Science with Spectral Distortions of the CMB - IV

" g -

~Cos

3 5 .\'L .
a

- N - o

tion lines

N

mological Recombina

: 6

temperature-shift, z, > few x 10 y
. . 5

u-distortion at z, ~3 X 10

- ; 4
y-distortion, z, < 10

1000

CITA , Jens Chluba
et

CUSO Doctoral Program in Physics
ICAT i

ODiTySaque theorique

Lausanne, November 6th, 2014



Physical mechanisms that lead to spectral distortions

Cooling by adiabatically expanding ordinary matter Standard sources

(JC, 2005; JC & Sunyaev 2011; Khatri, Sunyaev & JC, 2011) Of dISl‘OI’tlonS

Heating by decaying or annihilating relic particles

(Kawasaki et al., 1987; Hu & Silk, 1993; McDonald et al., 2001; JC, 2005; JC & Sunyaev, 2011; JC, 2013; JC & Jeong, 2013)

Evaporation of primordial black holes & superconducting strings

(Carr et al. 2010; Ostriker & Thompson, 1987; Tashiro et al. 2012; Pani & Loeb, 2013)

Dissipation of primordial acoustic modes & magnetic fields

(Sunyaev & Zeldovich, 1970; Daly 1991; Hu et al. 1994; JC & Sunyaeyv, 2011; JC et al. 2012 - Jedamzik et al. 2000; Kunze & Komatsu, 2013) A

Cosmological recombination radiation

(Zeldovich et al., 1968; Peebles, 1968; Dubrovich, 1977; Rubino-Martin et al., 2006; JC & Sunyaev, 2006; Sunyaev & JC, 2009)

pre-recombination epoch

,high“ redshifts

Jow“ redshifts

Signatures due to first supernovae and their remnants

(Oh, Cooray & Kamionkowski, 2003)

Shock waves arising due to large-scale structure formation Y

(Sunyaev & Zeldovich, 1972; Cen & Ostriker, 1999)

post-recombination

SZ-effect from clusters; effects of reionization

(Refregier et al., 2003; Zhang et al. 2004; Trac et al. 2008)

more exotic processes

(Lochan et al. 2012; Bull & Kamionkowski, 2013; Brax et al., 2013; Tashiro et al. 2013)



Quasi-Exact Treatment: Thermalization Green’s Function

For real forecasts of future prospects a precise & fast method for
computing the spectral distortion is needed!

Case-by-case computation of the distortion (e.g., with CosmoTherm, JC &
Sunyaev, 2012, ArXiv:1109.6552) Still rather time-consuming

But: distortions are small = thermalization problem becomes linear!

Simple solution: compute ‘response function” of the thermalization
problem = Green'’s function approach (Jc, 2013, ArXiv:1304.6120)

Final distortion for fixed energy-release history given by

: 4Q/p)
A 5 ~ / Y /
/0 Gin(v, 2') e dz

Fast and quasi-exact! No additional approximations!



What does the spectrum look like after energy injection?

Intensity signal for different heating redshifts
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Explicitly taking out the superposition of y & y distortion

R(v) at z < 38000
R(v) at z ~ 38000
- R(v) at z > 38000

Residual (non-p/non-y)
distortion = more info!

Allows us to distinguish different energy release scenarios!

JC & Sunyaeyv, 2012, ArXiv:1109.6552
JC, 2013, ArXiv:1304.6120; JC, 2013, ArXiv:1304.6121; JC & Jeong, 2013
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Why model-independent approach to distortion signal

* Model-dependent analysis makes model-selection non-trivial
* Real information in the distortion signal limited by sensitivity and foregrounds
* Principle Component Analysis (PCA) can help optimizing this!

e useful for optimizing experimental designs (frequencies; sensitivities, ...)!

Annihilation scenario Decaying particle scenario
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Eigenmodes for a PIXIE-type experiment
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Figure 4. First few eigenmodes E® and S® for PIXIE-type settings
(Vmin = 30GHz, v = 1000GHz and Avg = 15GHz). In the mode
construction, we assumed that energy release only occurred at 100 <z <
5 x 10°.

