Science with Spectral Distortions of the CMB - IV

Jens Chluba

Canadian Institute for Theoretical Astrophysics

L'institut canadien d'astrophysique theorique CUSO Doctoral Program in Physics

Lausanne, November 6th, 2014

Physical mechanisms that lead to spectral distortions

- Cooling by adiabatically expanding ordinary matter (JC, 2005; JC & Sunyaev 2011; Khatri, Sunyaev & JC, 2011)
- Heating by *decaying* or *annihilating* relic particles (Kawasaki et al., 1987; Hu & Silk, 1993; McDonald et al., 2001; JC, 2005; JC & Sunyaev, 2011; JC, 2013; JC & Jeong, 2013)
- Evaporation of primordial black holes & superconducting strings (Carr et al. 2010; Ostriker & Thompson, 1987; Tashiro et al. 2012; Pani & Loeb, 2013)
- Dissipation of primordial acoustic modes & magnetic fields

(Sunyaev & Zeldovich, 1970; Daly 1991; Hu et al. 1994; JC & Sunyaev, 2011; JC et al. 2012 - Jedamzik et al. 2000; Kunze & Komatsu, 2013)

Cosmological recombination radiation
 (Zeldovich et al., 1968; Peebles, 1968; Dubrovich, 1977; Rubino-Martin et al., 2006; JC & Sunyaev, 2006; Sunyaev & JC, 2009)

"high" redshifts

"low" redshifts

Standard sources

of distortions

- Signatures due to first supernovae and their remnants (Oh, Cooray & Kamionkowski, 2003)
- Shock waves arising due to large-scale structure formation

(Sunyaev & Zeldovich, 1972; Cen & Ostriker, 1999)

SZ-effect from clusters; effects of reionization

(Refregier et al., 2003; Zhang et al. 2004; Trac et al. 2008)

more exotic processes

(Lochan et al. 2012; Bull & Kamionkowski, 2013; Brax et al., 2013; Tashiro et al. 2013)

pre-recombination epoch

Quasi-Exact Treatment: Thermalization Green's Function

- For real forecasts of future prospects a precise & fast method for computing the spectral distortion is needed!
- Case-by-case computation of the distortion (e.g., with CosmoTherm, JC & Sunyaev, 2012, ArXiv:1109.6552) still rather time-consuming
- *But*: distortions are small ⇒ thermalization problem becomes linear!
- Simple solution: compute "response function" of the thermalization problem ⇒ Green's function approach (JC, 2013, ArXiv:1304.6120)
- Final distortion for fixed energy-release history given by

$$\Delta I_{\nu} \approx \int_{0}^{\infty} G_{\rm th}(\nu, z') \frac{\mathrm{d}(Q/\rho_{\gamma})}{\mathrm{d}z'} \mathrm{d}z'$$

Thermalization Green's function

Fast and quasi-exact! No additional approximations!

What does the spectrum look like after energy injection?

JC & Sunyaev, 2012, ArXiv:1109.6552 JC, 2013, ArXiv:1304.6120

Explicitly taking out the superposition of µ & y distortion

Allows us to distinguish different energy release scenarios!

JC & Sunyaev, 2012, ArXiv:1109.6552 JC, 2013, ArXiv:1304.6120; JC, 2013, ArXiv:1304.6121; JC & Jeong, 2013

Why model-independent approach to distortion signal

- Model-dependent analysis makes model-selection non-trivial
- Real information in the distortion signal limited by sensitivity and foregrounds
- Principle Component Analysis (PQA) can help optimizing this 2x [eV]
- useful for optimizing experimental designs (frequencies; sensitivities, ...)!

 $f_{\rm ann,p} [10^{-26} {\rm eV \ sec}^{-1}]$

Annihilation scenario

Decaying particle scenario $z_{x}^{4.95} = z_{x}^{5.00}$

Eigenmodes for a PIXIE-type experiment

Figure 4. First few eigenmodes $E^{(k)}$ and $S^{(k)}$ for *PIXIE*-type settings $(\nu_{\min} = 30 \text{ GHz}, \nu_{\max} = 1000 \text{ GHz} \text{ and } \Delta \nu_s = 15 \text{ GHz})$. In the mode construction, we assumed that energy release only occurred at $10^3 \le z \le 5 \times 10^6$.

Estimated error bars

(under idealistic assumptions...)

$$\frac{\Delta T}{T} \simeq 2 \,\mathrm{nK} \left(\frac{\Delta I_{\rm c}}{5 \,\mathrm{Jy}\,\mathrm{sr}^{-1}} \right)$$
$$\Delta y \simeq 1.2 \times 10^{-9} \left(\frac{\Delta I_{\rm c}}{5 \,\mathrm{Jy}\,\mathrm{sr}^{-1}} \right)$$
$$\Delta \mu \simeq 1.4 \times 10^{-8} \left(\frac{\Delta I_{\rm c}}{5 \,\mathrm{Jy}\,\mathrm{sr}^{-1}} \right)$$

Table 1. Forecasted 1σ errors of the first six eigenmode amplitudes, $E^{(k)}$. We also give $\varepsilon_k = 4 \sum_i S_i^{(k)} / \sum_i G_{i,T}$, and the scalar products $S^{(k)} \cdot S^{(k)}$ (in units of $[10^{-18} \text{ W m}^{-2} \text{ Hz}^{-1} \text{ sr}^{-1}]^2$). The fraction of energy release to the residual distortion and its uncertainty are given by $\varepsilon \approx \sum_k \varepsilon_k \mu_k$ and $\Delta \varepsilon \approx (\sum_k \varepsilon_k^2 \Delta \mu_k^2)^{1/2}$, respectively. For the mode construction we used *PIXIE*-settings ($\{\nu_{\min}, \nu_{\max}, \Delta \nu_s\} = \{30, 1000, 15\}$ GHz and channel sensitivity $\Delta I_c = 5 \times 10^{-26} \text{ W m}^{-2} \text{ Hz}^{-1} \text{ sr}^{-1}$). The errors roughly scale as $\Delta \mu_k \propto \Delta I_c / \sqrt{\Delta \nu_s}$.

k	$\Delta \mu_k$	$\Delta \mu_k / \Delta \mu_1$	ε_k	$S^{(k)} \cdot S^{(k)}$
1	1.48×10^{-7}	1	-6.98×10^{-3}	1.15×10^{-1}
2	7.61×10^{-7}	5.14	2.12×10^{-3}	4.32×10^{-3}
3	3.61×10^{-6}	24.4	-3.71×10^{-4}	1.92×10^{-4}
4	1.74×10^{-5}	1.18×10^{2}	8.29×10^{-5}	8.29×10^{-6}
5	8.52×10^{-5}	5.76×10^{2}	-1.55×10^{-5}	3.45×10^{-7}
6	4.24×10^{-4}	2.86×10^{3}	2.75×10^{-6}	1.39×10^{-8}

Distortions could shed light on decaying (DM) particles!

JC & Jeong, 2013

Structure of the Lectures (cont.)

