|CS ∝

∫
x2 d f / dt|CS dx = 0, as it should be. The second aspect is energy

exchange between electrons and photons. Computing dργ/ dt|CS ∝
∫

x3 d f / dt|CS dx one finds

∂ργ

∂τ

∣∣∣∣∣∣
CS
≈ 4θeργ

[
1 − T eq

e

Te

]
with T eq

e = Tγ

∫
x4 f (1 + f ) dx

4
∫

x3 f dx
≡ h

k

∫
ν4 f (1 + f ) dν

4
∫
ν3 f dν

, (3.29)

where T eq
e defines the so called Compton equilibrium temperature [58] in a given radiation field f (x). If

T eq
e > Te, electrons are heated and photons loose energy. No energy exchange happens if T eq

e = Te, which
does not necessarily mean that the photon field is a blackbody though. If f (x) = 1/(ex − 1) then T eq

e = Tγ. The
time-scale on which electrons transfer energy to the photons is

teγ =
tT

4θe
' 4.9 × 105 tT

[
1 + z
1100

]−1

' 1.2 × 1029(1 + z)−4 sec . (3.30)

Comparing this with the Hubble rate one finds that at zK ' 5 × 104, Comptonization becomes inefficient (see
Fig. 3.8). At this redshift, the characteristic of spectral distortions changes, as we will see below.

The Comptonization time-scale is is quite long compared to the time-scale over which electrons are heated
by photons. The big difference is that every electron has ' 1.9×109 photons to scatter with, making the number
of interactions much larger. From ρth = (3/2)

∑
i NikTe = (3/2)NH(1 + fHe + Xe) kTe for the thermal energy of

the plasma we have

tγe =
ρth

ργ
teγ ' 3NH(1 + fHe + Xe)

8ργ/(mec2)
tT ' 0.31 tT (1 + z)−1 ' 7.3 × 1019(1 + z)−4 sec . (3.31)

where the estimate was evaluated for Xe = 1 + 2 fHe (fully ionized) and fHe ≈ Yp/[4(1 − Yp)] ≈ 0.079. Before
recombination, the Compton cooling time is about ' 1.6×109 times shorter than the Comptonization time. This
means that electrons and baryons (through Coulomb scatterings) remain in full thermal contact with the photon
field until very late. From Fig. (3.8) one can see that thermal decoupling is expected to happen somewhere
around z ' 100 − 200 [56]. This is when the earliest signals from the 21cm era are produced [43].

Remark about Compton drag. Another very important moment in the cosmic history is when photons no
longer can stop electrons and baryons from falling into the dark matter potential wells. The relevant Compton
drag time-scale is slightly shorter than the Thomson scattering time-scale and is related to the coupling of the
CMB dipole with the baryon bulk velocity (→ linear order momentum exchange). The associated time-scale
follows directly from the evolution equation of the baryon velocity, giving tdrag ' R tT, where R = 3ρb/4ργ '
673/(1+ z) is the baryon loading of the fluid. Comparing it with the expansion time-scale, the redshift at which
Compton drag stops is determined by zdrag ' 136/X2/5

e , which is a little lower than the decoupling redshift.

3.3.4 Bremsstrahlung
Thermal Bremsstrahlung is the first and most obvious suspect for photon production and absorption in the
early Universe. It turns out that in our Universe double Compton emission is much more important [19], but
nevertheless, at late times BR has to be included for precise computations. We already understand that we
only need to worry about electron-proton (or a little more general, electron-ion) Bremsstrahlung, since e−e−

Bremsstrahlung is very inefficient at low temperatures (cf. Fig. 3.2). Considering hydrogen ions as an example,
this process has the form

e(p) + H+(h)←→ e(p′) + H+(h′) + γ(k), (3.32)

where the forward process results in BR emission and the backward process describes BR absorption. Without
the extra photon this process is basically like a Coulomb scattering event. BR emission and absorption are thus
the lowest order radiative correction with the photon number changing.
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Figure 3.9: Bremsstrahlung process.

Before trying to understand things a bit more rigorously, let’s follow the classical estimate using the dipole
approximation. Imagine an electron passing a charge Ze+ at some impact parameter b (see Fig. 3.9 for illustra-
tion). At the closest encounter the acceleration of the electron is a ' Ze2/(meb2) and the time it takes to pass
the charge is ∆t ' 2b/3. Then the change in the velocity of the electron is ∆3 ' 2Ze2/(meb3) (if you integrate
the force along a straight path at impact parameter b this is actually what you get). Then the total radiated
energy in one single encounter is roughly given by

dE
dν
' 4e2

3c3 ∆32 ' 16Z2e6

3m2
ec332b2

. (3.33)

At frequencies ν � 1/∆t ' 3/(2b) [short wavelength limit], hardly any power is emitted, so that dE/ dt ≈ 0 in
that regime.

Now lets assume there is density Ni of ions with charge Ze+ and we have Ne electrons. The flux of electrons
incident per unit time and area on the ions is Ne3, and the cross section at fixed impact parameter is 2πb db.
Then the total emission of energy per unit volume, unit time and unit frequency is

dE
dV dt dν

' NeNi3

∫
dE
dν

2πb db ' 32πe6

3m2
ec33

Z2NeNi

∫
db
b
. (3.34)

Formally, the integral over the impact parameter diverges, but an upper cut-off is introduced at bmax ' 3/ν (for
a fixed frequency, not much power is emitted there according to the approximations). A lower limit on the
impact parameter is introduced when (i) the straight line approximation breaks down (∆3 ' 3) or (ii) when the
classical limit is no longer valid. Overall, these complications can be shoveled into the Bremsstrahlung Gaunt
factor, gff(3, ν), for which tables exist [e.g., 32]. In this way, we have

dE
dV dt dν

' 32π2e6

3
√

3m2
ec33

Z2NeNi gff(3, ν) (3.35)

for the BR emission at a single velocity. By averaging over a Maxwell-Boltzmann distribution at a temperature
Te, one can find

dE
dV dt dν

' 32π2e6

3
√

3m2
ec3

Z2NeNi

√
2me

πkTe
e−

hν
kTe ḡff(Te, ν) ∝ Z2NeNi T−1/2

e e−xe . (3.36)

Here, we used 〈1/3〉 '
√

2me
πkTe

e−
hν

kTe and that the minimal velocity required for the production of a photon of

energy hν is 3min '
√

2hν/me. Extensive tables for the thermally averaged Gaunt factor, ḡff(Te, ν), can be found
in Karzas & Latter [32] and Itoh et al. [30]. Overall, the Gaunt factor varies slowly with photon energy (see
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exact Gaunt factor at low temperatures. Therefore, they will
not be relevant to the intracluster plasma. However, for the
sake of completeness, we will replace some of the tables in
Nozawa et al. (1998) with the revised ones. In particular, we
replace the tables on pages 541, 551, and 552 of Nozawa et
al. (1998) with Tables 1È3. In Tables 1È3, c2 is deÐned by

c2 \ Z
j
2 Ry

kB T
\ Z

j
2 1.579 ] 105 K

T
. (3)

At sufficiently high temperatures, we adopt the relativistic
Gaunt factor. At sufficiently low temperatures, we adopt the
nonrelativistic exact Gaunt factor. At intermediate tem-
peratures, these two Gaunt factors coincide with each other
for small values of For larger values of the twoZ

j
. Z

j
,

Gaunt factors show small discrepancies even at interme-
diate temperatures. Therefore, we generally interpolate
between the two Gaunt factors smoothly at intermediate
temperatures. To be more precise, we Ðnd the point at
which the discrepancy between the two Gaunt factors (for
Ðxed values of and u) is the smallest as a function of theZ

jtemperature. Then we interpolate between the two Gaunt
factors smoothly using a sine function. The temperature
range for the interpolation is * log T \ ^0.1 to ^0.5 with
respect to the central temperature at which the discrepancy
is the smallest depending on the minimum value of the
discrepancy.

We give analytic Ðtting formulae for TheZ
j
\ 1È28.

range of the Ðtting is 6.0 ¹ log T ¹ 8.5, [4.0 ¹ log u ¹
1.0. We express the Gaunt factor by

g
Zj

\ ;
i,j/0

10
a
ij

tiUj , (4)

t 4
1

1.25
(log T [ 7.25) , (5)

U 4
1

2.5
(log u ] 1.5) . (6)

The coefficients for are presented in Table 4.a
ij

Z
j
\ 1È28

The accuracy of the Ðtting is generally better than 0.1%.

3. ANALYTIC FITTING FORMULA FOR THE

NONRELATIVISTIC EXACT GAUNT FACTOR

The thermal bremsstrahlung emissivity in the nonrelativ-
istic limit is expressed in terms of the nonrelativistic exact
Gaunt factor (Nozawa et al. 1998) bygNR

SW (u)TNR du \ 1.426 ] 10~27gNR(c2, u)n
e
n
j
Z

j
2 T 1@2

] e~u du ergs s~1 cm~3 , (7)

u 4
+u

kB T
, (8)

c2 4
Z

j
2 Ry

kB T
\ Z

j
2 1.579 ] 105 K

T
, (9)

where u is the angular frequency of the emitted photon, T is
the temperature of the electrons (in kelvins), is then

enumber density of the electrons (in cm~3), and is then
jnumber density of the ions with charge (in cm~3). ItZ

jshould be noted that the thermal bremsstrahlung emissivity
in the nonrelativistic limit is a function of c2 and u only. It
does not depend on and T separately, but on the ratioZ

jThis is a remarkable fact for nonrelativistic electrons.Z
j
2/T .

In Figure 1 we show the nonrelativistic Gaunt factor as a
function of u for various values of c2. In Figure 2 we show
the nonrelativistic Gaunt factor as a function of c2 for
various values of u.

We give an analytic Ðtting formula for the nonrelativis-
tic exact Gaunt factor. The range of the Ðtting is [3.0 ¹
log c2 ¹ 2.0, [4.0 ¹ log u ¹ 1.0. We express the Gaunt

FIG. 1.ÈNonrelativistic exact Gaunt factor as a function of u for
various values of c2.

FIG. 2.ÈNonrelativistic exact Gaunt factor as a function of c2 for
various values of u.

Figure 3.10: Thermally averaged Gaunt factor in the non-relativistic limit. Here, u = hν
kTe

and γ2 = Z21.579×105K
Te

. The figure
is taken from Itoh et al. [30] and a modern version of computations by Karzas & Latter [32].

Fig. 3.10), and the strongest dependence of the photon emission is due to the exponential cut-off at photon
energies hν � kTe, simply because very few electrons could really emit photons at that energy. For estimates
one can use ḡff(Te, ν) ≈

√
3
π ln(2.25/xe) for xe ≤ 0.37 and ḡff(Te, ν) ≈ 1 otherwise.

With Eq. (3.36) the problem is already solved (at least approximately)! To write down the change of the
photon distribution function due to BR emission, we only need to convert from change in the energy density
to photon occupation, which gives a factor of ≡ c3

8πhν3 . Here, we assumed that the BR emission process is
isotropic. Since photons are social, we also need to multiply by (1 + f ) to account for stimulated emission.
Then the change in the photon occupation number due to BR emission is

∂ f
∂t

∣∣∣∣∣
em
≈ 8π

3
e6

mehν3

Z2NeNi√
6πmekTe

e−
hν

kTe ḡff(Te, ν) [1 + f (ν)] = εff(ν,Te)[1 + f (ν)]. (3.37)

For the inverse process (BR absorption) we can use the detailed balance argument: in full equilibrium there
should be not net emission and absorption. The absorption term has the form ∂ f /∂t|abs = NeNi α(Te, ν) f and
by setting ∂ f /∂t|abs ≡ ∂ f /∂t|em for f (ν) = (exe − 1)−1 we find ∂ f /∂t|abs ≡ εff(ν,Te) exe f (ν). In total this gives

∂ f
∂t

∣∣∣∣∣
BR
≈ εff(ν,Te)

[
1 − f (exe − 1)

]
=

8π
3

e6h2

me(kTe)3

Z2NeNi√
6πmekTe

e−xe ḡff(Te, ν)
x3

e

[
1 − f (exe − 1)

]
. (3.38)

We cheated, since nobody actually told us that away from equilibrium one should have a factor ' exe for
the absorption term instead of ex! However, the argument is that the emission and absorption are driven
energetically by the thermal electrons, so that the BR emission and absorption are driven into equilibrium
at the electron temperature Te. Even if Tγ , Te, at (very) low frequencies equilibrium will still be reached
and it is controlled by the electrons and ions, so we actually need exe rather than ex. Notice also, that in the
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approximation the energy required to produce the photon comes solely from the electron! The energy of the
ion does not change (it only carries away momentum but no energy) by the process.