Estimated error bars

(under idealistic assumptions...)

AT Al

— ~ 2nK

T 5Jysr—1

Ay ~12x107°

Ap~14x1078

Al

5Jysr—1
Al

5Jysr—1

Table 1. Forecasted 1o errors of the first six eigenmode amplitudes, E®.
We also give gx =4, Sl.(k) />, Gi.r, and the scalar products §® . §&)
(in units of [107"® Wm™2 Hz~! sr~11%). The fraction of energy release to
the residual distortion and its uncertainty are given by ¢ ~ > &y iy and
Ae ~ (D SI%A/,L]%)U 2 respectively. For the mode construction we used
PIXIE-settings ({Vmin, Vmax> Avs} = {30, 1000, 15} GHz and channel
sensitivity Al =5 x 1072 Wm™2 Hz ! sr~!). The errors roughly scale as

Apg x Al //Avs.

k Apik Apk/ Ay £k sk . §®
1 1.48 x 107 1 —6.98 x 1073 1.15 x 107!
2 7.61 x 1077 5.14 2.12 x 1073 432 x 1073
3 3.61 x 107° 24.4 —3.71 x 1074 1.92 x 10~
4 1.74 x 107 1.18 x 102 8.29 x 1073 8.29 x 107
5 8.52 x 107> 5.76 x 102 —1.55 x 107 3.45 x 1077
6 4.24 x 10~ 2.86 x 103 275 x 107° 1.39 x 1078

JC & Jeong, 2013



Distortions could shed light on decaying (DM) particles!
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Structure of the Lectures (cont.)

Lecture lll:
Overview of different sources of distortions
Decaying particles

Dissipation of acoustic modes



The dissipation of small-scale acoustic modes
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Dissipation of small-scale acoustic modes

undamped
pot. env 2

{

Silk-damping is
equivalent to
energy release!

full calculation
undamped x 27

1000 <000




Energy release caused by dissipation process

‘Obvious’ dependencies:
Amplitude of the small-scale power spectrum
Shape of the small-scale power spectrum

Dissipation scale — kp ~ (Ho Qrel'? Ne,0)'? (1+2)%? at early times

not so ‘obvious’ dependencies:

primordial non-Gaussianity in the ultra squeezed limit
(Pajer & Zaldarriaga, 2012; Ganc & Komatsu, 2012)

Type of the perturbations (adiabatic < isocurvature)
(Barrow & Coles, 1991; Hu et al., 1994; Dent et al, 2012, JC & Grin, 2012)

Neutrinos (or any extra relativistic degree of freedom)



Energy release caused by dissipation process

‘Obvious’ dependencies:
Amplitude of the small-scale power spectrum
Shape of the small-scale power spectrum

Dissipation scale — kp ~ (Ho Qrel'? Ne,0)'? (1+2)%? at early times

not so ‘obvious’ dependencies:

primordial non-Gaussianity in the ultra squeezed limit
(Pajer & Zaldarriaga, 2012; Ganc & Komatsu, 2012)

Type of the perturbations (adiabatic < isocurvature)
(Barrow & Coles, 1991; Hu et al., 1994; Dent et al, 2012, JC & Grin, 2012)

Neutrinos (or any extra relativistic degree of freedom)

CMB Spectral distortions could add additional numbers beyond
just’ the tensor-to-scalar ratio from B-modes!