Lecture III:

- Overview of different sources of distortions
- Decaying particles
- Dissipation of acoustic modes

The dissipation of small-scale acoustic modes

Dissipation of small-scale acoustic modes

Dissipation of small-scale acoustic modes

Dissipation of small-scale acoustic modes

Energy release caused by dissipation process

'Obvious' dependencies:

- Amplitude of the small-scale power spectrum
- Shape of the small-scale power spectrum
- Dissipation scale $\rightarrow k_D \sim (H_0 \ \Omega_{rel}^{1/2} N_{e,0})^{1/2} (1+z)^{3/2}$ at early times

not so 'obvious' dependencies:

- primordial non-Gaussianity in the ultra squeezed limit (Pajer & Zaldarriaga, 2012; Ganc & Komatsu, 2012)
- Type of the perturbations (adiabatic ↔ isocurvature) (Barrow & Coles, 1991; Hu et al., 1994; Dent et al, 2012, JC & Grin, 2012)
- Neutrinos (or any extra relativistic degree of freedom)

Energy release caused by dissipation process

'Obvious' dependencies:

- Amplitude of the small-scale power spectrum
- Shape of the small-scale power spectrum
- Dissipation scale $\rightarrow k_D \sim (H_0 \ \Omega_{rel}^{1/2} N_{e,0})^{1/2} (1+z)^{3/2}$ at early times

not so 'obvious' dependencies:

- primordial non-Gaussianity in the ultra squeezed limit (Pajer & Zaldarriaga, 2012; Ganc & Komatsu, 2012)
- Type of the perturbations (adiabatic ↔ isocurvature) (Barrow & Coles, 1991; Hu et al., 1994; Dent et al, 2012, JC & Grin, 2012)
- Neutrinos (or any extra relativistic degree of freedom)

CMB Spectral distortions could add additional numbers beyond 'just' the tensor-to-scalar ratio from B-modes! Handwavy derivation of the heating rate

energy stored in plane sound waves

Landau & Lifshitz, 'Fluid Mechanics', § 65 $\Rightarrow Q \sim c_s^2 \rho (\delta \rho / \rho)^2$

 expression for normal ideal gas where ρ is 'mass density' and c_s denotes 'sounds speed'

energy stored in plane sound waves

Landau & Lifshitz, 'Fluid Mechanics', § 65 $\Rightarrow Q \sim c_s^2 \rho (\delta \rho / \rho)^2$

- expression for normal ideal gas where ρ is 'mass density' and c_s denotes 'sounds speed'
- photon-baryon fluid with baryon loading R << 1

 $(c_{\rm S}/c)^2 = [3 (1+R)]^{-1} \sim 1/3$ $\rho \rightarrow \rho_{\gamma} = a_{\rm R} T^4$ $\delta \rho / \rho \rightarrow 4 (\delta T_0 / T) \equiv 4 \Theta_0$ only perturbation in the monopole accounted for

energy stored in plane sound waves

Landau & Lifshitz, 'Fluid Mechanics', § 65 $\Rightarrow Q \sim c_s^2 \rho (\delta \rho / \rho)^2$

- expression for normal ideal gas where ρ is 'mass density' and c_s denotes 'sounds speed'
- photon-baryon fluid with baryon loading R << 1

'minus' because decrease of O at small scales means *increase* for average spectrum

 $(c_{\rm s}/c)^2 = [3 (1+R)]^{-1} \sim 1/3$ $\rho \rightarrow \rho_{\gamma} = a_{\rm R} T^4 \qquad \Rightarrow (a^4 \rho_{\gamma})^{-1} da^4 Q_{\rm ac}/dt = -16/3 d <\Theta_0^2 > /dt$ $\delta \rho / \rho \rightarrow 4 (\delta T_0/T) \equiv 4 \Theta_0$

can be calculated using first order perturbation theory

energy stored in plane sound waves

Landau & Lifshitz, 'Fluid Mechanics', § 65 $\Rightarrow Q \sim c_s^2 \rho (\delta \rho / \rho)^2$

- expression for normal ideal gas where ρ is 'mass density' and c_s denotes 'sounds speed'
- photon-baryon fluid with baryon loading R << 1

 $(c_{\rm s}/c)^2 = [3 (1+R)]^{-1} \sim 1/3$ $\rho \rightarrow \rho_{\gamma} = a_{\rm R} T^4 \qquad \Rightarrow (a^4 \rho_{\gamma})^{-1} da^4 Q_{\rm ac}/dt = -16/3 d <\Theta_0^2 > /dt$ $\delta \rho / \rho \rightarrow 4(\delta T_0/T) \equiv 4\Theta_0$

energy stored in plane sound waves

Landau & Lifshitz, 'Fluid Mechanics', § 65 $\Rightarrow Q \sim c_s^2 \rho (\delta \rho / \rho)^2$

- expression for normal ideal gas where ρ is 'mass density' and c_s denotes 'sounds speed'
- photon-baryon fluid with baryon loading R << 1

 $(c_{s}/c)^{2} = [3 (1+R)]^{-1} \sim 1/3$ $\rho \rightarrow \rho_{\gamma} = a_{R} T^{4} \qquad \Rightarrow (a^{4}\rho_{\gamma})^{-1} da^{4}Q_{ac}/dt = -16/3 d <\Theta_{0}^{2} > /dt$ $\delta \rho / \rho \rightarrow 4(\delta T_{0}/T) \equiv 4\Theta_{0}$

- Simple estimate does *not* capture all the physics of the problem: (JC, Khatri & Sunyaev, 2012)
 - total energy release is 9/4 ~ 2.25 times larger!
 - only 1/3 of the released energy goes into distortions

Sunyaev & Zeldovich, 1970 Hu, Scott & Silk, 1994, ApJ

Early power spectrum constraints from FIRAS

FIG. 1.—Spectral distortion μ , predicted from the full eq. (11), as a function of the power index *n* for a normalization at the mean of the *COBE* DMR detection $(\Delta T/T)_{10^\circ} = 1.12 \times 10^{-5}$. With the uncertainties on *both* the DMR and FIRAS measurements, the conservative 95% upper limit is effectively $\mu < 1.76 \times 10^{-4}$ (see text). The corresponding constraint on *n* is relatively weakly dependent on cosmological parameters: n < 1.60 (h = 0.5) and n < 1.63 (h = 1.0) for $\Omega_0 = 1$ and quite similar for $0.2 < \Omega_0 = 1 - \Omega_A < 1$ universes. These limits are nearly independent of Ω_B . We have also plotted the optimistic 95% upper limit on $\mu < 0.63 \times 10^{-4}$ for comparison as discussed in the text.

- based on classical estimate for heating rate
- Tightest / cleanest constraint at that point!
- simple power-law spectrum assumed
- μ~10⁻⁸ for scale-invariant power spectrum
- *n*_S ≲ 1.6

Dissipation of acoustic modes: 'microscopic picture'

- after inflation: photon field has spatially varying temperature T
- average energy stored in photon field at any given moment

$$< \rho_{\gamma} > = a_{R} < T^{4} > \approx a_{R} < T^{4} [1 + 4 < \Theta > + 6 < \Theta^{2} >]$$

JC, Khatri & Sunyaev, 2012

Dissipation of acoustic modes: 'microscopic picture'

- after inflation: photon field has spatially varying temperature T
- average energy stored in photon field at any given moment

$$< \rho_{\gamma} > = a_{R} < T^{4} > \approx a_{R} < T^{4} [1 + 4 < \Theta > + 6 < \Theta^{2} >]$$

$$\Rightarrow (a^4 \rho_V)^{-1} da^4 Q_{ac}/dt = -6 d < \Theta^2 > /dt$$

- Monopole actually drops out of the equation!
- In principle all higher multipoles contribute to the energy release

E.g., our snapshot at *z*=0

Dissipation of acoustic modes: 'microscopic picture'

- after inflation: photon field has spatially varying temperature T
- average energy stored in photon field at any given moment

$$< \rho_{\gamma} > = a_{R} < T^{4} > \approx a_{R} < T^{4} [1 + 4 < \Theta > + 6 < \Theta^{2} >]$$

$$\Rightarrow (a^4 \rho_V)^{-1} da^4 Q_{ac}/dt = -6 d < \Theta^2 > /dt$$

- Monopole actually drops out of the equation!
- In principle all higher multipoles contribute to the energy release
- At high redshifts ($z \ge 10^4$):
 - net (gauge-invariant) dipole and contributions from higher multipoles are negligible
 - dominant term caused by quadrupole anisotropy

$$\Rightarrow (a^4 \rho_V)^{-1} da^4 Q_{ac}/dt \approx -12 d < \Theta_0^2 > /dt$$

9/4 larger than classical estimate

Where does the 2:1 ratio come from?