We can rewrite Eq. (3.38) in terms of the Thomson rate, tT = (σTNec)−1. The Thomson cross section is
given by σT = (8π/3)r2

e = (8π/3)[e2/mec2]2 ' 6.65 × 10−25 cm2. If we also use the Compton wavelength,
λe = h/mec ' 2.43 × 10−10 cm and fine-structure constant, α = 2πe2/hc ' 1/137, this yields

∂ f
∂τ

∣∣∣∣∣
BR
≈ KBR e−xe

x3
e

[
1 − f (exe − 1)

]
(3.39)

KBR =
α

2π
λ3

e√
6π θ7/2

e

∑

i

Z2
i Ni ḡff(Zi,Te, ν) ' 1.4 × 10−6

[ ḡff

3.0

] [
Ωbh2

0.022

]
(1 + z)−1/2. (3.40)

With these expressions we can ask on what time-scale the distribution function is brought into equilibrium with
the electrons under BR emission and absorption at any given frequency xe. The time-scale is

tBR ≈ x3
e tT

KBR(1 − e−xe)
≈ 1.6 × 1026

[ ḡff

3.0

]−1 [
Ωbh2

0.022

]−1 x3
e

1 − e−xe
(1 + z)−5/2 sec . (3.41)

This expression shows that at higher redshifts BR is more efficient, which of course should not surprise us
much because the density increases. But also, the lower frequencies you look at, the faster photons thermalize.
To give an example, at xe . 10−2, one can thermalize within less than a Hubble time at z & 105 using BR alone.

Explicit Collision integral. Similar to Compton scattering, the Bremsstrahlung collision term reads

C[ f ]|BR =
1

2E

∫
Dp Dh Dp′Dh′ (2π)4δ(4)(p + h − p′ − h′ − k) |M|2 F (p, h, p′, h′, k), (3.42)

where the statistical factor takes the form

F (p, h, p′, h′, k) = fe(p) fp(h)[1 + f (k)] − fe(p′) fp(h′) f (k). (3.43)

For isotropic distributions, one can furthermore write fe(p′) fp(h′) = fe(p) fp(h) ehν/kTe , so that the collision
term directly takes the form C[ f ]|BR ∝ I(Te, k)[1 − f (k)(exe − 1)]. With these expressions one can in principle
compute the full problem. The standard simplification is that the ion does not exchange any energy with the
electron or the photon, since it is so heavy. It does, however, carry away some of the momentum, because a
process of the form e(p)←→ e(p′) + γ(k) is kinematically not allowed.

3.3.5 Double Compton scattering

In Fig. 3.2, the double Compton emissivity is a couple of orders of magnitude smaller than the emissivity of
BR. However, BR emission scales like ∝ NeNi, while double Compton depends on ∝ NeNγ. Due to the huge
specific entropy of our Universe this means that double Compton emission actually dominates as a source of
photons, at least at early times (due to its temperature dependence which we discuss now).

The DC process has the form

e(p) + γ(k)←→ e(p′) + γ(k′) + γ(k2). (3.44)

The differential cross section for this process was first calculated by Mandl & Skyrme [39] and several useful
expressions can be found in the book of Jauch & Rohrlich [31]. Like BR is the first radiative correction to
Coulomb scattering, DC is the first radiative correction to Compton scattering, where γ(k2) is usually though
of as a soft photon with hν2 � hν and ν ' ν′. In this limit, the photon γ(k′) plays the role of the scattered
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photon and γ(k2) can be distinguished because of its energy. There is no classical analogue like for BR, but
in the soft photon limit the DC cross section becomes rather simple. In this approximation, Lightman [38]
derived the kinetic equation for the DC process which takes a form that is very similar to that of BR. In the first
computations of the cosmological thermalization problem only BR was included [54] and later Danese & de
Zotti [19] added DC to this, showing that thermalization is more rapid than just with BR.

DC emission in the soft photon limit. To compute the production of photons by the DC process, we can
start with resting electrons and assume that the scattering photon does not lead to a large recoil of the electron,
hν � mec2. In this limit, we have ν ≈ ν′ + ν2, which means that after the scattering event the electron is
basically still at rest and also that the energy is shared between to two outgoing photons. In principle γ(k2) and
γ(k′) are completely equivalent photons, but assuming that ν′ ' ν (this restricts the scattering angles close to
forward scattering) one can label the photons and use the soft photon limit of the DC cross section. From Jauch
& Rohrlich [31], we then have

dσ
dν dν′ dν2

≈ 4α
3π
σT

(
hν

mec2

)2
δ(ν′ − ν)

ν2
, (3.45)

where we already averaged over all possible angles of the incoming electron and photon and the scattered
photon. This expression shows that for very low energy photons, the DC emission is suppressed by (hν/mec2)2.
Thus, for a distribution of photons (say a blackbody), most of the emission arises from the high frequency tail
of the spectrum. To get the net emission in terms of number of photons around ν2 we have

8πν2
2

c3

∂ f (ν2)
∂t

∣∣∣∣∣
em
≈ cNe

∫
dσ

dν dν′ dν2

8πν2

c3 f (ν)[1 + f (ν′)][1 + f (ν2)] dν dν′, (3.46)

where the factors of (1 + f ) account for stimulated DC emission. Thus, the DC emission term is

∂ f (ν2)
∂τ

∣∣∣∣∣
em
≈ 4α

3π

∫
ν2

ν3
2

(
hν

mec2

)2

f (ν)[1 + f (ν)][1 + f (ν2)] dν =
4α
3π

θ2
γ

Idc

x3
2

[1 + f (x2)] (3.47a)

Idc =

∫
x4 f (x)[1 + f (x)] dx ≈ −

∫
x4∂x fbb(x) = 4GPl

3 =
4π4

15
≈ 25.98. (3.47b)

For the approximation of Idc we assumed that the seed photons are given by the CMB blackbody spectrum.
This should be a good approximation since the distortions only add a very small correction. This expression
also shows that without photons present initially, no DC emission occurs!

By using the detailed balance argument, we can then write

∂ f
∂τ

∣∣∣∣∣
DC
≈ KDC

x3

[
1 − f (exe − 1)

]
(3.48a)

KDC =
4α
3π

θ2
γ Idc ' 1.7 × 10−20 (1 + z)2. (3.48b)

The DC emission coefficient, KDC, is a strong function of temperature, but in the soft photon limit it does
not depend on frequency. Comparing with BR, we can find that in our Universe DC emission becomes more
important than BR emission at z & 3.7×105. As we will see, this means that bulk of the thermalization process
is controlled by DC emission!
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Figure 4.10: DC correction factor Gm,nr for soft initial photons (ω0 = 10−4) as a function of the electron
temperature θe. Also shown is the full integral approximation (4.40a) and the expansion (4.40b), taking
into account the corrections up to different orders in θe, as indicated respectively.
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Figure 4.11: Critical frequency ω2,crit above which the analytic approximation Hnr
em as given by equation

(4.41) in combination with (4.40a) deviates more than ε percent from the full numerical result for H .
Also shown are the results for the Gould-formula (4.27). All the curves were calculated for soft initial
photons (ω0 = 10−4) and a fixed lower energy cutoff wmin = 10−4.

Figure 3.11: Enhancement of the DC emissivity due to thermal motions of the electrons. The approximation Eq. (3.49)
works extremely well even to high temperatures. The figure is taken from Chluba et al. [14].72 The double Compton process in mildly relativistic thermal plasmas
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Figure 4.6: DC correction factor G0
m for cold electrons and monochromatic initial photons as a func-

tion of ω0. Also shown are the direct expansion (4.34), up to different orders in ω0, and the inverse
approximation (4.35), as indicated respectively.

where the correction factor G0
m(ω0) following from the direct series expansion is given by

G0
m(ω0) = 1− 21

5
ω0 +

357

25
ω2

0 −
7618

175
ω3

0 +
21498

175
ω4

0 . (4.34)

In order to distinguish the DC correction factor in the soft photon limit from H(w), which
applies for the full spectral range, we here introduced the new letter G.

Figure 4.6 shows the numerical result for G0
m(ω0) in comparison to the analytic approxima-

tion (4.34), taking into account the corrections up to different orders in ω0. The approximation
converges only very slowly and in the highest order considered here breaks down close to
ω0 ∼ 0.15. Due to this behavior of the asymptotic expansion there is no significant improve-
ment expected when going to higher orders in ω0, but the monotonic decrease of the emission
coefficient suggest that a functional form G0

m = [1 +
∑4

k=1 ak ωk
0 ]−1 could lead to a better

performance. Determining the coefficients ai by comparison with the direct expansion (4.34)
one may obtain an inverse approximation for the DC correction factor

G0,inv
m (ω0) =

1

1 + 21
5 ω0 + 84

25 ω2
0 − 2041

875 ω3
0 + 9663

4375 ω4
0

. (4.35)

As Fig. 4.6 clearly shows, G0,inv
m (ω0) provides an excellent description of the numerical result

even up to relativistic energies of the initial photon.
Combining (4.35) with the Gould-formula (4.27) leads to the approximation

H0
em(ω0, ω2) = HG(w)×G0,inv

m (ω0) (4.36)

for the ratio H as defined by equation (4.28). In order to test the performance of this approxima-
tion, we have numerically determined the lowest frequency, ω2,crit, at which the approximation
for H deviates by ε percent from the full numerical result. In Fig. 4.7 the results for ω2,crit are

Figure 3.12: Suppression of the DC emissivity for larger incoming photon energy ω0 = hν0/mec2. The approximation
Eq. (3.50) works extremely well even to large energies. The figure is taken from Chluba et al. [14].
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Beyond the Lightman approximation – Temperature corrections. For the derivation of Eq. (3.48), we
assumed that (i) the electrons are initially at rest and (ii) the incoming (≡ scattering) photon does not loose
much of its energy (no recoil↔ hν � mec2) so that the ‘emitted’ photon is very soft. One can go beyond these
approximations defining DC Gaunt factors based on analytic expressions. At early times (z & few × 106) and
when hν2 ' hν (→ Gould-factor), this makes a significant difference.

Let us first consider corrections due to the fact that the electrons can be moving. In the rest frame of the
electron, a incoming mono-energetic photon has an energy νe ' γν, so that the DC production rate is expected
to be γ2 = 1/(1 − β2) times larger if the electron is moving. Taking all angular dependencies into account, you
find the photon production rate to be increased by G(β) ' (1 + β2)/(1 − β2) [14]. Averaging over a relativistic
thermal distribution one finds the enhancement factor

G(θe) =
[1 + 24θ2

e ]K0(1/θe) + 8θe[1 + θ2
e ]K1(1/θe)

K2(1/θe)
≈ 1 + 6θe + 15θ2

e +
45
4
θ3

e −
45
4
θ4

e + O(θ3
e ). (3.49)

The comparison with the numerical result for the DC enhancement factor caused by moving electrons is illus-
trated in Fig. 3.11. The approximation Eq. (3.49) clearly works extremely well even to high temperatures.