Handwavy derivation of the heating rate



Dissipation of acoustic modes: ‘classical treatment’

energy stored in plane sound waves

Landau & Lifshitz, ‘Fluid Mechanics’, § 65 = Q ~ c¢s? p (0p/p)?

expression for normal ideal gas where p is ‘mass
density’ and ¢s denotes ‘sounds speed

Sunyaev & Zeldovich, 1970
Hu, Scott & Silk, 1994, ApJ



Dissipation of acoustic modes: ‘classical treatment’

energy stored in plane sound waves

Landau & Lifshitz, ‘Fluid Mechanics’, § 65 = Q ~ c¢s? p (0p/p)?

expression for normal ideal gas where p is ‘mass
density’ and ¢s denotes ‘sounds speed

photon-baryon fluid with baryon loading R << 1

(cslc)2=[3 (1+R) ]! ~ 1/3
p—py =ar T*
6,0/,0 —> 4(6 TO/T) = 4 (®g <—_ only perturbation in the

monopole accounted for

Sunyaev & Zeldovich, 1970
Hu, Scott & Silk, 1994, ApJ



Dissipation of acoustic modes: ‘classical treatment’

energy stored in plane sound waves

Landau & Lifshitz, ‘Fluid Mechanics’, § 65 = Q ~ c¢s? p (0p/p)?

expression for normal ideal gas where p is ‘mass
density’ and ¢s denotes ‘sounds speed

‘minus’ because decrease of ©
at small scales means increase

photon-baryon fluid with baryon loading R << 1 for average spectrum
(cslc)2=[3 (1+R) ' ~ 1/3

op—py =ar T = (a%*py)! da*Qac/dt = -16/3 d<Op?>/dt
50/ — 4(5To/T) = 40 \

can be calculated using first
order perturbation theory

Sunyaev & Zeldovich, 1970
Hu, Scott & Silk, 1994, ApJ



Dissipation of acoustic modes: ‘classical treatment’

energy stored in plane sound waves

Landau & Lifshitz, ‘Fluid Mechanics’, § 65 = Q ~ ¢s2 p (dp/p)?

expression for normal ideal gas where p is ‘mass
density’ and ¢s denotes ‘sounds speed

photon-baryon fluid with baryon loading R << 1

(cslc2=[3 (1+R) ' ~ 1/3

op—py, =ar T* = (a%*py)! da*Qac/dt = -16/3 d<Op?>/dt
Oplpo — 4(0To/T) =4O

Sunyaev & Zeldovich, 1970
Hu, Scott & Silk, 1994, ApJ




Dissipation of acoustic modes: ‘classical treatment’

energy stored in plane sound waves

Landau & Lifshitz, ‘Fluid Mechanics’, § 65 = Q ~ ¢s2 p (dp/p)?

expression for normal ideal gas where p is ‘mass
density’ and ¢s denotes ‘sounds speed

photon-baryon fluid with baryon loading R << 1

(cslc)2=[3 (1+R) T ~ 1/3
op—py, =ar T* = (a%*py)! da*Qac/dt = -16/3 d<Op?>/dt
Oplpo — 4(0To/T) =4O

Simple estimate does not capture
all the physics of the problem:

(JC, Khatri & Sunyaev, 2012)

» fotal energy release is 9/4 ~ 2.25
times larger!

its of (2C)
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» only 1/3 of the released energy
goes into distortions

Sunyaev & Zeldovich, 1970
Hu, Scott & Silk, 1994, ApJ




Early power spectrum constraints from FIRAS

104 | uw < 1.76 x 104 _j
; u < 0.63 x 107 ;
10-5 | /,:/’// .
1 :
s 0 h -
i 2 — 1005 1
i ---1.0 1.0 -
107" £ — 0.2 0.5 7
: ---02 1.0 *
1 1.2 1.4 1.6

n

Fi1G. 1.—Spectral distortion y, predicted from the full eq. (11), as a function
of the power index n for a normalization at the mean of the COBE DMR
detection (AT/T),,- = 1.12 x 107>, With the uncertainties on both the DMR
and FIRAS measurements, the conservative 95% upper limit is effectively
pu<1.76 x 1074 (see text). The corresponding constraint on n is relatively
weakly dependent on cosmological parameters: n < 1.60 (h =0.5) and
n<163 (h=1.0) for Q, =1 and quite similar for 02 <Q,=1-Q, < 1
universes. These limits are nearly independent of 2;,. We have also plotted the
optimistic 95% upper limit on u < 0.63 x 10~* for comparison as discussed in
the text.

* based on classical
estimate for heating rate

* Tightest / cleanest
constraint at that point!