Distortions caused by superposition of blackbodies

$$\Rightarrow y \simeq \frac{1}{2} \left\langle \left(\frac{\Delta T}{T}\right)^2 \right\rangle \approx 8 \times 10^{-10}$$
$$\Delta T_{\rm sup} \simeq T \left\langle \left(\frac{\Delta T}{T}\right)^2 \right\rangle \approx 4.4 \text{nK}$$

known with very high precision

Distortions caused by superposition of blackbodies

• average spectrum

$$\Rightarrow y \simeq \frac{1}{2} \left\langle \left(\frac{\Delta T}{T}\right)^2 \right\rangle \approx 8 \times 10^{-10}$$
$$\Delta T_{\rm sup} \simeq T \left\langle \left(\frac{\Delta T}{T}\right)^2 \right\rangle \approx 4.4 \,\mathrm{nK}$$

known with very high precision

• CMB dipole ($\beta_c \sim 1.23 \times 10^{-3}$) $\Rightarrow \quad y \simeq \frac{\beta_c^2}{6} \approx 2.6 \times 10^{-7}$

$$\Delta T_{\rm sup} \simeq T \, \frac{\beta_{\rm c}^2}{3} \approx 1.4 \mu {\rm K}$$

- electrons are up-scattered
- can be taken out at the level of ~ 10⁻⁹

JC & Sunyaev, 2004 JC, Khatri & Sunyaev, 2012 COBE/DMR: ΔT = 3.353 mK
Effective energy release caused by damping effect

• Effective heating rate from full 2x2 Boltzmann treatment (JC, Кhatri & Sunyaev, 2012)

$$\begin{split} \frac{1}{a^4 \rho_{\gamma}} \frac{\mathrm{d}a^4 Q_{\mathrm{ac}}}{\mathrm{d}t} &= 4\sigma_{\mathrm{T}} N_{\mathrm{e}} c \left\langle \frac{(3\Theta_1 - \beta)^2}{3} + \frac{9}{2} \Theta_2^2 - \frac{1}{2} \Theta_2 (\Theta_0^{\mathrm{P}} + \Theta_2^{\mathrm{P}}) + \sum_{l \geq 3} (2l+1) \Theta_\ell^2 \right\rangle \\ \Theta_\ell &= \frac{1}{2} \int \Theta(\mu) P_\ell(\mu) \mathrm{d}\mu \qquad \text{gauge-independent dipole} \quad \text{effect of polarization} \qquad \text{higher multipoles} \\ \langle XY \rangle &= \int \frac{k^2 \mathrm{d}k}{2\pi^2} P(k) X(k) Y(k) \end{split}$$

Primordial power spectrum

Effective energy release caused by damping effect

Effective heating rate from full 2x2 Boltzmann treatment (JC, Khatri & Sunyaev, 2012)

Our computation for the effective energy release

scaled such that constant for $n_{\rm S}$ =1

- Our 2. order perturbation calculation showed that the *classical* picture was slightly inconsistent
- Amplitude of the distortion depends on the smallscale power spectrum
- Computation carried out with CosmoTherm (JC & Sunyaev 2011)

JC, Khatri & Sunyaev, 2012

$$P_{\zeta}(k) = 2\pi^2 A_{\zeta} k^{-3} (k/k_0)^{n_{\rm S}-1+\frac{1}{2}n_{\rm run}\ln(k/k_0)}$$

Primordial power spectrum of curvature perturbations is input for the calculation

Which modes dissipate in the µ and y-eras?

 Single mode with wavenumber k dissipates its energy at

 $z_{\rm d} \sim 4.5 \times 10^5 (k \,{\rm Mpc}/10^3)^{2/3}$

- Modes with wavenumber 50 Mpc⁻¹ < k < 10⁴ Mpc⁻¹ dissipate their energy during the µ-era
- Modes with *k* < 50 Mpc⁻¹ cause *y*-distortion

JC, Erickcek & Ben-Dayan, 2012

Constraints on the standard primordial power spectrum

- For any given power spectrum very precise predictions are possible!
- The *physics* going into the computation are *well understood*
- For the standard power spectrum PIXIE might detect the μ-distortion caused by acoustic damping at ~ 1.5σ level
- PIXIE could *independently* rule out a scaleinvariant power spectrum at ~ 2.5σ level
- y-distortion will be harder to measure, since many other astrophysical processes cause y-distortions at low redshift

$$P_{\zeta}(k) = 2\pi^2 A_{\zeta} k^{-3} (k/k_0)^{n_{\rm S}-1+\frac{1}{2}n_{\rm run}\ln(k/k_0)}$$

Average CMB spectral distortions

Absolute value of Intensity signal

Average CMB spectral distortions

Absolute value of Intensity signal

JC & Jeong, 2013

But this is not all that one could look at !!!

Distortions provide additional power spectrum constraints!

Amplitude of power spectrum rather uncertain at k > 3 Mpc⁻¹

improved limits at smaller scales can rule out many inflationary models

Distortions provide additional power spectrum constraints!

- Amplitude of power spectrum rather uncertain at k > 3 Mpc⁻¹
- improved limits at smaller scales can rule out many inflationary models
- CMB spectral distortions would extend our lever arm to k ~ 10⁴ Mpc⁻¹
- very complementary piece of information about early-universe physics

e.g., JC, Khatri & Sunyaev, 2012; JC, Erickcek & Ben-Dayan, 2012; JC & Jeong, 2013

COBE/FIRAS limits on the amplitude of the small-scale power spectrum

- 'optimistic' limit *P*(k)< 8.4x10⁻⁶
- Conservative constraint
- ~10³ stronger that PBHs limit
- UCMHs limit still ~10 times stronger but more uncertain
- PIXIE could improve limit to P(k) < 10⁻⁸
- constant power limit even
 P(k) < 10⁻⁹

Primordial power spectra with 'step' at small scales

$$\mu \approx 2.2 \int_{k_{\min}}^{\infty} \mathcal{P}_{\zeta}(k) \left[\exp\left(-\frac{\hat{k}}{5400}\right) - \exp\left(-\left[\frac{\hat{k}}{31.6}\right]^2\right) \right] d\ln k$$
$$y \approx 0.4 \int_{k_{\min}}^{\infty} \mathcal{P}_{\zeta}(k) \exp\left(-\left[\frac{\hat{k}}{31.6}\right]^2\right) d\ln k,$$

Integral constraint on small-scale power

- simple formula to compute the effective µ and y-parameter
- COBE/FIRAS ⇒ amplitude of the

small-scale power spectrum can't change by more than $\sim 2x10^{-6}$ at wavenumber k $\sim 1 \text{ Mpc}^{-1}$

Primordial power spectra with 'bend' at small scales

$$\mu \approx 2.2 \int_{k_{\min}}^{\infty} \mathcal{P}_{\zeta}(k) \left[\exp\left(-\frac{\hat{k}}{5400}\right) - \exp\left(-\left[\frac{\hat{k}}{31.6}\right]^2\right) \right] d\ln k$$
$$y \approx 0.4 \int_{k_{\min}}^{\infty} \mathcal{P}_{\zeta}(k) \exp\left(-\left[\frac{\hat{k}}{31.6}\right]^2\right) d\ln k,$$