If we instead crank up the energy of the incoming (scattering) photon, we expect the DC emission rate
to decrease just like the Compton scattering cross section decreases in the Klein-Nishina regime. In terms of
ω = hν/mec2 � 1 one can find the correction factor [14]

G(ω) = 1 − 21
5
ω +

357
25

ω2 − 7618
175

ω3 +
21498
175

ω4 + O(ω5) ≈ 1

1 + 21
5 ω + 84

25ω
2 − 2041

875 ω
3 + 9663

4375ω
4
. (3.50)

The comparison with the numerical result for the DC suppression factor is illustrated in Fig. 3.12. Again the
approximation works very well in particular when using the inverse formula that was deduced by inspecting
the terms of the Taylor series. For comparison, the suppression of the total Compton scattering cross section is
σ ' σT(1 − 2ω), which shows that the effective suppress of the DC rate is about twice as large.

Obviously, one can also find approximations when both electrons are moving and the energy of the incom-
ing photon increases. Analytic approximation for this case are given in Chluba et al. [14], with enhancement
terms due to the electrons motion fighting the suppression for larger photon energy. To include all effects
for blackbody photons as source, one again has to perform a Fokker-Planck expansion of the DC collision
term. This becomes quite complicated and details can be found in Chluba [7] and Chluba et al. [14]. A useful
expression that approximates the reduction of the DC emissivity relative to the Lightman approximation for
blackbody radiation with temperature takes the form [7]

Gdc(θγ, θe) =
1

1 + 19.739θγ − 5.5797θe

θe≈θγ
↓
=

1
1 + 14.16 θγ

. (3.51)

A comparison with the numerical result is shown in Fig. 3.13, illustrating the performance of the approximation.
It also improves over previous fit given by Svensson [55] given for Wien spectra only, because Eq. (3.51)
includes both stimulated DC emission and differences in the electron and photon temperature.

Beyond the soft photon limit. In the previous paragraph we considered corrections in θe and ω = xθγ. But
we still worked in the soft photon limit, ν2 � ν and ν ' ν′. Assuming again resting electrons and hν � mec2,
one can readily give the general expression for all energies of 0 ≤ hν2 ≤ hν. The frequency-modulation of the
DC emissivity is captured by the Gould factor3 [24]

Hdc(ν2/ν) ≈ ν2

ν
HG

(
ν2

ν

)
(3.52)

where HG(w) = [1 − 3y + 3y2/2 − y3]/y with y = w[1 − w]. In the limit ν2/ν → 0, one finds Hdc(x) → 1 and
similarly for ν2/ν→ 1 (due to symmetry around ν2/ν = 1/2). Again this factor was simply obtained by setting
β = 0 in the full DC cross section, expanding to lowest order in ω � 1 (so that ν ≈ ν′+ν2) and then performing
all the angle integrals.

3Note that HG(w) is 1/2 of F(w) given by Eq. (27) of Gould [24]. The factor of 2 is to avoid double counting of photons.
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Figure 4.20: Production rate of soft photons by double Compton scattering relative to the non-
relativistic result G0 for Planckian photons as function of the electron temperature and different values
of ρ = θe/θγ . Presented are the full numerical result, the 4. order direct formula as given by equation
(4.59) and the inverse formula (Eq. (4.60)).
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Figure 4.21: Range of applicability for a Planck spectrum with different ρ = θe/θγ : Shown is electron
temperature θe above which the relative difference between the analytic predictions and the numerical
results becomes bigger than ε percent. The numerical results were compared with the inverse formula,
equation (4.60), and the direct expansion (4.59) up to first order and fourth order in temperature, as
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Figure 3.13: Double Compton Gaunt factor for Planckian photons at a temperature θγ and electrons at temperature
θe = ρ θγ. Approximation Eq. (3.51) represents the full numerical result extremely well, especially for θγ ≈ θe. The figure
is taken from Chluba [7].
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Figure 4.5: Two-photon DC emission spectrum for cold electrons. Shown is the ratio H(w) as given
by (4.28) for different initial photon energies. The divergencies at w = 0 and w = 1 have been separated
out. All the spectra are given for a fixed lower energy cutoff wmin = 10−4.

Gould-formula

The result obtained by Gould [54] can be derived in a similar manner as the Lightman-
approximation (4.24), but without performing a series expansion of (4.8) in terms of ν2, i.e.
making a priory no assumption about the energy of the emitted photon or equivalently going
beyond the soft photon approximation. This increases the complexity of the expression for the
differential cross section significantly and the intermediate step is therefore omitted here. The
integrations then lead to the Gould-formula for DC emission spectrum of cold electrons and
low energy, monochromatic initial photons

∂n2

∂t

∣∣∣∣
m

em,G

= w HG(w)× ∂n2

∂t

∣∣∣∣
m

em,L

, (4.26)

with w ≡ w2 = ν2/ν0 and

HG(w) =
1− 3w[1 −w] + 3

2w2[1− w]2 − w3[1−w]3

w[1− w]
. (4.27)

A interpretation of HG(w) can be given as follows: multiplying ∂tn2|mem,G by ν2
2 and dividing by

N0 one obtains the relative change of the number of photons due to DC emission per dw and per
dt, i.e. HG(w) is proportional to the relative photon production rate, ∆Ṅm

em,G/N0 ∝ HG(w) dw.
In order to compare the numerical results for different initial conditions it is convenient to

define the ratio

H(w) =
1

w

∂tn2|mem
∂tn2|mem,L

, (4.28)

where ∂tn2|mem is given by the full Boltzmann emission integral (4.22) and ∂tn2|mem,L is the
Lightman-approximation (4.24). With this particular definition of H(w) one can rewrite the

Figure 3.14: Gould factor for different incoming photon energies but θe = 0. For larger ω0 = hν
mec2 , recoil corrections

become important and the high frequency photon transfers energy to the electrons. The cusp is roughly at w ' 1/(1+2ω0).
The figure is taken from Chluba [7].
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Figure 3.15: Gould factor for different different temperatures and ω0 = 0.05. For increasing θe, electrons transfer some
energy to the high frequency photon due to Doppler boosts, leading to scattering correction to the Compton process. The
figure is taken from Chluba [7].

In Fig. 3.14, we illustrate the functional shape of the Gould factor. For low incoming photon energy the
shape of Hdc is clearly represented very well with the Gould formula. However, for larger ω, corrections
related to the energy redistribution of the scattering photon become important. In this case, ν , ν′ + ν2, but
some energy is transferred to the initially resting electron. Thus, in particular the range (1 + 2ω)−1 . ν2/ν . 1
shows significant structure. However, at ν2 . ν/2 the shape of Hdc is very well represented by the Gould
formula and the suppression of the DC emissivity can be captured by G(ω) given in Eq. (3.50), so that overall
Hdc ≈ ν2

ν HG
(
ν2
ν

)
G(ω).

Similarly, if we allow the electrons to have non-zero temperature, the factor G(θe) given in Eq. (3.49)
allows capturing the enhancement of the DC emissivity at low energies. In this case, Doppler boosts from
the electron allow the high frequency photon to gain energy above it initial value (see Fig. 3.16), so that the
high frequency tail of the DC spectrum has a more complicated structure. For the thermalization problem this
additional redistribution can be neglected.

To account for corrections beyond the soft photon limit on the DC emissivity, we have to modify the DC
integral, Idc =

∫
x4 f (x)[1 + f (x)] dx, over the incoming photon distribution. We know that photons emitted at

frequency x2 = hν2/kTγ are produced by incoming photons at frequency x ≥ 2x2 with the stimulated factor
[1 + f (x)]→ [1 + f (x − x2)]. The modified DC emission integral, assuming small distortions, is thus

Hdc(x2) ≈ 1
Idc

∫ ∞

2x2

x4nPl(x)[1 + nPl(x − x2)]
[ x2

x
HG

( x2

x

)]
dx (3.53a)

≈ e−2x2

[
1 +

3
2

x2 +
29
24

x2
2 +

11
16

x3
2 +

5
12

x4
2

]
. (3.53b)

The approximation (Exercise 4) was given in Chluba & Sunyaev [17] and represents the numerical result very
well. It significantly improves the previous approximation Hdc(x) ≈ e−x/2 given by Burigana et al. [4].
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where α is the fine structure constant and gdc(x, θ z, θ e) is the ef-
fective DC Gaunt factor. In lowest order of the photon and electron
energies the DC Gaunt factor factorizes (see Chluba 2005 for more
details). Furthermore, if the photon distribution is not too far from
full equilibrium one can approximate gdc(x, θ z, θ e) using a black-
body ambient radiation field and assuming that Te ∼ Tz. In this
case, one has (e.g. see Chluba 2005; Chluba et al. 2007)

gdc(x, θz, θe) ≈ Ipl
4

1 + 14.16 θz

× Hdc(x) , (11)

where Ipl
4 =

∫
x4nPl(nPl + 1) dx = 4π4/15 ≈ 25.976. Here we

have included the first-order relativistic correction in the pho-
ton temperature; however, this term only becomes significant at
z ! few × 106.

The second factor in equation (11) allows us to go beyond the soft
photon limit, for which x $ 1 was assumed. In lowest order, Hdc(x)
only depends on the ambient photon distribution, but is independent
of the electron temperature. It can be computed using (see Chluba
2005 for more details)

Hdc(x) ≈ 1

Ipl
4

∫ ∞

2x

x ′4nPl(x ′)[1 + nPl(x ′ − x)]
[ x

x ′ HG

( x

x ′

)]
dx ′,

(12)

where HG(w) = (1 − 3y + 3y2/2 − y3)/y with y = w(1 − w).
The factor HG(w) was first obtained by Gould (1984) to describe
the corrections to the DC emissivity when going beyond the soft
photon limit but assuming resting electrons.10 In the limit x → 0,
one finds w HG(w) → 1, so that Hdc(x) → 1.

Expression (12) was also used in the work of Burigana et al.
(1991b). There, the approximation Hdc(x) ≈ e−x φ/2 was given.
However, as mentioned above, with the assumptions leading to
equation (12) the electron temperature is irrelevant, and hence one
should set φ → 1. Furthermore, we re-examined the integral and
found that for background photons that follow a blackbody spec-
trum,

H
pl
dc(x) ≈ e−2x

(
1 + 3

2
x + 29

24
x2 + 11

16
x3 + 5

12
x4

)
(13)

provides a much better approximation to the full numerical result
for Hdc (cf. Fig. 1). This approximation was obtained by replacing
nPl(x) ≈ e−x and neglecting the induced term in equation (12). Fur-
thermore, the resulting expression was rescaled to have the correct
limit for x → 0. In particular, for x ) 1 equation (13) captures
the correct scaling Hdc(x) ∼ x4 e−2x . However, since most of the
photons are produced at low frequencies x $ 1 we do not expect
any significant difference because of this improved approximation.
Nevertheless, when using the old approximation we found that at
early times the spectrum is erroneously brought into full equilibrium
at very high frequencies, just by DC emission and absorption.

We note here that if the distortions are not small, then in lowest
order the correction to the DC emission can be accounted for by
replacing nPl with the solution nx in the expression for Ipl

4 . How-
ever, from the observational point of view, it seems unlikely that
distortions of interest ever exceeded the level $nν /nν ∼ 10−3, even
at z ∼ 107. Therefore, the above approximation should be sufficient.
Of course this does not include DC emission from very high energy
photons that are directly related to the energy injection process.
However, in that case the simple approximation used above will

10 Note that HG(w) is 1/2 of F(w) given by equation (27) of Gould (1984).
The factor of 2 is to avoid double counting of photons.