* simple power-law
spectrum assumed

e u~10-8 for scale-invariant
power spectrum

°*ns=1.6

Hu, Scott & Silk, 1994



Dissipation of acoustic modes: ‘microscopic picture’

- after inflation: photon field has spatially
varying temperature T

& -
,,,,,,,,,,,

 average energy stored in photon field at
any given moment

<py>=ar<T*>=ar <T>*[1+ 4<0> + 6<0?>] '
== E.g., our snapshot at z=0

JC, Khatri & Sunyaev, 2012



Dissipation of acoustic modes: ‘microscopic picture’

- after inflation: photon field has spatially
varying temperature T

 average energy stored in photon field at
any given moment

¢ W TS o1 AL W -
..........
- h [ ,.,‘Q s

<py>=ar<T*>=ar <T>*[1+ 4<0> + 6<0?>]
== E.g., our snapshot at z=0

= (a4py)'1 da*Qac/dt = -6 d<O@?>/dt

* Monopole actually drops out of the equation!

* In principle all higher multipoles contribute to the energy release

JC, Khatri & Sunyaev, 2012



Dissipation of acoustic modes: ‘microscopic picture’

after inflation: photon field has spatially P 7 i e
varying temperature T (7 e Ly TR
Gl o R, T O
average energy stored in photon field at @ e
any given moment bR e
< py>=ar <T*> = ar <T>4 [1+ 4<0> + 6<O?>] il
== E.g., our snapshot at z=0

= (apy)" da*Qac/dt = -6 d<O2>/dt

Monopole actually drops out of the equation!
In principle all higher multipoles contribute to the energy release
At high redshifts (z = 10%):

» net (gauge-invariant) dipole and contributions from
higher multipoles are negligible

» dominant term caused by quadrupole anisotropy

= (84,0\/)'1 da*Qac/dt = -12 d<Op?>/dt

/

JC, Khatri & Sunyaev, 2012 9/4 larger than classical estimate




Where does the 2:1 ratio come from?



Superpositions of blackbody spectra
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Superpositions of blackbody spectra
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Superpositions of blackbody spectra
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Superpositions of blackbody spectra
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Superpositions of blackbody spectra
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Superpositions of blackbody spectra

e A T T T — T T T —
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Distortions caused by superposition of blackbodies

* average spectrum

= ~1((AT>2>~8><10—10
=5\ ~

AT\ ?

- known with very high precision

JC & Sunyaeyv, 2004
JC, Khatri & Sunyaev, 2012



Distortions caused by superposition of blackbodies

* average spectrum

= Nl((£>2>~8><10_10
=9\ T ~
AT\

ATSUPQT((T) >%4.4nK

- known with very high precision

« CMB dipole ( Bc ~ 1.23x103)

- electrons are up-scattered

« can be taken out at the level
of ~ 10°

JC & Sunyaev, 2004 COBE/DMR: AT = 3.353 mK

JC, Khatri & Sunyaev, 2012



Effective energy release caused by damping effect

Effective heating rate from full 2x2 Boltzmann treatment (c, knatri & sunyaev, 2012)

3 2

1 | [

STES 2 /@(U)PE(M)dU gauge-independent dipole

1 da’4QaC (3@1 _ 6)2 9 5 1 . b ,
T = 40TNec< +203 - -0,(0F +65) + 3 (21 +1)6]

effect of polarization higher multipoles

xy) = [ AR bk X (B)Y (k)

2772 /

Primordial power spectrum



Effective energy release caused by damping effect

Effective heating rate from full 2x2 Boltzmann treatment (sc, knatri & sunyaev, 2012)

v d? 4aTNec<( 13 b) +§@§—§@2(@§+@5)+§ (21+1)@§>
.