Integral constraint on small-scale power

- COBE/FIRAS ⇒ spectral index at k ~ 1 Mpc⁻¹ cannot change by more than Δn~1
- PIXIE will place very tight constraints on such models

JC, Erickcek & Ben-Dayan, 2012

Probing the small-scale power spectrum

JC, 2013, Arxiv:1304.6120

Probing the small-scale power spectrum

Average CMB spectral distortions

Absolute value of Intensity signal

Average CMB spectral distortions

Absolute value of Intensity signal

Probing the small-scale power spectrum

Dissipation scenario: 1σ -detection limits for PIXIE

JC & Jeong, 2013

Distinguishing dissipation and decaying particle scenarios

- measurement of μ, μ₁ & μ₂
- trajectories of decaying particle and dissipation scenarios differ!
- scenarios can in principle be distinguished

 $A_{\zeta} = 5 \times 10^{-8}$

Distinguishing dissipation and decaying particle scenarios

- measurement of μ, μ₁ & μ₂
- trajectories of decaying particle and dissipation scenarios differ!
- scenarios can in principle be distinguished

 $A_{\zeta} = 5 \times 10^{-8}$

Adiabatic modes:
 heating rate ~ 1/z
 at high z

JC & Grin, 2013

 $P_i(k) = 2\pi^2 A_i k^{-3} (k/k_0)^{n_i - 1}$

- Adiabatic modes:
 heating rate ~ 1/z
 at high z
- baryon/CDM isocurvature modes:

 $A \sim k/k_{eq}$

during radiation dominated epoch

$$P_i(k) = 2\pi^2 A_i k^{-3} (k/k_0)^{n_i - 1}$$

- Adiabatic modes: heating rate ~ 1/z at high z
- baryon/CDM isocurvature modes:

 $A \sim k/k_{eq}$

during radiation dominated epoch

•
$$n_{\rm iso} \sim 3 \Rightarrow$$
 heating

rate $\sim 1/z$

$$P_i(k) = 2\pi^2 A_i k^{-3} (k/k_0)^{n_i - 1}$$

- Adiabatic modes: heating rate ~ 1/z at high z
- baryon/CDM isocurvature modes:

 $A \sim k/k_{eq}$

during radiation dominated epoch

- $n_{\rm iso} \sim 3 \Rightarrow$ heating rate $\sim 1/z$
- neutrino isocurvature modes very similar to adiabatic modes

 $P_i(k) = 2\pi^2 A_i k^{-3} (k/k_0)^{n_i-1}$

- Adiabatic modes: heating rate ~ 1/z at high z
- baryon/CDM isocurvature modes:

 $A \sim k/k_{eq}$

during radiation dominated epoch

- $n_{\rm iso} \sim 3 \Rightarrow$ heating rate $\sim 1/z$
- neutrino isocurvature modes very similar to adiabatic modes

$$P_i(k) = 2\pi^2 A_i k^{-3} (k/k_0)^{n_i - 1}$$

- Adiabatic modes: heating rate ~ 1/z at high z
- baryon/CDM isocurvature modes:

 $A \sim k/k_{eq}$

during radiation dominated epoch

- $n_{\rm iso} \sim 3 \Rightarrow$ heating rate $\sim 1/z$
- neutrino isocurvature modes very similar to adiabatic modes
- compensated isocurvature modes: practically no heating

$$P_i(k) = 2\pi^2 A_i k^{-3} (k/k_0)^{n_i - 1}$$

Anisotropic µ-distortions from non-Gaussianity

- Modes that dissipate energy have $k_1 \approx k_2 >> k_3$
- Non-Gaussian power spectrum → presence of positive long-wavelength mode enhances small-scale power
- More small-scale power → larger µ-distortion
- → Spatially varying µ-distortion caused by non-Gaussianity! (Pajer & Zaldarriaga, 2012; Ganc & Komatsu, 2012)
- Non-vanishing µ-T correlation at large scales
- Might be detectable with PIXIE-type experiment for $f_{NL} > 10^3$

Requirements

- precise cross-calibration of frequency channels
- higher angular resolution does not improve cumulative S/N

Dissipation of tensor perturbations

- heating rate can be computed similar to adiabatic modes
- heating rate much smaller than for scalar perturbations
- roughly constant per dlnz for n_T~0.5

- distortion signal very small compared to adiabatic modes
- no severe contamination in simplest cases
- models with 'large' distortion already constrained by BBN/CMB

JC et al., 2014, ArXiv:1407.3653

Comparison of the distortion window functions

- small-scale modes important for blue tensor power spectra
- Ota et al. underestimated distortion in this case ~7 times

$$\mu_i \approx \int_0^\infty \frac{k^2 \mathrm{d}k}{2\pi^2} P_i(k) W_i(k)$$

- adiabatic modes sensitive to a smaller range of scales
- tensors even have contributions from close to the horizon scale
- power-law decay at small scales

JC et al., 2014, ArXiv:1407.3653

Small-scale photon transfer function for tensors

- simple analytic expressions for the envelope and phase
- tensors never really disappear at small scales
- decay of amplitude only power-law instead of exponential as for adiabatic modes

Structure of the Lectures (cont.)

Lecture III:

- Overview of different sources of distortions
- Dissipation of acoustic modes
- Decaying particles

Structure of the Lectures (cont.)

Lecture III:

- Overview of different sources of distortions
- Dissipation of acoustic modes
- Decaying particles

Lecture IV:

- Recombination physics and why it is important
- The cosmological recombination radiation
- Sunyaev-Zeldovich effect and what the signals could tell us

Structure of the Lectures (cont.)

Lecture III:

- Overview of different sources of distortions
- Dissipation of acoustic modes
- Decaying particles

Lecture IV:

- Recombination physics and why it is important
- The cosmological recombination radiation
- Sunyaev-Zeldovich effect and what the signals could tell us

Sadly we won't have time for this...
The cosmological recombination radiation & ionization history and why they are so important

Sketch of the Cosmic Ionization History

Cosmic Microwave Background Anisotropies

Planck all sky map

CMB has a blackbody spectrum in every direction
tiny variations of the CMB temperature Δ*T*/*T* ~ 10⁻⁵

Cosmological Time in Years

Cosmological Time in Years

CMB Sky \rightarrow Cosmology

BAO, Lyman- α forest, lensing, ...

CMB Sky \rightarrow Cosmology

small-scale CMB, Supernovae, large-scale structure/ BAO, Lyman- α forest, lensing, ...

Why are the ionization history and recombination radiation connected?

- To interpret high-precision CMB data we need to understand the *ionization history* very well!
- The recombination radiation is a direct record of the recombination process
- measuring the recombination radiation allows us to directly *check our understanding* of the recombination process!
- High-frequency distortion actually controls recombination dynamics, so we need to understand both well!

How does cosmological recombination work?