0111.0
x = hν / kTγ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

H
dc

 / 
ex

p(
-x

/2
)

full integral
analytic approximation
Burigana 1991

Figure 1. Effective double Compton correction factor Hdc(x). We com-
pare the result from a full integration of a blackbody spectrum with the
approximation given by equation (13). For comparison the approximation
of Burigana et al. (1991b) is also shown. Close to the maximum of the CMB
blackbody spectrum the differences are ∼20–40 per cent.

anyhow need revision, although the total contribution to the photon
production is still expected to be small.

Bremsstrahlung. At lower redshifts (z " few × 105),
Bremsstrahlung starts to become the main source of soft photons.
One can define the Bremsstrahlung emission coefficient by (cf.
Burigana et al. 1991b; Hu & Silk 1993a)

KBR(x, θe) = α λ3
e

2π
√

6π

θ−7/2
e e−x φ

φ3

∑

i

Z2
i Ni gff (Zi, x, θe) . (14)

Here, λe = h/me c is the Compton wavelength of the electron, Zi, Ni

and gff (Zi, x, θ e) are the charge, the number density and the BR
Gaunt factor for a nucleus of the atomic species i, respectively. Var-
ious simple analytical approximations exist (Rybicki & Lightman
1979), but nowadays more accurate fitting formulae, valid over
a wide range of temperatures and frequencies, may be found in
Nozawa, Itoh & Kohyama (1998) and Itoh et al. (2000). In compar-
ison with the expressions summarized in Burigana et al. (1991b),
we find differences at the level of 10–20 per cent for small x.

In the early Universe, only hydrogen and helium contribute to the
BR Gaunt factor, while the other light elements can be neglected.
In the non-relativistic case, the hydrogen and helium Gaunt factors
are approximately equal, i.e. gH,ff ≈ gHe,ff to within a few per cent.
Therefore, assuming that the plasma is still fully ionized, the sum
in equation (14) may be simplified to

∑
≈ gH,ff Nb, where Nb is

the baryon number density. However, for per cent accuracy, one
should take the full expressions for gH,ff and gHe,ff into account,
which does not lead to any significant computational burden using
the expressions of Itoh et al. (2000).

Furthermore, at redshifts z " 7000–8000, the plasma enters the
different epochs of recombination. Therefore, the mixture of the
different species (Ne, H I, H II, He I, He II and He III) in the primordial
medium has to be followed. We use the most recent computations of
the recombination process including previously neglected physical
corrections to the recombination dynamics according to Chluba &
Thomas (2011).
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Figure 3.16: Effective double Compton correction factor Hdc(x). We compare the result from a full integration of a
blackbody spectrum with the approximation given by Eq. (3.53). For comparison, we also show the approximation
Hdc(x) ≈ e−x/2 given by Burigana et al. [4]. Close to the maximum of the CMB blackbody spectrum the differences are
∼ 20% − 40% and at high frequencies the expression of Burigana et al. [4] overestimates the DC emission significantly.
The figure is taken from Chluba & Sunyaev [17].

3.4 Final set of evolution equations

We now have all the ingredients together to write down the photon and electron evolution equations. For the
photons we perform one more step by transforming to x = hν/kTγ, with Tγ = T0(1 + z), instead of p or ν itself.
This allows us to absorb the redshifting term, −Hp∂p f , in Eq. (3.11), so that with dτ = σTNec dt we have

∂ f
∂τ
≈ θe

x2

∂

∂x
x4

[
∂

∂x
f +

Tγ
Te

f (1 + f )
]

+
KBR e−xe

x3
e

[
1 − f (exe − 1)

]
+

KDC e−2x

x3

[
1 − f (exe − 1)

]
+S (τ, x) (3.54a)

KBR =
α

2π
λ3

e√
6π θ7/2

e

∑

i

Z2
i Ni ḡff(Zi,Te,Tγ, xe), KDC =

4α
3π

θ2
γ Idc gdc(Te,Tγ, x) (3.54b)

ḡff(xe) ≈


√
3
π ln

(
2.25
xe

)
for xe ≤ 0.37

1 otherwise
, gdc ≈

1 + 3
2 x + 29

24 x2 + 11
16 x3 + 5

12 x4

1 + 19.739θγ − 5.5797θe
. (3.54c)

where f = f (τ, x), Idc =
∫

x4 f (1 + f ) dx ≈ 4π4/15, gdc ≈ Gdc Hdce2x with Gdc and Hdc taken from Eq. (3.51)
and (3.53b), respectively. The DC Gaunt factor, gdc, should provide a very good approximation for our pur-
poses. For the BR Gaunt factors, ḡff , we use fits from Itoh et al. [30] in numerical calculations or the above
approximation for estimates. We also explicitly added a photon source term, S (τ, x), although the specific
shape depends on the process. This term adds both energy and photons to the photon field.

Equation (3.54) needs to be augmented by an evolution equation for the electron temperature. This equation
can be readily derived from Eq. (3.14) adding non-zero collision terms (Exercise 5). It has contributions from
the adiabatic expansion of the Universe, which drives Te ∝ a−2. The adiabatic cooling is counteracted by
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Compton heating, which drives the electron temperature always extremely close to the photon temperature
until z ' 102 (see Fig. 3.8). It is thus useful to use ρe = Te/Tγ as a variable. In addition, when spectral
distortions are present, the matter cools/heats via DC and BR, but the effect is small and can be neglected.
Finally, if some significant energy is released, this will in addition heat the medium. Putting all this together
the evolution equation for the electron temperature reads [compare, 17]

dρe

dτ
=

d(Te/Tγ)
dτ

=
tTQ̇
αhθγ

+
4ρ̃γ
αh

[ρeq
e − ρe] − 4ρ̃γ

αh
HDC,BR(ρe) − H tT ρe. (3.55)

Here, we introduced the heat capacity of the medium4, kαh = 3
2 k[Ne + NH + NHe] = 3

2 kNH[1 + fHe + Xe];
the energy injection rate (per mec2), Q̇, which for example could be caused by some decaying particles; and
the energy density of the photon field in units of electron rest mass, ρ̃γ = ργ/mec2. We furthermore defined
ρ

eq
e = T eq

e /Tγ, where T eq
e is the Compton equilibrium temperature, Eq. (3.29). The BR and DC heating integral,

HDC,BR, can be directly computed using the corresponding terms in the photon Boltzmann equation, Eq. (3.54).
It is rather straightforward to solve the photon Boltzmann and temperature equations for a given energy

release scenario numerically. One flexible code is5 CosmoTherm [17], with several scenarios implemented.
The departure from equilibrium are created purely by the electron heating term, ∝ Q̇, and the photon source
term, S (τ, x). One of the great simplifications we will discuss below is that all distortions are expected to be
small, so that the problem can be linearized. In this case, one can resort to a Greens function method [9], which
allows us to compute the distortion signal for different energy release scenarios efficiently, as we explain below.
Under simplifying assumptions, additional insight can be found analytically, as we explain in the next section.

Exercises

Exercise 1 Prove Eq. (3.14) using the conservation law T µ
ν;µ = 0 of the energy momentum tensor for the

isotropic Universe. You will need the Christoffel symbols for the FRW metric, which you can find in Dodelson
[21], but you can also explicitly compute them (if you like).

Exercise 2 Explicitly derive the Kompaneets equation, using Eq. (3.25) and the moments Eq. (3.26).

Exercise 3 Estimate by how much the DC emissivity is reduced at redshift z = 106 and 107. Given that
thermalization becomes very slow at z ' few× 105 and very rapid at z � 2× 106, how large a correction to the
thermalization problem do you expect?

Exercise 4 Can you derive the approximation Eq. (3.53b)? Think about which photons produce most of the
emission. Does this allow you to simplify the integral?

Exercise 5 Derive the evolution equation for the electron temperature, Eq. (3.55) starting from Eq. (3.14) for
all ordinary matter species. Due to Coulomb interactions protons, electron, hydrogen atoms and helium ions
behave as one fluid with the number of particles not changing anymore. Injecting some energy into one of the
species means that the energy is shared among all of them. Can you give the explicit form of the term due to
DC and BR emission.

4We neglected relativistic corrections to the heat capacity of the electrons, which at z ∼ 107 would be of order percent [7].
5www.Chluba.de/CosmoTherm/

www.Chluba.de/CosmoTherm/
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Chapter 4

Simple Analytic Approximations

In this chapter, we discuss simple analytic approximations for the spectral distortions caused by early energy
release. We start by introducing the Compton-y and µ-distortions, which are the classical types of distortions
first studied by Zeldovich & Sunyaev [59] and Sunyaev & Zeldovich [54]. In the y-distortion era (z . 5× 104),
DC and BR emission and photon transport from low to high frequencies are already inefficient, so that at
high frequencies the distortion shape is purely determined by Compton scattering. In contrast, during the µ-
era (z & 5 × 104), thermalization works very well and the amplitude of the distortion evolves significantly.
The efficiency of thermalization is described by the distortion visibility function, which is close to unity at
z . 2 × 106 but drops exponentially at higher redshifts, as we explain in more detail here.

4.1 Compton-y distortion and the thermal Sunyaev-Zeldovich effect

In section 3.3.3, we learned that around zK ' 5 × 104 the Comptonization time-scale (transfer of energy from
electrons to photons) becomes longer than the Hubble time. It is clear that this marks an important transition
in the efficiency of Compton scattering and redistribution of photons. Let us try to quantify this a little better
by looking at the photon evolution equation. If we neglect DC and BR emission processes, we have

∂ f
∂τ

∣∣∣∣∣
CS
≡ θe

x2

∂

∂x
x4

[
∂

∂x
f +

Tγ
Te

f (1 + f )
]
, (4.1)

in the expanding Universe, with f = f (τ, x). This equation has no general analytic approximation, but we can
solve it for limiting cases.

4.1.1 Scattering of CMB photons in the limit of small y.

Assuming that at τ = 0 we start with f = fbb = 1/(ex − 1), then after a very short time ∆τ � 1 we find

∆ f ≈ ∆τθe

x2

∂

∂x
x4

[
∂

∂x
fbb +

Tγ
Te

fbb(1 + fbb)
]

≈ ∆τ(θγ − θe)
x2

∂

∂x
x4 fbb(1 + fbb)

≈ ∆τ(θγ − θe)
[
4x fbb(1 + fbb) − x2 fbb(1 + fbb)(1 + 2 fbb)

]

≈ ∆τ(θe − θγ) G(x)
[
x

ex + 1
ex − 1

− 4
]
≡ ∆τ(θe − θγ) YSZ(x), (4.2)

where we used ∂x fbb = − fbb(1+ fbb) = −ex/(ex−1)2 = −G(x)/x and (1+2 fbb) = (ex +1)/(ex−1) = coth(x/2).
This is the definition of the so called Compton-y distortion, YSZ(x), which arises in the limit of scatterings with

39
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inefficient energy exchange. This distortion of the CMB was first studied by Zeldovich & Sunyaev [59] and
then applied to hot electrons residing inside the potential wells of clusters of galaxies, giving rise to the thermal
Sunyaev-Zeldovich (SZ) effect. The important time-scale is determined by the Compton-y parameter

y =

∫ τ

0

k(Te − Tγ)
mec2 dτ′ =

∫ t

0

k(Te − Tγ)
mec2 σTNec dt′, (4.3)

which depends on the number of scattering (related to τ) and the net energy exchange1, ∆ν/ν ' 4(θe − θγ), per
scattering. Clearly, for Te ≡ Tγ one has y = 0 and ∆ f = 0, no matter how many scattering actually take place!
The solution Eq. (4.2) for the distortion is thus valid as long as y � 1, which also ensures that the electron
temperature does not change much by the scattering.

One possible way to violate this condition even if the number of scattering is tiny (τ � 1) is by having a
very large difference in the electron and photon temperature. Note, however, that θe � 1 is needed since oth-
erwise relativistic corrections to the Compton process appear, which are not accounted for by the Kompaneets
equation. For the cosmological thermalization problem, we are always in the situation that the y-parameter
is increased beyond unity by increasing the number of scatterings. In this case, Compton scattering pushes
electrons and photons into kinetic equilibrium until a µ-distortion is formed (Sect. 4.2).

Assuming that we are in the regime |y| � 1, there are two cases of interest:

• y > 0: so that overall energy is transferred from the electrons to the photons→ Comptonization

• y < 0: where energy flows from the photons to the electrons → Compton cooling

For most conditions in our Universe, y > 0 is relevant, since most processes tend to heat the matter in the
Universe. Therefore negative y-distortions are usually not being considered, however, the adiabatic cooling of
matter in the expanding Universe (in the absence of heating) allows Te < Tγ, so that y < 0 does occur [7, 17].

In Fig. 4.1, we illustrate frequency dependence of the y-distortion for T0 = 2.725 K. It has a very charac-
teristic shape, with a deficit of photons in the Rayleigh-Jeans part and an increment of photon in the Wien tail
of the CMB spectrum. The limiting behaviors are

YSZ(x) = G(x)
[
x

ex + 1
ex − 1

− 4
]
≈


− 2

x for x � 1
x(x − 4)e−x for x � 1.

(4.4)

This corresponds to ∆I/I ' ∆T/T ' −2y for x � 1 and ∆T/T ' (x − 4)y for x � 1. The y-distortion
vanishes close to ν ' 217GHz (≡ x ' 3.830), which in principle makes it distinguishable from the µ-distortion
(Sect. 4.2). One can easily verify that for a y-distortion

∆Nγ = 0 ∝
∫

x2YSZ(x) (4.5a)

∆ργ = 4y ρPl
γ ∝

∫
x3YSZ(x) dx. (4.5b)

Clearly, Compton scattering should not change the number of photons, as reflected by Eq. (4.5a). Equa-
tion (4.5b) implies that 4y ≡ ∆ργ/ρ

Pl
γ defines the fractional energy exchange of the electrons with the initial

blackbody spectrum. Thus, starting from a pure blackbody, by computing y = (1/4)∆ργ/ρPl
γ � 1 one can

directly give an approximation for the distortion [59]. In detail, it may be a little more involved to compute
∆ργ/ρ

Pl
γ for some process, but all one really needs to know is how much energy was pumped into the CMB by

energy exchange with the thermal electrons.

1In a sense it would be better to write y = 1
4

∫ τ

0
4 k(Te−Tγ)

mec2 dτ′, so that 4y = ∆ργ/ργ evidently gives the total amount of energy transfer.
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Figure 4.1: Comparison of a Compton y-distortion, YSZ(x), and µ-distortion, M(x), with the blackbody spectrum and
temperature shift, G(x). For convenience, we plot the spectrum as a function of x = hν/kT and normalize the left
y-axis by I0(T ) = (2h/c2)(kT/h)3 ≈ 270 MJy sr−1(T/2.725K)3. The y-distortion has its crossover frequency around
x ' 3.830 (≡ 217GHz), while the µ-distortion has its zero around x ' 2.192 (≡ 124GHz). The upper x-axis and right
y-axis also give the corresponding frequency and spectral intensity for T = 2.725 K.

4.1.2 Thermal Sunyaev-Zeldovich effect

Clusters of galaxies are the largest virialized objects in our Universe, with typical masses M ' (1013−1014)M�
(M� ≈ 2 × 1033 g) and up to ' 103 galaxies. Cluster also host a hot plasma with free electrons at temperature
Te ' few × 107K (≡ few × keV) at typical densities Ne ' 10−3 cm−3. We know this already for a while since
clusters show a X-ray glow produced by thermal Bremsstrahlung. The hot electrons can scatter CMB photons
and create a Compton-y distortion. The typical y-parameter of massive clusters is y ' few × 10−5 − 10−4 with
θe ' few × 10−2 and τ ' few × 10−3. Because for clusters Te � Tγ, the y-parameter reads

y =

∫ τ

0

kTe

mec2 dτ′ ≈ θe τ (4.6)

and thus directly probes the integrated electron pressure, P̄e '
∫

NeTe dl, through the cluster medium.
One of the great properties of the thermal SZ effect that is it independent of redshift (ignoring evolutionary

effects) [53, 44, 5]. The reason is that CMB temperature increases ∝ (1 + z) with redshift, so that the ‘light
bulb’ illuminating the hot electrons residing inside the cluster becomes brighter the higher the redshift. The
cosmological redshift dimming of the signals, which for example reduces the X-ray fluxes for high redshift
clusters, is therefore compensated since the CMB itself is brighter, and no matter what the redshift of the
cluster is it will have the same signal relative to the CMB. It is interesting to point out that if we could go back
to z = 1, in terms of the bolometric luminosity all clusters would be brighter by 24 = 16 (as the CMB itself
would), even if we did not change the clusters! The redshift-independence of the SZ signal thus refers to how
clusters at different redshifts are seen by the observer but the same cluster signal is brighter if the observer is a
higher redshift. The redshift-independence of the SZ signal makes SZ clusters a powerful cosmological probe,
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since one can in principle track the growth of structures out to high redshifts (z ' 1 − 2) and thus constrain
cosmological parameters and the evolution of dark energy [3, 5].

But the thermal SZ effect is even more rich. For a cluster with kTe = 5keV, the thermal velocities of the
electrons are 3th '

√
2θec ' 0.14c. That is quite fast and relativistic corrections become important. In this

regime the Kompaneets equation is no longer valid and one has to include higher order corrections [6, 46, 29],
which we will discuss later. In addition, if the cluster is moving with respect to the CMB, the Doppler kick
adds a change in the CMB temperature towards the cluster by ∆I ' βcτT∂T Bν(T ), also knows as kinematic SZ
effect [53]. This can in principle be used to study large-scale bulk flows in the Universe.

4.2 Chemical potential or µ-distortion

We now understand that for inefficient energy exchange between electrons and photons the shape of the distor-
tion is determined by the y-parameter and has a spectral dependence, YSZ(x) = G(x)[x coth(x/2)− 4], shown in
Fig. 4.1. Let us now consider the other extreme, when many scatterings are taking place and the redistribution
of photons in frequency is very efficient. In the early Universe, this regime is found at z & 5 × 104 and the
distortion is given by the µ-distortion.

4.2.1 Compton equilibrium solution

When many scattering occur, the spectrum is driven towards an equilibrium with respect to Compton scattering.
Neglecting emission and absorption processes, the kinetic equation thus becomes quasi-stationary

0 ≈ θe

x2

∂

∂x
x4

[
∂

∂x
f +

Tγ
Te

f (1 + f )
]
. (4.7)

One solution of this equation is fbb = 1/(ex − 1) if Te ≡ Tγ, since ∂x fbb = − fbb(1 + fbb), as it should be for full
equilibrium. However, this is not the general solution of the problem! To find the general solution we have to
solve the equation

∂x f = −Tγ
Te

f (1 + f ). (4.8)

The factor Tγ/Te can be absorbed by redefining the frequency scaling x → xe so that ∂xe f = − f (1 + f ). This
can be integrated to ln(1 + f ) − ln( f ) ≡ xe + const, or

feq =
1

exe+µ0 − 1
, (4.9)

where we introduced the integration constant µ0. This is a Bose-Einstein spectrum with constant chemical
potential2 µ0. Let’s pause for a moment. Photons have no rest mass, so the chemical potential should vanish?
This statement is only true if we are in full equilibrium, i.e., we have a blackbody at the temperature of the
medium. More generally, for fixed photon number the chemical potential can be non-zero.

The chemical potential can in principle be both positive or negative:

• µ0 > 0: fewer photons than in a blackbody at temperature Te → energy release / photon destruction

• µ0 ≡ 0: blackbody at temperature Te → full equilibrium

• µ0 < 0: more photons than in a blackbody at temperature Te → energy extraction / photon injection

In practice, the solution µ0 < 0 is unphysical unless µ0 is actually a function of frequency. The reason is that
xe + µ0 can vanish at xe = −µ0 > 0, but this state is never reached or even passed though during the evolution,
since instead excess photons would form a Bose-condensate at x = 0 with µ0 = 0 elsewhere [57, 60]. In a real
plasma, BR and DC emission will prevent this from happening though [28, 34].

2Notice that the sign is different from the normal convention used in thermodynamics.
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4.2.2 Definition of the µ-distortion

In the previous paragraph, we showed that f = 1/(exe+µ0 − 1) is approached if you have many scatterings in the
plasma. But how do we fix the constant µ0 and what is the definition of the distortion really? Let us assume
we start with a blackbody and electrons at temperature Tγ = Te = Ti. Let us change the number and energy
density of the photon field by some εN = ∆Nγ/NPl

γ (Ti) and ερ = ∆ργ/ρ
Pl
γ (Ti), respectively, and then wait until

everything has equilibrated by Compton scattering (no DC or BR emission). We then have the conditions

NBE
γ = NPl

γ (Ti)(1 + εN) ≡ NPl
γ (T f )

GPl
2

∫ x2
f dxf

exf+µ0 − 1
(4.10a)

ρBE
γ = ρPl

γ (Ti)(1 + ερ) ≡
ρPl
γ (T f )

GPl
3

∫ x3
f dxf

exf+µ0 − 1
, (4.10b)

where T f is the final temperature of the electrons in the distorted (Bose-Einstein spectrum) radiation field and
xf = hν/kT f . These two equations allow us to fix T f and µ0 as a function of the parameters εN and ερ. The
general solution is determined by


(1 + ερ)3/4

GPl
2

∫ x2
f dxf

exf+µ0 − 1


1/3

≡


(1 + εN)4/3

GPl
3

∫ x3
f dxf

exf+µ0 − 1


1/4

(4.11a)

Ti

T f
(1 + εN)1/3 =


1

GPl
2

∫ x2
f dxf

exf+µ0 − 1


1/3

, (4.11b)

which is fun to play with but is not as illuminating. Assuming that all changes are small we have

NBE
γ ≈ NPl

γ (T f )
[
1 − µ0Mc

2

]
≈ NPl

γ (Ti)
[
1 + 3

∆T
Ti
− µ0Mc

2

]
(4.12a)

ρBE
γ ≈ ρPl

γ (T f )
[
1 − µ0Mc

3

]
≈ ρPl

γ (Ti)
[
1 + 4

∆T
Ti
− µ0Mc

3

]
, (4.12b)

whereMc
k = kGPl

k−1/G
Pl
k , so that we haveMc

2 ≈ 1.3684 andMc
3 ≈ 1.1106. With the conditions Eq. (4.10), we

then find [54, 26]

µ0 ≈ 3
κc

[
∆ργ

ργ
− 4

3
∆Nγ

Nγ

]
≈ 1.401

[
∆ργ

ργ
− 4

3
∆Nγ

Nγ

]
(4.13a)

∆T
Ti
≈ M

c
2

κc

∆ργ

ργ
− M

c
3

κc

∆Nγ

Nγ
≈ 0.6389

∆ργ

ργ
− 0.5185

∆Nγ

Nγ
≈ 0.4561µ0 +

1
3

∆Nγ

Nγ
(4.13b)

with κc = 4Mc
2 − 3Mc

3 ≈ 2.1419. From Eq. (4.13a) we see that for ∆ργ/ργ ≡ (4/3)∆Nγ/Nγ we have no
distortion (µ0 = 0), as we already understood from the adiabatic condition, Eq. (2.15). In this case, only the
temperature of the blackbody is increased after scattering redistributed all photons, ∆T/Ti ≈ 1