- coupled system describing the interaction of *matter* with the ambient CMB *photon* field
- atoms can be in different excitation states
 - \implies lots of levels to worry about
- recombination process changes Wien tail of CMB and this affects the recombination dynamics
 - \implies radiative transfer problem

- coupled system describing the interaction of *matter* with the ambient CMB *photon* field
- atoms can be in different excitation states

 \implies lots of levels to worry about

recombination process changes Wien tail of CMB and this affects the recombination dynamics

 \implies radiative transfer problem

Have to follow evolution of: $N_{\rm e}, T_{\rm e}, N_{\rm p}, N_i$ and ΔI_{ν}

- coupled system describing the interaction of *matter* with the ambient CMB *photon* field
- atoms can be in different excitation states
 - \implies lots of levels to worry about
- recombination process changes
 Wien tail of CMB and this affects
 the recombination dynamics
 - \implies radiative transfer problem

Have to follow evolution of: $N_{\rm e}, T_{\rm e}, N_{\rm p}, N_i \text{ and } \Delta I_{\nu}$

number densities

non-thermal photons

- coupled system describing the interaction of *matter* with the ambient CMB *photon* field
- atoms can be in different excitation states
 - \implies lots of levels to worry about
- recombination process changesWien tail of CMB and this affectsthe recombination dynamics

 \implies radiative transfer problem

Have to follow evolution of: $N_{\rm e}, T_{\rm e}, N_{\rm p}, N_i \text{ and } \Delta I_{\nu}$

electron temperature

Only problem in time!

hermal photons

Physical Conditions during Recombination

- Temperature $T_{\gamma} \sim 2.725 (1+z) \text{ K} \sim 3000 \text{ K}$
- Baryon number density $N_{\rm b} \sim 2.5 \times 10^{-7} {\rm cm}^{-3} (1+z)^3 \sim 330 {\rm cm}^{-3}$
- Photon number density $N_{\gamma} \sim 410 \text{ cm}^{-3} (1+z)^3 \sim 2 \times 10^9 N_b$ \Rightarrow photons in very distant Wien tail of blackbody spectrum can keep

hydrogen ionized until $hv_{\alpha} \sim 40 kT_{\gamma} \iff T_{\gamma} \sim 0.26 \text{ eV}$

- Collisional processes negligible (completely different in stars!!!)
- Rates dominated by radiative processes (e.g. stimulated emission & stimulated recombination)

• Compton interaction couples electrons very tightly to photons until $z \sim 200 \Rightarrow T_{\gamma} \sim T_e \sim T_m$

continuum: *e p* (He)

Routes to the ground state ?

Zeldovich, Kurt & Sunyaev, 1968, ZhETF, 55, 278 Peebles, 1968, ApJ, 153, 1

Hydrogen atom

Routes to the ground state ?

- direct recombination to 1s
 - Emission of photon is followed by immediate re-absorption

Zeldovich, Kurt & Sunyaev, 1968, ZhETF, 55, 278 Peebles, 1968, ApJ, 153, 1

Routes to the ground state ?

- direct recombination to 1s
 - Emission of photon is followed by immediate re-absorption

No

Zeldovich, Kurt & Sunyaev, 1968, ZhETF, 55, 278 Peebles, 1968, ApJ, 153, 1

Routes to the ground state ?

- direct recombination to 1s
 - Emission of photon is followed by immediate re-absorption

No

- recombination to 2p followed by Lyman-α emission
 - medium optically thick to Ly- α phot.
 - many resonant scatterings
 - escape very hard (*p* ~10⁻⁹ @ *z* ~1100)

Zeldovich, Kurt & Sunyaev, 1968, ZhETF, 55, 278 Peebles, 1968, ApJ, 153, 1

Routes to the ground state ?

- direct recombination to 1s
 - Emission of photon is followed by immediate re-absorption

No

- recombination to 2p followed by Lyman- α emission
 - medium optically thick to Ly- α phot.
 - many resonant scatterings
 - escape very hard (*p* ~10⁻⁹ @ *z* ~1100)
- recombination to 2s followed by 2s two-photon decay
 - 2s \rightarrow 1s ~10⁸ times slower than Ly- α
 - 2s two-photon decay profile \rightarrow maximum at $\nu \sim$ 1/2 ν_{α}
 - immediate escape

Zeldovich, Kurt & Sunyaev, 1968, ZhETF, 55, 278 Peebles, 1968, ApJ, 153, 1

Routes to the ground state ?

 direct recombination to 1s Emission of photon is followed by 	} No
 recombination to 2p followed by Lyman-α emission medium optically thick to Ly-α phot. many resonant scatterings escape very hard (p ~10-9 @ z ~1100)) ~ 43%
 recombination to 2s followed by 2s two-photon decay 2s → 1s ~10⁸ times slower than Ly-α 2s two-photon decay profile → maximum at v ~ 1/2 v_α immediate escape 	~ 57%

Routes to the ground state ?

•	direct recombination to 1s - Emission of photon is followed by immediate re-absorption	} No
•	recombination to 2p followed by Lyman- α emission	
	 medium optically thick to Ly-α phot. many resonant scatterings escape very hard (<i>p</i> ~10⁻⁹ @ <i>z</i> ~1100) 	~ 43%
•	recombination to 2s followed by 2s two-photon decay	
	 2s → 1s ~10⁸ times slower than Ly-α 2s two-photon decay profile → maximum at v ~ 1/2 v_α 	~ 57%
	- immediate escape	

 $\Delta N_{\rm e}$ / $N_{\rm e}$ ~ 10% - 20%

Zeldovich, Kurt & Sunyaev, 1968, ZhETF, 55, 278 Peebles, 1968, ApJ, 153, 1

Hydrogen atom

These first computations were completed in 1968!

Moscow

Vladimir Kurt (UV astronomer)

Rashid Sunyaev

losif Shklovskii

Princeton

Jim Peebles

Multi-level Atom ↔ Recfast-Code

Seager, Sasselov & Scott, 1999, ApJL, 523, L1 Seager, Sasselov & Scott, 2000, ApJS, 128, 407

Output of $N_{\rm e}/N_{\rm H}$

Hydrogen:

- up to 300 levels (shells)
- $n \ge 2 \Rightarrow$ full SE for *l*-sub-states

Helium:

- Hel 200-levels (z ~ 1400-1500)
- Hell 100-levels (*z* ~ 6000-6500)
- Helll 1 equation

Low Redshifts:

- H chemistry (only at low z)
- cooling of matter (Bremsstrahlung, collisional cooling, line cooling)

Multi-level Atom ↔ Recfast-Code

Seager, Sasselov & Scott, 1999, ApJL, 523, L1 Seager, Sasselov & Scott, 2000, ApJS, 128, 407 Output of $N_{\rm e}/N_{\rm H}$

Hydrogen:

- up to 300 levels (shells)
- $n \ge 2 \rightarrow$ full SE for *l*-sub-states

Helium:

- Hel 200-levels (z ~ 1400-1500)
- Hell 100-levels (z ~ 6000-6500)
- Helll 1 equation

Low Redshifts:

- H chemistry (only at low z)
- cooling of matter (Bremsstrahlung, collisional cooling, line cooling)

 $\Delta N_{\rm e}$ / $N_{\rm e}$ ~ 1% - 3%

Getting the job done for Planck

Hydrogen recombination

- Two-photon decays from higher levels (Dubrovich & Grachev, 2005, Astr. Lett., 31, 359; Wong & Scott, 2007; JC & Sunyaev, 2007; Hirata, 2008; JC & Sunyaev 2009)
- Induced 2s two-photon decay for hydrogen (JC & Sunyaev, 2006, A&A, 446, 39; Hirata 2008)
- Feedback of the Lyman-α distortion on the 1s-2s two-photon absorption rate (Kholupenko & Ivanchik, 2006, Astr. Lett.; Fendt et al. 2008; Hirata 2008)
- Non-equilibrium effects in the angular momentum sub-states (Rubiño-Martín, JC & Sunyaev, 2006, MNRAS; JC, Rubiño-Martín & Sunyaev, 2007, MNRAS; Grin & Hirata, 2009; JC, Vasil & Dursi, 2010)
- Feedback of Lyman-series photons (Ly[n] → Ly[n-1])
 (JC & Sunyaev, 2007, A&A; Kholupenko et al. 2010; Haimoud, Grin & Hirata, 2010)
- Lyman-α escape problem (*atomic recoil, time-dependence, partial redistribution*) (Dubrovich & Grachev, 2008; JC & Sunyaev, 2008; Forbes & Hirata, 2009; JC & Sunyaev, 2009)
- Collisions and Quadrupole lines (JC, Rubiño-Martín & Sunyaev, 2007; Grin & Hirata, 2009; JC, Vasil & Dursi, 2010; JC, Fung & Switzer, 2011)
- Raman scattering (Hirata 2008; JC & Thomas , 2010; Haimoud & Hirata, 2010)