3∆Nγ/Nγ.
In Fig. 4.2 we illustrate a Bose-Einstein spectrum with µ0 = 0.5 and Ti = T0 = 2.726 K. Only energy was

added to the photons but the number of photons was not changed with respect to the initial CMB spectrum.
One can see that in the Rayleigh-Jeans tail of the CMB the Bose-Einstein spectrum shows a deficit of photons,
while in the Wien tail more photons than in the CMB blackbody spectrum are present. We have fBE ≈ fbb at
νcr ≈ 124 GHz although for large chemical potential νcr ≈ 124 GHz (1 − 0.304 µ ln µ) is more accurate [10].
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Figure A1. Shape of the CMB spectrum with large chemical potential. For
the considered case, the crossover frequency is at ν ≈ 158GHz. Number
changing processes at low frequencies were neglected, but would restore
the blackbody shape at ν ! 1 GHz.
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APPENDIX A: BOSE-EINSTEIN SPECTRUM FOR FIXED
NUMBER AND ENERGY DENSITY

Assuming that the photon occupation number is given by a Bose-Einstein
spectrum, we can determine the precise shape from the number and energy
density of the distribution. Using the ansatz, n = 1/(exφ+  µ − 1) [φ is needed
to fix the correct number density and µ > 0 is constant], we can write

φ =


2 Li3(e−µ)

GPl
2


1/3

≈ 1 − 0.4561µ − 0.137µ2 ln µ, (A1)

where Lin(x) is the polylogarithm. We assumed that the number density of
the photon distribution did not change. With this solution, one can obtain
the correct Bose-Einstein spectrum as a function of x and µ (see Fig. A1).
Fixing the energy density, we find that

1 +
∆ργ

ργ
=

6 Li4(e−µ)
ρ4GPl

3
≈ 1 + 0.7140µ + (0.815 + 0.555 ln µ)µ2 (A2)

can be used to determine the value of µ. Evidently, at lowest order one has
µ ≈ 1.401∆ργ/ργ , as expected.

One interesting aspect is that for larger values of µ, the zero crossing
of the distortion with respect to the blackbody increases. The crossover fre-
quency is roughly given by νcr ≈ 124GHz(1− 0.304 µ ln µ), so that even for
very large values of µ # 0.01 the zero does not change dramatically.

APPENDIX B: ENTROPY OF A NON-EQUILBRIUM
BOSE-EINSTEIN SPECTRUM

In terms of the photon occupation number, n = 1/(ex+  µ − 1), the photon
entropy density can be written as (Landau & Lifshitz 1980)

sγ = 8πk
(
kTγ
hc

)3 ∫
x2 [(1 + n) ln(1 + n) − n ln n] dx

= 8πk
(
kTγ
hc

)3 ∫
x2 [ln(1 + n) + n(x +  µ)] dx

=
4
3
ργ

Tγ
− 8πk

3

(
kTγ
hc

)3 ∫
x3  µ ∂xn dx

 µ$1
↓≈ 4

3
ρPl
γ (Tγ)
Tγ

[
1 + 3

∆Te
Tγ

]
− ρ

Pl
γ (Tγ)
Tγ

µ∞M3

=
4GPl

3
3GPl

2
kNγ +

κρ

3
ρPl
γ (Tγ)
Tγ

µ∞ ≈ 3.601kNγ[1 + 0.5355µ∗∞], (B1)

where we used ρPl
γ (T ) = (GPl

3 /GPl
2 )kTNPl

γ (T ) ≈ 2.701kTNPl
γ (T ) and the

effective chemical potential µ∗∞ = κ̂ρµ∞.
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Figure 4.2: Bose-Einstein spectrum for large chemical potential µ = 0.5 and Ti = T0 = 2.726 K. Only energy was added to
the photon field, but the number of photons was not changed with respect to the initial CMB spectrum. For large chemical
potential, the cross over frequency shifts towards higher frequencies according to νcr ≈ 124 GHz (1 − 0.304 µ ln µ) ≈
158 GHz. The figure was taken from Chluba [10].

But how do we define the distortion? To derive the expressions from above, we used

fBE =
1

exe+µ0 − 1
≈ 1

exe − 1
− G(xe)

xe
µ0 + O(µ2

0). (4.14)

This suggest that ∆ f = −G(xe) µ0/xe could be called the distortion with respect to the blackbody part at
temperature Te and in fact this kind of definition has be used frequently. However, since also the final electron
temperature, Te = T f , depends on µ0, this definition does not separate the distortion cleanly. Motivated by the
fact that Compton scattering conserves photon number, one natural definition is to fix the µ-distortion such that∫

x2M(x) dx = 0. Integrating ∆ f gives
∫

x2∆ f dx = −2µ0
∫

x dx/(ex−1) = −2GPl
1 µ0 = −µ0 π

2/3 ≈ −3.2899 µ0,
so that M(x) = G(x)[αµ − 1/x] with αµ = 2GPl

1 /3GPl
2 = π2/18ζ(3) ≈ 0.4561 fulfills

∫
x2M(x) dx = 0. If we

in addition normalize the relative change of the photon energy density to unity (∆ρM/ρ
Pl = 1), we find the

spectral shape of the µ-distortion

M∗(x) =
3
κc M(x) =

3
κc G(x)

[
αµ − 1

x

]
≈ 1.401G(x)

[
0.4561 − 1

x

]
≈


− 1.401

x2 for x � 1
0.6390 x e−x for x � 1.

(4.15)

This implies ∆I/I ' ∆T/T ' −µ0/x for x � 1 and ∆T/T ' 0.4561 µ0 at x � 1. The frequency dependence
of M(x) is illustrated in Fig. (4.1) in comparison with the y-distortion and spectrum of a temperature shift.
The important feature of a µ-distortion is that it is shifted towards lower frequencies with respect to the y-
distortion. This makes is distinguishable and observing a µ-distortion is a clear indication for a signal created
in the pre-recombination era, deep into the thermal history of our Universe.
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Figure 4.3: Simplest zeroth order picture for the formation of primordial distortions. At low redshifts (z . 5 × 104), a
y-distortion is formed, while at high redshifts we expect a µ-distortion. At this point we have not included any photon
production and we will see that this strongly attenuates the amplitude of the µ-distortion at z & 2 × 106.

4.2.3 Simple zeroth order description of primordial distortions

We now have all the pieces for the simplest zeroth order description of primordial distortions together. At late
times, (z . zK ' 5× 104), the redistribution of photons by Compton scattering becomes inefficient and a y-type
distortion is formed, in the other extreme we have a µ-distortion (see Fig. 4.3) with the approximations

y ≈ 1
4

∆ργ

ργ

∣∣∣∣∣∣
y

(4.16a)

µ0 ≈ 1.401


∆ργ

ργ

∣∣∣∣∣∣
µ

− 4
3

∆Nγ

Nγ

∣∣∣∣∣∣
µ

 , (4.16b)

so that the total distortion is given by ∆ f ≈ YSZ y+M(x) µ0. Here, we indicate that to estimate the distortion one
needs to consider the partial energy release and photon production in the respective y- and µ-era. If photons are
injected in the y-era, the distortion is not just a y-distortion, since these extra photons are not redistributed very
efficiently, but in the µ-era they are ingested and modify the effective chemical potential. We can, however,
treat the problem of photon injection during the y-era approximately (Sect. 4.3).

Two important aspects are still missing. Firstly, we have not included any photon production into the
picture but assumed that only Compton scattering changes the photon field. This will be mostly relevant for the
evolution of µ-distortions, since not all energy release or photon production eventually is visible as a distortion.
That is, the distortion visibility function is smaller than unity because thermalization reduces the effective
amount of energy release that survives as a distortion. This is implicitly hidden in the definition of ∆ργ/ργ and
∆Nγ/Nγ. We will consider this problem in Sect. 4.5. The second point is that the transition between µ and y
distortions is not abrupt but occurs over a range of redshifts where in the intermediate regime the distortion
is not only given by the superposition of µ and y-distortion. This makes the distortion signal much richer, as
pointed out only recently [17, 33, 9]. We will consider this problem in Sect. 5.1.
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4.3 Evolution of the photon distribution by Compton scattering

The thermalization problem with photon production in the y-era (z . 5 × 104) can be treated approximately
using different analytic solutions describing the Compton scattering of photons. No exact solution valid in all
regimes was found so far, but still progress can be made in different limiting cases.

4.3.1 Doppler-dominated scattering

One classic solution of the Compton scattering problem was given by Zeldovich & Sunyaev [59] for cases
when recoil terms (∝ f (1 + f )) can be neglected in the Kompaneets equation. One example is the scattering of
CMB photons by hot electrons, since then Tγ/Te ' 10−7, so that from Eq. (4.1) we have

∂ f
∂τ

∣∣∣∣∣
CS
≈ θe

x2

∂

∂x
x4 ∂

∂x
f . (4.17)

Defining ye =
∫
θe dτ and introducing ξ = ln x we have ∂ye f = ∂2

ξ f + 3∂ξ f . By transforming to z = ξ + 3ye we
arrive at ∂ye f = ∂2

z f , which is the simple diffusion equation. Thus, the solution is [59]

f (ye, x) =
1√
4πye

∫
f (0, x′) e−

(ln[x/x′]+3ye)2
4ye

dx′

x′
=

∫
f (0, x′) GD(ye, x′ → x) dx′. (4.18)

This shows that

GD(ye, x′ → x) =
e−

(ln[x/x′]+3ye)2
4ye

√
4πye x′

≡ x′3

x3

e−
(ln[x/x′]−3ye)2

4ye

√
4πye x′

. (4.19)

is the Green’s function of the Doppler-dominated Comptonization problem, describing how a narrow line
broadens and shifts due to the thermal motions of the electrons. Starting with f (0, x) = A δ(x − x0)/x2, it
is straightforward to show that ργ(ye) = ργ(0) e4ye . The positions of the maximum in Nx = x2 f (ye, x) is
x0(ye) = x0 eye , while for Ix = x3 f (ye, x) it is at x0(ye) = x0 e3ye . Similarly, the FWHM of the distribution
increases as ∆ν/ν = 2e3ye sinh(2

√
ye ln 2) ' 4

√
ye ln 2.

The solution is illustrated in Fig. 4.4 for an initially narrow line at low and intermediate frequencies. The
approximation, Eq. (4.18), represents the numerical solution very well until recoil terms become important.
This leads to a significant deviation of the photon distribution at high frequencies, which for the consider
problems starts being important for ye & 1 and illustrates the limitations of the approximation.

4.3.2 Recoil-dominated scattering

The other simple solution can be obtained in the limit hν � kTe. In this case, Doppler redistribution is
negligible and one has

∂ f
∂τ

∣∣∣∣∣
CS
≈ θγ

x2

∂

∂x
x4 f (1 + f ) =

1
ω2

∂

∂ω
ω4 f (1 + f ), (4.20)

with ω = hν/mec2. If we assume f � 1, then the equation can be solved analytically, giving

f (τ, ω) =
f
(
0, ω

1−ωτ
)

[1 − ωτ]4 . (4.21)

For an initially narrow line, fδ(0, ω) = A δ(ω − ω0)/ω2, located at ω0, this just means that the line will move
alongω0(τ) = ω0/(1+ω0τ), or fδ(τ, ω) = A δ[ω−ω0(τ)]/ω2. At lowest order inω0τ, this means ∆ν/ν0 ≈ −ω0τ,
as we already know from the discussion in Sect. 3.3.3. The solution does, however, not include the broadening
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Figure 4.4: Time-evolution of ∆Nν = ν2∆n for different values of the y-parameter but neglecting stimulated scattering.
The left panel shows the case, for an initially narrow line which was injected at xe,0 = 10−2, while the right panel shows
the solution for injection at xe,0 = 10−1. In both figures, we present the results as obtained by numerically solving the
Kompaneets equation. In addition, we give the analytic solution according to Zeldovich & Sunyaev [59], Eq. (4.18). The
figure is taken from Chluba & Sunyaev [15].

of the line by the scattering event. Even for Te = 0, recoil-dominated scattering leads to line broadening〈
∆ν2/ν2

〉
' 7

5ω
2 [47], which is neglected in the Kompaneets equation, being higher order in ω � 1. Including

this effect, one has the diffusion equation [47]

∂ f
∂τ

∣∣∣∣∣
CS
≈ 1
ω2

∂

∂ω
ω4

(
f +

7
10
ω2∂ω f

)
. (4.22)

Analytic solutions of this equation were discussed by Grebenev & Syunyaev [25] and are relevant for the
scattering of hard X-ray lines by cold electrons.

Finally, when stimulated effects dominate ( f 2 � f and hν � kTe), the solution of the evolution equation
∂τ f ≈ ω−2∂ωω

4 f 2 is determined by the implicit equation [57, 51]

ν = φ(s) − 2h
mec2 τ s, (4.23)

with s(ω, τT) = ω2 f (ω, τ) and where φ(z) can be found from the initial condition (φ(z) ≡ s−1
0 (z), where s−1

0 (z)
is the inverse function of s(ω, τ) at τ = 0). The non-linear nature of this problem can lead to the appearance of
shock waves in the photon field, e.g. as explained in Zeldovich & Levich [57] and Zeldovich & Sunyaev [60].

4.3.3 Background-induced stimulated scattering

The previous solutions were all derived for the total photon field. For the evolution of spectral distortions, we
are, however, in the situation that the distortion is a small perturbation around the huge CMB blackbody photon
bath. In this case, one can rewrite the Kompaneets equation as

∂ f
∂τ

∣∣∣∣∣
CS
≈ (θe − θγ)YSZ(x) +

θγ

x2

∂

∂x
x4

[
∂

∂x
∆ f + ∆ f (1 + 2 fbb)

]
, (4.24)

where we separated the blackbody (background) and distortion part, f = fbb + ∆ f , and kept only linear order
terms (∆ f � 1 and (Te−Tγ)/Tγ � 1). We can see that there are two relevant time-scales: (i) y =

∫
(θe−θγ) dτ,
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Figure 4.5: Time-evolution of ∆Nν = ν2∆n for different values of the y-parameter including the effect of stimulated
scattering in the blackbody ambient radiation field. The left panel shows the case, for an initially narrow line which was
injected at frequency xe,0 = 10−2, while the right panel shows the solution for injection at xe,0 = 10−1. In both figures we
show the results as obtained by numerically solving Kompaneets equation with Tγ = Te. In addition, we give the analytic
solutions of the linearized problem, Eq. (4.25), according to Eq. (4.26). The figure is taken from Chluba & Sunyaev [15].

which determines how the y-type distortion is sourced by the difference in the electron and photon temperature,
and (ii) yγ =

∫
θγ dτ, which determines how the additional distortion, ∆ f , broadens and shifts. As long as

y yγ � 1, these two parts of the problem can be treated separately.
Thus, let us assume that initially we have a low-frequency frequency feature in the much larger blackbody

spectrum with Tγ ' Te. Then, for fbb ≈ 1/x � 1, we may write [15]

∂∆ f
∂τ

∣∣∣∣∣
CS
≈ θγ

x2

∂

∂x
x4

[
∂

∂x
∆ f +

2
x

∆ f
]
. (4.25)

This equation describes the evolution of the distortion but including the background-induced stimulated scat-
tering effect. This case is relevant for example for the evolution of hydrogen and helium recombination lines
[45, 16] emitted around z ' 103 in the Rayleigh-Jeans tail of the CMB [15]. Transforming to ξ = ln x and
s = x3∆ f , we find ∂yγ s = ∂2

ξ s − ∂ξ s. By setting z = ξ − yγ, we arrive at ∂yγ s = ∂2
z s, which has the solution [15]

f (yγ, x) =
1√

4πyγ

∫
x′3

x3 f (0, x′) e−
(ln[x/x′]−yγ)2

4yγ
dx′

x′
=

∫
f (0, x′) GB(yγ, x′ → x) dx′, (4.26)

with the Green’s function

GB(yγ, x′ → x) =
x′3

x3

e−
(ln[x/x′]−yγ)2

4yγ

√
4πyγ x′

. (4.27)

This is very similar to the solution, Eq. (4.19), but with the different shift of the photon caused by stimu-
lated scattering in the blackbody field. Starting with f (0, x) = A δ(x − x0)/x2, it is straightforward to show
that ργ(yγ) = ργ(0) e2yγ . The positions of the maximum in Nx = x2 f (yγ, x) is x0(yγ) = x0 e−yγ , while
for Ix = x3 f (yγ, x) it is at x0(yγ) = x0 eyγ . Similarly, the FWHM of the photon distribution increases as
∆ν/ν = 2eyγ sinh(2

√
yγ ln 2) ' 4

√
yγ ln 2. Overall this means that the blackbody-induced stimulated scattering

effect slows down the motion of photons towards higher energies. The photon distribution still gains energy
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Figure 4.6: Dependence of the y-parameters, yγ and ye, on redshift. After recombination the y-parameters drop strongly
since the number of free electrons decreases exponentially. At late times, electrons drop out of equilibrium with the
photons so that ye < yγ. Around zK = 5 × 104, we have ye ' yγ ' 0.1. The line-broadening, ∆ν/ν ' 2

√
yγ ln 2, is also

illustrated. After recombination it becomes much smaller than ∆ν/ν ' 10−3.

but only ∆ργ/ργ ' e2yγ instead of ∆ργ/ργ ' e4ye when neglecting stimulated scattering. The line-broadening
caused by the Doppler effect is similar to the case without induced scattering. For Nx = x2 f , this is illustrated
in Fig. 4.5. In this case, photons move towards lower frequencies rather than higher.

Efficiency of redistribution. At late times, redistribution of photons in energy by Compton scattering be-
comes very inefficient. To quantify this statement a little more, we can compute the scattering y-parameter,
yγ =

∫
θγ dτ. At high redshifts (z & 104), it scales like

yγ =

∫ z

0
θγ

σTNec
H(1 + z)

dz ≈ σTNH(1 + 2 fHe)c
2H0
√

Ωr

kT0

mec2 (1 + z)2 ≈ 4.84 × 10−11(1 + z)2. (4.28)

This implies that around z ' 1.4 × 105 the y-parameter becomes smaller than unity. The dependence of yγ
on redshift is illustrated in Fig. 4.6. It is clear that after recombination redistribution by scattering is already
negligible. The amount of Doppler broadening, however, still reaches ' 1%− 10% between z ' 103 − 104. For
the calculation of the helium recombination lines it is thus important [45].

The above analysis shows that for scenarios with late photon production, one can practically neglect Comp-
ton scattering at z ≤ 103, unless the initial photon energy is very large so that recoil will become significant.
In this case, the largest effect will manifest itself as heating of the electrons. At redshifts z ' 103 − 5 × 104,
one can apply the analytic solutions discussed above to get an estimate for the distortion, while at z & 5 × 104

the approximation, Eq. (4.16b), for µ, should become applicable, although we still have to include the effect of
photon production on the final amplitude of µ.
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Figure 4.7: Absorption optical depth for BR at different redshifts and frequencies x. At low frequencies, the rough scaling
is τff ' x−2. For x ' 10−4, the Universe becomes transparent (τff ' 1) around recombination. For x ' 10−3 this transition
happens around z ' 1700 and for x ' 0.01 it is z ' 105.

4.4 Evolution under free-free absorption only

As we just explained, after recombination Compton scattering can be neglected. In this case, the photon
distribution only evolves according to BR, since even DC is already inefficient. The kinetic equation for the
photons thus reads

∂ f
∂τ
≈ KBR e−xe

x3
e

[
1 − f (exe − 1)

]
+ S (τ, x), (4.29)

where we included a possible photon source term, S (τ, x). The change of the electron temperature by BR
emission is very small and can be neglected. Let us also neglect the difference of the photon and electron
temperature, so that the evolution equation for a distortion to the CMB blackbody becomes

∂∆ f
∂τ
≈ −KBR(τ, x)(1 − e−x)

x3 ∆ f + S (τ, x). (4.30)

Between z = 0 and zi, this equation has the simple solution

∆ f (x, 0) ≈ ∆ f (x, zi) e−τff (x,zi) +

∫ zi

0
e−τff (x,z′) S̃ (z′, x) dz (4.31)

τff(x, z) =

∫ z

0

KBR(z, x)(1 − e−x)
x3

σTNec dz
H(1 + z)

, (4.32)

where we introduced the new source function, S̃ (z, x), with respect to redshift. The free-free absorption optical
depth can be calculated using the result from CosmoRec for the ionization history. We illustrate the result in
Fig. 4.7 for several values of x. In the post recombination era (z . 103), signals produced at x & 10−4 (≡ 6 MHz)
are not significantly attenuated by free-free absorption. For percent-level precision, one does furthermore need
to include the effect of free-free absorption at x . 0.1 (≡ 6 GHz) at z ' 103 − 105.
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4.5 Inclusion of photon production and the distortion visibility function

In the previous sections, we discussed several analytic solutions that allow describing the distortions created by
photon injection and heating. However, at early times, Compton scattering and photon emission and absorption
have to be considered simultaneously. How can we proceed in this case? Matters are simplified because CS
is still very efficient when photon production is important. We can thus hope to make progress by solving the
problem along a sequence of quasi-stationary stages for the chemical potential.

Let us assume that a non-zero constant chemical potential fully characterizes the distortion for the period
of interest. In that case from Eq. (4.13a), we can directly deduce

dµ0

dτ
≈ 3
κc

d ln a4ργ

dτ
− 4
κc

d ln a3Nγ

dτ
, (4.33)

with κc ≈ 2.1419. The right hand side describes the increase of the chemical potential by energy release and the
reduction by photon production. Since photons and ordinary matter are tightly coupled until z ' 100, heating
of the electrons means heating of the photons, so that one part of the energy release term follows directly from
the matter heating rate. Additional photon production [the source term in Eq. (3.54)] contributes to both energy
release and change of the photon number. DC and BR emission occur mostly at very low frequencies so that
they mainly contribute to changing the photon number density.

To make progress, we have to determine the terms on the right hand side of Eq. (4.33) from the photon
Boltzmann equation, Eq. (3.54). Pure energy exchange appears only from the Compton scattering term due
to interactions with the electrons. Energy injection related to the source term, S (τ, x), and DC / BR emission
terms adds to this. Assuming that no extra source term of photons is present, this means that

d ln a4ργ

dτ
≈ 4(θe − θeq

e ) +Hem ≈ Q̇∗e
ργ
. (4.34)

where θeq
e = kT eq

e /mec2 andHem describes the effect on the energy density of the photons related to DC and BR
emission. This term is small and can be neglected right away, also because it actually cancels identically when
computing the equilibrium electron temperature correctly [10]. Here, Q̇∗e denotes the effective heating rate (≡
energy per volume and Thomson scattering time) of electrons and baryons by the considered process. This
rate is slightly smaller than the direct heating rate because the adiabatic cooling of matter always extracts some
amount of energy [17, 10], as we will discuss below. Also, at late times after recombination, not all heating of
the electrons actually directly reaches the photon field, an aspect that has to be included [17].