Helium recombination

- Similar list of processes as for hydrogen (Switzer & Hirata, 2007a&b; Hirata & Switzer, 2007)
- Spin forbidden 2p-1s triplet-singlet transitions (Dubrovich & Grachev, 2005, Astr. Lett.; Wong & Scott, 2007; Switzer & Hirata, 2007; Kholupenko, Ivanchik&Varshalovich, 2007)
- Hydrogen continuum opacity during He I recombination (Switzer & Hirata, 2007; Kholupenko, Ivanchik & Varshalovich, 2007; Rubiño-Martín, JC & Sunyaev, 2007; JC, Fung & Switzer, 2011)
- Detailed feedback of helium photons (Switzer & Hirata, 2007a; JC & Sunyaev, 2009, MNRAS; JC, Fung & Switzer, 2011)

HFI 100 GHz

Recombination Physics Meeting in Orsay 2008

Recombination Physics Meeting in Orsay 2008

see: http://www.b-pol.org/RecombinationConference/

Recombination Physics Meeting in Orsay 2008

see: http://www.b-pol.org/RecombinationConference/

Simple example: stimulated 2s \rightarrow 1s decay

Transition rate in vacuum $\rightarrow A_{2s1s} \sim 8.22 \text{ sec}^{-1}$ CMB ambient photons field

 \rightarrow A_{2s1s} increased by ~1%-2%

→ HI - recombination faster by $\Delta N_{\rm e}/N_{\rm e} \sim 1.3\%$

Simple example: stimulated 2s \rightarrow 1s decay

Transition rate in vacuum $\Rightarrow A_{2s1s} \sim 8.22 \text{ sec}^{-1}$ CMB ambient photons field $\Rightarrow A_{2s1s}$ increased by ~1%-2% \Rightarrow HI - recombination faster by $\Delta N_e/N_e \sim 1.3\%$
Simple example: stimulated 2s \rightarrow 1s decay

Transition rate in vacuum $\rightarrow A_{2s1s} \sim 8.22 \text{ sec}^{-1}$ CMB ambient photons field $\rightarrow A_{2s1s}$ increased by ~1%-2% \rightarrow HI - recombination faster by $\Delta N_e/N_e \sim 1.3\%$

Processes for the upper levels

recombination & photoionization

- *n* small \rightarrow *l*-dependence not drastic
- high shells \rightarrow more likely to *l*<<*n*
- large $n \rightarrow induced$ recombination

many radiative dipole transitions

- Lyman-series optically thick
- $\Delta l = \pm 1$ restriction (electron cascade)
- large *n* & small $\Delta n \rightarrow$ *induced* emission
- *l*-changing collisions
 - help to establish full SE within the shell
 - only effective for n > 25-30
- *n*-changing collisions
- Collisional photoionization
- Three-body-recombination

Two-photon emission profile

Seaton cascade (1+1 photon)

No collisions \rightarrow two photons (mainly H- α and Ly- α) are emitted!

Maria-Göppert-Mayer (1931): description of two-photon emission as single process in Quantum Mechanics

→Deviations of the *two-photon line* profile from the Lorentzian in the damping wings

→ Changes in the optically thin
 (below ~500-5000 Doppler width)
 parts of the line spectra

3s and 3d two-photon decay spectrum

Direct Escape in optically thin regions:

- → HI -recombination is a bit *slower* due to 2γ-transitions from s-states
- → HI -recombination is a bit *faster* due to 2γ-transitions from d-states

2s-1s Raman scattering

- Computation similar to two-photon decay profiles
- collisions weak ⇒ process needs
 to be modeled as single quantum act

Hirata 2008 JC & Thomas, 2010

Evolution of the HI Lyman-series distortion

Effect of Raman scattering and 2y decays

z = 1190

Getting Ready for Planck

Hydrogen recombination

- Two-photon decays from higher levels (Dubrovich & Grachev, 2005, Astr. Lett., 31, 359; Wong & Scott, 2007; JC & Sunyaev, 2007; Hirata, 2008; JC & Sunyaev 2009)
- Induced 2s two-photon decay for hydrogen (JC & Sunyaev, 2006, A&A, 446, 39; Hirata 2008)
- Feedback of the Lyman-α distortion on the 1s-2s two-photon absorption rate (Kholupenko & Ivanchik, 2006, Astr. Lett.; Fendt et al. 2008; Hirata 2008)
- Non-equilibrium effects in the angular momentum sub-states (Rubiño-Martín, JC & Sunyaev, 2006, MNRAS; JC, Rubiño-Martín & Sunyaev, 2007, MNRAS; Grin & Hirata, 2009; JC, Vasil & Dursi, 2010)
- Feedback of Lyman-series photons (Ly[n] → Ly[n-1])
 (JC & Sunyaev, 2007, A&A; Kholupenko et al. 2010; Haimoud, Grin & Hirata, 2010)
- Lyman-α escape problem (*atomic recoil, time-dependence, partial redistribution*) (Dubrovich & Grachev, 2008; JC & Sunyaev, 2008; Forbes & Hirata, 2009; JC & Sunyaev, 2009)
- Collisions and Quadrupole lines (JC, Rubiño-Martín & Sunyaev, 2007; Grin & Hirata, 2009; JC, Vasil & Dursi, 2010; JC, Fung & Switzer, 2011)
- Raman scattering (Hirata 2008; JC & Thomas , 2010; Haimoud & Hirata, 2010)

Helium recombination

- Similar list of processes as for hydrogen (Switzer & Hirata, 2007a&b; Hirata & Switzer, 2007)
- Spin forbidden 2p-1s triplet-singlet transitions (Dubrovich & Grachev, 2005, Astr. Lett.; Wong & Scott, 2007; Switzer & Hirata, 2007; Kholupenko, Ivanchik&Varshalovich, 2007)
- Hydrogen continuum opacity during He I recombination (Switzer & Hirata, 2007; Kholupenko, Ivanchik & Varshalovich, 2007; Rubiño-Martín, JC & Sunyaev, 2007; JC, Fung & Switzer, 2011)
- Detailed feedback of helium photons (Switzer & Hirata, 2007a; JC & Sunyaev, 2009, MNRAS; JC, Fung & Switzer, 2011)

HFI 100 GHz

Main corrections during Hel Recombination

Kholupenko et al, 2007 Switzer & Hirata, 2007

Evolution of the Hel high frequency distortion

CosmoRec v2.0 only!