For the photon production term in Eq. (4.33), only the source term and the DC / BR emission terms are
relevant, since CS conserves the photon number. For simplicity, we again omit the source term. We also know
that at low frequencies, the CMB spectrum is pushed into equilibrium with the electrons, so that it is best to
describe the distortion with respect to a blackbody at the electron temperature, f = fbb(Te) + ∆ f . Since the
electron and photon temperature are close to each other, at linear order this gives

d ln a3Nγ

dτ
≈ − 1

GPl
2

∫
Λ(x,Tγ)(1 − e−x)

x
∆ f dx ≈ 1

GPl
2

∫
Λ(x,Tγ)
x(ex − 1)

µ(t, x), (4.35)

where we used ∆ f ≈ −G(x) µ(t, x)/x and defined Λ(x,Tγ) = KBR(x,Tγ) + KDC(x,Tγ) e−x. Now we see a
problem: for x � 1 the integral diverges unless µ(t, x) vanishes faster than Λ(x)/x2 ' − ln(x)/x2. Assuming
constant chemical potential is therefore insufficient here! But there is a simple trick according to Sunyaev &
Zeldovich [54]: energetically the high frequency part of the spectrum is important. In that regime, photon
production is negligible, so that one can expect µ(t, x) ≈ µ0(t) [x & 1]. That means that Eq. (4.33) should be
enough to describe the energetic aspects of the problem, while to obtain an expression for the photon production
rate at low frequencies, we do need to look at the kinetic equation again.
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Figure 4.8: Critical frequency, xc as a function of z. Photon transport is inefficient below z ' 2 × 105 so that the
distortion visibility function quickly approaches unity. DC temperature corrections become noticeable at z & 106. The
approximations are from Eq. (4.38) and (4.39). The figure is taken from Chluba [10].

4.5.1 Quasi-stationary solution for the shape of the chemical potential distortion at x � 1

It is quite straightforward to obtain a solution for the frequency dependence of the chemical potential at x � 1.
We first linearize the problem, assuming that µ � 1. We furthermore describe the distortion with respect to
the Rayleigh-Jeans spectrum, which is given by a blackbody at the electron temperature, Te. Finally, we take
the limit x � 1, keeping only leading order terms. Assuming that the solution becomes quasi-stationary, from
Eq. (3.54), we find (Exercise 1)

0 ≈ x2µ′′ + 2xµ′ − Λ(t, x)/θγ
x2 µ, (4.36)

where we expressed the distortion part in terms of µ(t, x). This equation was first derived by Sunyaev &
Zeldovich [54]. The DC and BR emission coefficients are only weakly dependent on frequency once x � 1.
We can thus replace it by Λ(t, x) ≈ Λ(t, xc) ≈ θγx2

c , where the critical frequency can be determined numerically.
Then the equation takes the form [54]

0 ≈ ∂xx2∂xµ − x2
c

x2 µ, (4.37)

which has the simple solution µ(t, x) ≈ µ0(t) e−xc(t)/x. This shows that at x � xc, the chemical potential indeed
becomes constant, while at low frequencies it vanishes exponentially, with a smooth transition between these
regimes around x ' xc. The solution thus has the expected limiting behavior, even if strictly speaking it is only
valid at low frequencies. Indeed, the correct high frequency behavior is µ(t, x) ' µ∗0(t) + C(t) ln x, where the
coefficient, C(t), is related to the time derivative of the electron temperature [10].
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Critical frequency. To complete the problem, we still need to determine the critical frequency, xc, in Eq. (4.37).
For DC, one can solve the problem analytically, finding [19, 4, 27]

xDC
c ≈

√
4α
3π

θγIPl
dc ≈ 8.60 × 10−3

[
1 + z

2 × 106

]1/2

, (4.38)

where corrections due to the DC Gaunt factor were neglected. These can be included following Chluba [10].
The results are illustrated in Fig. 4.8. At high redshifts, the temperature correction reduces the critical frequency
notably in comparison with Eq. (4.38). This implies that thermalization should be less efficient, since the
frequency at which most photons are produced decreases. At the thermalization redshift z ' 2 × 106, the
temperature correction to the critical frequency xc is roughly 0.5% and it reaches ' 1% at z ' 4 × 106.
Although this appears to be small, since the critical frequency enters the problem through an integral, the
cumulative effect matters so that the correction is amplified and hence significant (see below).

For BR alone, we determined the critical frequency numerically using the expressions from Itoh et al. [30]
and assuming a helium mass fraction of Yp = 0.24. We find3

xBR
c ≈ 1.23 × 10−3

[
1 + z

2 × 106

]−0.672

(4.39)

to work very well. Comparing with Eq. (4.38), we can see that at the thermalization redshift z ' 2 × 106, BR
contributes about 10% to the value of the critical frequency. However, the contribution drops rapidly towards
higher redshifts (Fig. 4.8). To percent precision, the total critical frequency is x2

c ≈ (xDC
c )2 + (xBR

c )2 [27]. Also,
by comparing the redshift dependence of the DC and BR critical frequency, we can see that neglecting DC
strongly underestimates the thermalization efficiency.

Approximate photon production term and solution for µ0(t). We now can compute the photon production
term, Eq. (4.35), using the solution µ(t, x) ≈ µ0(t) e−xc(t)/x. It is straightforward to show (Exercise 2) that

d ln a3Nγ

dτ
≈ θγxc

GPl
2

µ0(τ). (4.40)

Inserting this into Eq. (4.33), and using Eq. (4.34), we find

dµ0

dτ
≈ γρ Q̇∗e

ργ
− γN θγxc µ0

γρ = 3/κc ≈ 1.401, γN = 4/(GPl
2 κ

c) ≈ 0.7769, (4.41)

where κc ≈ 2.1419. Then, by introducing the thermalization optical depth

τµ(z) ≈ γN

∫ z

0
θγxc

σTNec dz′

H(1 + z′)
, (4.42)

and assuming that there is no initial distortion at very early times, we can finally write

µ0(z) ≈ 1.401
∫ ∞

z

Q̇∗e
ργ

e−τµ(z′,z) dz′

H(1 + z′)
(4.43)

with τµ(z, z′) = τµ(z) − τµ(z′). The scaling of τµ with redshift depends on the photon production process. For
any given effective energy release rate, Q̇∗e, one can thus directly estimate the final amplitude of the µ-distortion.

3Note that again we can evaluate Λ assuming Te = Tγ.
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4.5.2 Single energy release and the distortion visibility function

Assuming only a single energy injection of ∆ργ/ργ at some heating redshift zh, from Eq. (4.43) we find [54]

µ0(z) ≈ 1.401
∆ργ

ργ
e−τµ(zh,z) = µhJ(zh, z) (4.44)

Here, we defined µh = 1.401∆ργ/ργ. The factor J(zh, z) = e−τµ(zh,z) defines the spectral distortion visibility
between the heating redshift zh and z. It determines the fraction of energy injected at zh that is still visible as a
distortion at z. For J(zh, z) ' 1, most of the energy is still stored in the distortion, while for J(zh, z) � 1, most
of the energy was thermalized and converted into a temperature shift. In this picture, we have the fractional
contributions to the photon energy density

∆ργ

ργ
=

∫ ∞

z

Q̇∗e
ργ

dz′

H(1 + z′)
≈

∫ ∞

z

d(Q∗e/ργ)
dz

dz′ (4.45a)

∆ργ

ργ

∣∣∣∣∣∣
dist

=

∫ ∞

z

d(Q∗e/ργ)
dz

e−τµ(z′,z) dz′ (4.45b)

∆ργ

ργ

∣∣∣∣∣∣
T

=

∫ ∞

z

d(Q∗e/ργ)
dz

(
1 − e−τµ(z′,z)

)
dz′ =

∆ργ

ργ
− ∆ργ

ργ

∣∣∣∣∣∣
dist

, (4.45c)

so that µ0 ≈ 1.401 ∆ργ/ργ
∣∣∣
dist and ∆T/T ≈ (1/4) ∆ργ/ργ

∣∣∣
T , at least for energy released above the Comptoniza-

tion redshift zh & zK ' 5 × 104.

So what does the distortion visibility function look like? To give the distortion visibility function, we need
to compute the thermalization optical depth, τµ(z) in Eq. (4.42). If we only include DC emission, the integral
is simple, giving [19, 4, 27]

JDC(zh) = JDC(zh, z = 0) = exp
(
−[zh/zdc]5/2

)
, (4.46)

with DC thermalization redshift [e.g., 27]

zdc ≈ 1.98 × 106
[

Ωbh2

0.022

]−2/5 [ T0

2.725K

]1/5 [
(1 − Yp/2)

0.88

]−2/5

, (4.47)

assuming Neff = 3.046. At z � zdc, thermalization is very efficient and the distortion visibility drops exponen-
tially. If alternatively we only include BR emission, we find [54, 19, 27]

JBR(zh) = exp
(
−[zh/zbr]1.328

)
(4.48)

with zbr ≈ 5.27×106. In the classical result, given first by Sunyaev & Zeldovich [54], the power-law coefficient
is 5/4 = 1.25 because a different approximation for the BR Gaunt factor was utilized. This shows that the
thermalization redshift is significantly higher when only BR is included. In addition, the distortion visibility
function drops less steeply at z & 5.27 × 106.

In Fig. 4.9 we compare the distortion visibility functions for DC and BR only with the numerical result
obtained from CosmoTherm [17, 10]. Clearly, DC emission increases the thermalization efficiency significantly.
If only BR were taken into account, we would still expect to see some small distortion even from the tail of the
electron-positron annihilation era around z ' 2×107! This would be quite complicated to compute, but luckily
the distortion visibility is exceedingly small, even if only DC is included, providing a rough but tiny upper
limit. Comparing with the full numerical result, JDC(zh), provides a very good approximation, which, for
simple estimates, is more than sufficient. In Sect. 4.6 we will discuss some improvements forJ , but for refined
computations it seems more reasonable to simply using the Green’s function method described in Sect. 5.
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4.5.3 Improved description of primordial distortions

We can now add the first improvement to the picture for the formation of primordial distortions, presented in
Sect. 4.2.3 and Fig. 4.3. The transition between µ and y-distortion is still abrupt around z ' zK ' 5 × 104,
but the distortion visibility at z & zK is no longer unity, which accounts for the effect of thermalization on the
distortion amplitude. We can now write the change of the CMB spectrum with respect to the initial blackbody
at very early times as ∆ f ≈ YSZ y + M(x) µ0 + G(x) ∆T , where ∆T = ∆T/T = (1/4) ∆ργ/ργ

∣∣∣
T . Using the

definitions of Eq. (4.45), we may write

∆ργ

ργ
≈

∫ ∞

0

d(Q∗e/ργ)
dz

dz′ (4.49a)

∆ργ

ργ

∣∣∣∣∣∣
i
=

∫ ∞

0

d(Q∗e/ργ)
dz

Ji dz′, (4.49b)

where Jy(z) ≈ ΘH(zK − z), Jµ(z) ≈ ΘH(z − zK) exp
(
−[z/zdc]5/2

)
and JT (z) ≈ 1 − Jµ(z). Here, ΘH(x) is

the Heaviside step function, ΘH(x) = 1 for x ≥ 0 and ΘH(x) = 0 otherwise. The visibility functions, Ji,
determine the fractions of energy that go into T , µ and y distortion parts. By construction, one has

∑
i Ji = 1

(see Fig. 4.10 for illustration).
In Sect. 5.1, we will discuss the last refinement that takes into account that the transition between µ and y

distortions is not abrupt but occurs over a range of redshifts where in the intermediate regime the distortion is
not only given by the superposition of µ and y-distortion.

4.6 Refined computation of the distortion visibility function

Exercises

Exercise 1 Derive Eq. (4.36) from the photon evolution equation, Eq. (3.54).

Exercise 2 Derive the approximation Eq. (4.40) for the photon production term. How large are the corrections
when you numerically compute the emission term using DC only.



Chapter 5

Computation of the distortions using the
distortion Green’s function

5.1 Spectral distortion in the transition between the µ and y-eras

57
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