HeI Lyman-series spectral distortion at z = 2996

Effect of electron scattering during Hel recombination

JC, Fung & Switzer, 2011

Effect of electron scattering during Hel recombination

Overall effect of detailed Hel radiative transfer

Cosmological Recombination Code: CosmoRec

- uses an effective multi-level approach (Haimoud & Hirata, 2010)
- Very accurate and fast (for 'default' setting ~1.3 sec per model!)
- solves the detailed radiative transfer problem for Ly-n
- no fudging (Recfast) or multi-dimensional interpolation (RICO)
- different runmodes/accuracies implemented
- easily extendable (effect of dark matter annihilation already included)
- was already tested in a wide range of cosmologies
- now runs smoothly with CAMB/CosmoMC (Shaw & JC, MNRAS, 2011)
- CosmoRec is available at: www.Chluba.de/CosmoRec

Cumulative Changes to the Ionization History

JC & Thomas, MNRAS, 2010; Shaw & JC, MNRAS, 2011

Cumulative Changes to the Ionization History

Cumulative Change in the CMB Power Spectra

Importance of recombination for inflation

Importance of recombination for inflation constraints

Planck Collaboration, 2013, paper XXII

Analysis uses refined recombination model (CosmoRec/HyRec)

Importance of recombination for inflation constraints

Planck Collaboration, 2013, paper XXII

Analysis uses refined recombination model (CosmoRec/HyRec)

CMB constraints on N_{eff} and Y_p

Consistent with SBBN and standard value for N_{eff}

• Future CMB constraints (SPTPol & ACTPol) on Yp will reach 1% level

Importance of recombination for measuring helium

Shaw & JC, 2011, and references therein

How does the cosmological recombination radiation look and how can it help us?

Simple estimates for hydrogen recombination

Hydrogen recombination:

 per recombined hydrogen atom an energy of ~ 13.6 eV in form of photons is released

- at $z \sim 1100 \rightarrow \Delta \epsilon/\epsilon \sim 13.6 \text{ eV } N_b / (N_\gamma 2.7 \text{k} T_r) \sim 10^{-9} \text{--} 10^{-8}$
- \rightarrow recombination occurs at redshifts $z < 10^4$
- At that time the *thermalization* process doesn't work anymore!
- There should be some small spectral distortion due to additional Ly-α and 2s-1s photons! (Zeldovich, Kurt & Sunyaev, 1968, ZhETF, 55, 278; Peebles, 1968, ApJ, 153, 1)
- → In 1975 *Viktor Dubrovich* emphasized the possibility to observe the recombinational lines from n > 3 and $\Delta n << n!$

100-shell hydrogen atom and continuum CMB spectral distortions

JC & Sunyaev, 2006, A&A, 458, L29 (astro-ph/0608120)

100-shell hydrogen atom and continuum Relative distortions

Wien-region:

- L $_{\alpha}$ and 2s distortions
 - are very strong
- but CIB more dominant

@ CMB maximum:

- relative distortions extremely small
- strong v-dependence

RJ-region:

- relative distortion exceeds
 level of ~ 10⁻⁷ below v ~
 1-2 GHz
- oscillatory frequency dependence with ~ 1-10 percent-level amplitude:
- hard to mimic by known
 foregrounds or systematics

JC & Sunyaev, 2006, A&A, 458, L29 (astro-ph/0608120)

Cosmological Time in Years

What about the contributions from helium recombination?

• Nuclear reactions: $Y_p \sim 0.24 \leftrightarrow N_{Hel} / N_H \sim 8 \%$

 \rightarrow expected photon number rather small

• BUT: *two* epochs of He recombination (\mathbf{i}) HeIII \rightarrow HeII at z~6000 and HeII \rightarrow HeI at z~2500 (*ii*) Helium recombinations faster \rightarrow more *narrow* features with *larger* amplitude (*iii*) non-trivial superposition \rightarrow local amplification possible (iv) reprocessing of Hell & Hel photons by Hel and HI → increases the number of helium-related photons

Any opens a way to *directly* measure the primordial (pre-stellar!!!) helium abundance!

Grotrian diagram for neutral helium

Helium contributions to the cosmological recombination spectrum

Cosmological Time in Years

What would we actually learn by doing such hard job?

Cosmological Recombination Spectrum opens a way to measure:

- \rightarrow the specific *entropy* of our universe (related to $\Omega_{b}h^{2}$)
- \rightarrow the CMB *monopole* temperature T_0
- \rightarrow the pre-stellar abundance of helium Y_p

Hydrogen recombination spectrum: dependence on $\Omega_b h^2$

Hydrogen recombination spectrum: dependence on T_0

Figure 7.3: The 1 and 2 dimensional marginalized parameter posterior using the CMB spectral distortions. All three cases constrain the CMB power spectrum using a Gaussian likelihood based on Planck noise levels. The black line adds constraints due to a 10% measurement of the spectral distortions, while the blue line assumes a 1% measurement. The red line does not include the data from the spectral distortions. CMB based cosmology alone

 Spectrum helps to break some of the parameter degeneracies

 Planning to provide a module that computes the recombination spectrum in a fast way

detailed forecasts: which lines to measure; how important is the absolute amplitude; how accurately one should measure; best frequency resolution;
Cosmological Recombination Spectrum opens a way to measure:

- \rightarrow the specific *entropy* of our universe (related to $\Omega_{b}h^{2}$)
- \rightarrow the CMB *monopole* temperature T_0
- \rightarrow the pre-stellar abundance of helium Y_p

→ If recombination occurs as we think it does, then the lines can be predicted with very high accuracy!

→ In principle allows us to directly check our understanding of the standard recombination physics

Difference in the hydrogen spectrum if collisions were more efficient

• Lyman- α unchanged

Balmer-series:

- B_{α} lower for $n_{split}=2$
- for n_{split}=2 second peak more than 2 times higher
- ratio first to second peak decreases from 6 → 2
- higher series:
 - $n_{\rm split}$ =2 \rightarrow emission lower

Rubiño-Martín, JC & Sunyaev, 2006, astro-ph/0607373 JC, Rubiño-Martín & Sunyaev, 2006, astro-ph/0608242

The importance of HI continuum absorption

Changes in the Lyman α escape probability

 Changes in Ly α escape probability *directly* translate into changes of the CMB Ly α distortion

$$\Delta P/P = 10\% \Rightarrow \Delta I_v/I_v = 10\%$$

 Since Ly α line controls dynamics of recombination also all other lines will be affected by this process

Cosmological Recombination Spectrum opens a way to measure:

- \rightarrow the specific *entropy* of our universe (related to $\Omega_{b}h^{2}$)
- \rightarrow the CMB *monopole* temperature T_0
- \rightarrow the pre-stellar abundance of helium Y_p

→ If recombination occurs as we think it does, then the lines can be predicted with very high accuracy!

→ In principle allows us to directly check our understanding of the standard recombination physics

Cosmological Recombination Spectrum opens a way to measure:

- \rightarrow the specific *entropy* of our universe (related to $\Omega_{b}h^{2}$)
- \rightarrow the CMB *monopole* temperature T_0

 \rightarrow the pre-stellar abundance of helium Y_p

 \rightarrow If recombination occurs as we think it does, then the lines can be predicted with very high accuracy!

→ In principle allows us to directly check our understanding of the standard recombination physics

If something unexpected or non-standard happened:

Extra Sources of Ionizations or Excitations

• ,Hypothetical' source of extra photons parametrized by $\epsilon_{\alpha} \& \epsilon_{i}$

- Extra excitations \Rightarrow delay of Recombination
- Extra ionizations ⇒ affect 'freeze out' tail
- This affects the Thomson visibility function

• From WMAP $\Rightarrow \epsilon_{\alpha} < 0.39 \& \epsilon_i < 0.058$ at 95% confidence level (Galli et al. 2008)

 Extra ionizations & excitations should also lead to additional photons in the recombination radiation!!!

 This in principle should allow us to check for such sources at z~1000

Peebles, Seager & Hu, ApJ, 2000

Dark matter annihilations / decays

- Additional photons at all frequencies
- Broadening of spectral features
- Shifts in the positions

JC, 2009, arXiv:0910.3663

Energy injection ⇒ CMB Spectral Distortions

How easy is it actually to learn something interesting about the thermal history?

- CMB distortion can be predicted for different energy injection histories and mechanisms (e.g. Hu & Silk, 1993a&b; Burigana & Salvaterra, 2003)
 - → Spectral distortions are *broad* and *featureless*
 - → Absolute (COBE-type) measurements are required
- Different injection histories yield very similar spectral distortion!
 Simplest example: pre- and post-recombinational y-type distortions
 - energy release at redshifts 1000 < z < 50000
 - SZ-effect e.g. due to unresolved clusters, supernova remnants, shockwaves, etc.

 \Rightarrow y-distortion

Energy injection ⇒ CMB Spectral Distortions

How easy is it actually to learn something interesting about the thermal history?

- CMB distortion can be predicted for different energy injection histories and mechanisms (e.g. Hu & Silk, 1993a&b; Burigana & Salvaterra, 2003)
 - → Spectral distortions are *broad* and *featureless*
 - → Absolute (COBE-type) measurements are required
- Different injection histories yield very similar spectral distortion!
 Simplest example: pre- and post-recombinational y-type distortions
 - energy release at redshifts 1000 < z < 50000
 - SZ-effect e.g. due to unresolved clusters, supernova remnants, shockwaves, etc.

 \Rightarrow *y*-distortion

Absence of *narrow spectral features* makes it very hard to understand real details!!!

Pre-recombinational atomic transitions after possible early energy release

pure blackbody CMB

no net emission or absorption of photons before recombination epoch!

non-blackbody CMB

(Lyubarsky & Sunyaev, 1983)

- → atoms "try" to restore full equilibrium
- → atomic loops develop (cont.→ bound → cont.)
- \rightarrow "splitting" of photons
- → cycles mainly end in Lyman-continuum
- → Balmer-cont. cycles work just before recombination

JC & Sunyaev, 2008, astro-ph/0803.3584

JC & Sunyaev, 2008, astro-ph/0803.3584

Hydrogen

Helium +

JC & Sunyaev, 2008, astro-ph/0803.3584

Helium +

JC & Sunyaev, 2008, astro-ph/0803.3584

- Large increase in the total amplitude of the distortions with value of y!
- Strong emission-absorption feature in the Wien-part of CMB (absent for y=0!!!)

 Hell contribution to the pre-recombinational emission as strong as the one from Hydrogen alone !

JC & Sunyaev, 2008, astro-ph/0803.3584

- Large increase in the total amplitude of the distortions with injection redshift!
- Number of spectral features depends on injection redshift!
- Emission-Absorption feature increases ~2 for energy injection $z \Rightarrow 11000$

Cosmological Recombination Spectrum opens a way to measure:

- \rightarrow the specific *entropy* of our universe (related to $\Omega_{b}h^{2}$)
- \rightarrow the CMB *monopole* temperature T_0
- \rightarrow the pre-stellar abundance of helium Y_p

→ If recombination occurs as we think it does, then the lines can be predicted with very high accuracy!

→ In principle allows us to directly check our understanding of the standard recombination physics

If something unexpected or non-standard happened:

- → non-standard thermal histories should leave some measurable traces
- → possibility to distinguish pre- and post-recombinational y-type distortions
- \rightarrow sensitive to energy release during recombination epochs

Change of HI distortion because of difference in α

Cosmological Recombination Spectrum opens a way to measure:

- \rightarrow the specific *entropy* of our universe (related to $\Omega_{b}h^{2}$)
- \rightarrow the CMB *monopole* temperature T_0
- \rightarrow the pre-stellar abundance of helium Y_p

→ If recombination occurs as we think it does, then the lines can be predicted with very high accuracy!

→ In principle allows us to directly check our understanding of the standard recombination physics

If something unexpected or non-standard happened:

- → non-standard thermal histories should leave some measurable traces
- → direct way to measure/reconstruct the recombination history!
- → possibility to distinguish pre- and post-recombinational y-type distortions
- → sensitive to energy release during recombination epochs
- → variation of fundamental constants

Cosmological Recombination Spectrum opens a way to measure:

- \rightarrow the specific *entropy* of our universe (related to $\Omega_{b}h^{2}$)
- \rightarrow the CMB *monopole* temperature T_0
- \rightarrow the pre-stellar abundance of helium Y_p

→ If recombination occurs as we think it does, then the lines can be predicted with very high accuracy!

→ In principle allows us to directly check our understanding of the standard recombination physics

If something unexpected or non-standard happened:

- → non-standard thermal histories should leave some measurable traces
- → direct way to measure/reconstruct the recombination history!
- → possibility to distinguish pre- and post-recombinational y-type distortions
- \rightarrow sensitive to energy release during recombination epochs
- → variation of fundamental constants

This would open a new way to constrain cosmological models

Average CMB spectral distortions

Absolute value of Intensity signal

Average CMB spectral distortions

Average CMB spectral distortions

Absolute value of Intensity signal

Other extremely interesting new signals

Scattering signals from the dark ages

(e.g., Basu et al., 2004; Hernandez-Monteagudo et al., 2007; Schleicher et al., 2009)

- constrain abundances of chemical elements at high redshift
- learn about star formation history

Rayleigh / HI scattering signals

(e.g., Yu et al., 2001; Rubino-Martin et al., 2005; Lewis 2013)

- provides way to constrain recombination history
- important when asking questions about N_{eff} and Y_p

Free-free signals from reionization

(e.g., Burigana et al. 1995; Trombetti & Burigana, 2013)

- constrains reionization history
- depends on clumpiness of the medium

All these effects give spectral-spatial signals, and an absolute spectrometer will help with channel cross calibration!

Physical mechanisms that lead to spectral distortions

- Cooling by adiabatically expanding ordinary matter (JC, 2005; JC & Sunyaev 2011; Khatri, Sunyaev & JC, 2011)
- Heating by *decaying* or *annihilating* relic particles (Kawasaki et al., 1987; Hu & Silk, 1993; McDonald et al., 2001; JC, 2005; JC & Sunyaev, 2011; JC, 2013; JC & Jeong, 2013)
- Evaporation of primordial black holes & superconducting strings (Carr et al. 2010; Ostriker & Thompson, 1987; Tashiro et al. 2012; Pani & Loeb, 2013)
- Dissipation of primordial acoustic modes & magnetic fields

(Sunyaev & Zeldovich, 1970; Daly 1991; Hu et al. 1994; JC & Sunyaev, 2011; JC et al. 2012 - Jedamzik et al. 2000; Kunze & Komatsu, 2013)

Cosmological recombination radiation
 (Zeldovich et al., 1968; Peebles, 1968; Dubrovich, 1977; Rubino-Martin et al., 2006; JC & Sunyaev, 2006; Sunyaev & JC, 2009)

"high" redshifts

"low" redshifts

Standard sources

of distortions

- Signatures due to first supernovae and their remnants (Oh, Cooray & Kamionkowski, 2003)
- Shock waves arising due to large-scale structure formation

(Sunyaev & Zeldovich, 1972; Cen & Ostriker, 1999)

SZ-effect from clusters; effects of reionization

(Refregier et al., 2003; Zhang et al. 2004; Trac et al. 2008)

more exotic processes

(Lochan et al. 2012; Bull & Kamionkowski, 2013; Brax et al., 2013; Tashiro et al. 2013)

pre-recombination epoch

Conclusions

CMB spectral distortions will open a new window to the early Universe

- new probe of the *inflation epoch* and *particle physics*
- complementary and independent source of information not just confirmation
- in standard cosmology several processes lead to early energy release at a level that will be detectable in the future
- extremely interesting *future* for CMB-based science!

We should make use of all this information!