1 | /]

O = 2 /@(’u>P€(’u>d’u gauge-independent dipole  effect of polarization higher multipoles

total

. s ™ net dipole
' ns = 0.96 W\ mmm——— juadrupole
\

........ octupole

Primordial power spectrum Units: AcH/or Ne c | '\‘ e [RIGNE

quadrupole dominant at high z

net dipole important only at
low redshifts

polarization ~5% effect

contribution from higher
multipoles rather small

—
o
ot
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JC, Khatri & Sunyaev, 2012 Scale factor a=1/(1+z2)




Our computation for the effective energy release

scaled such that constant for ns =1
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Power spectrum
with running

ng = 1027 & n= 0.034
——— 1027&n =-001
. nn

HII --> HI

Hell > Hel

free streaming

JC, Khatri & Sunyaev, 2012

ng=1027&n_ =-005 "

Our 2. order perturbation
calculation showed that
the classical picture was
slightly inconsistent

Amplitude of the distortion
depends on the small-
scale power spectrum

Computation carried out

with CosmoTherm
(JC & Sunyaev 2011)

P((k) — 2]T2A§k_3(k/k0)ns_1+%’"mnln(k/ko)

Primordial power spectrum of curvature
perturbations is input for the calculation



Which modes dissipate in the y and y-eras?

Energy Release for the Standard Power Spectrum with a Sharp Feature

Single mode with

standard power spectrum

— 1n_=096,andn__ =0 wavenumber k
- dissipates its energy at
ky =200 Mpe” z4~ 4.5x105(k Mpc/103)2/3

Modes with wavenumber
50 Mpc' < k< 10 Mpc™'
dissipate their energy
during the u-era
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JC, Erickcek & Ben-Dayan, 2012



Constraints on the standard primordial power spectrum

possible constraints from

WMAP7
ACT '
SPT

n.=1

For any given power spectrum very precise
predictions are possible!

The physics going into the computation
are well understood

For the standard power spectrum PIXIE
might detect the y-distortion caused by
acoustic damping at ~ 1.50 level

PIXIE could independently rule out a scale-
Invariant power spectrum at ~ 2.50 level

WMAP7
ACT

DN, y-distortion will be harder to measure,

Ry -

,‘ since many other astrophysical processes
e } cause y-distortions at low redshift

P[(k) — 27T2‘4§k_3(k/k0)ns_1+%’”nmln(k/ko)

WMAPT with running
& |

JC, Khatri & Sunyaev, 2012



Average CMB spectral distortions

Monopole distortion signals
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positive branch: ‘heavy’
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Average CMB spectral distortions

Monopole distortion signals
I | I I | I I I l
negative branch: ‘thin’
positive branch: ‘heavy’
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205 210 215 220 225 230 2.35

A [107°] -

Fiducial model
ko = 0.05 Mpc~!
Ar=22x1077

ng = 0.96
Npun = 0
O.é45 0.§50 0.955 0.960 0.965 0.§70 0.§75 0.98
ng
Planck+WP+highL

PRISM (Imager)  ------rmemeememoeees
PRISM (Imager+Spec)

JC & Jeong, 2013
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But this is not all that one could look at !!!



Distortions provide additional power spectrum constraints!

Allowed regions
=== Ultracompact mimhalos (gamma rays, Fermi-LAT)
Ultracompact mimhalos (reiomsation, WMAPS5 7,)

=== Primordial black holes

— CMB, Lyman-o, LSS and other cosmological probes

YRR : ' : 5 ool A (R ' PIARY: 5 16
A0 A0 07 107 10° 10* 107 10° 40T 0P 0 10 10 100 40M 0 10M° 400

Bringmann, Scott & Akrami, 2011, ArXiv:1110.2484 k (Mpc™)

Amplitude of power spectrum rather uncertain at k > 3 Mpc™’
iImproved limits at smaller scales can rule out many inflationary models

e.g., JC, Khatri & Sunyaev, 2012; JC, Erickcek & Ben-Dayan, 2012; JC & Jeong, 2013



Distortions provide additional power spectrum constraints!

CMB distortions Allowed regions

=== Ultracompact minihalos (gamma rays, Fermi-LAT)
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=== Primordial black holes
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— CMB, Lyman-o, LSS and other cosmological probes

CMB et al.
Probe extra
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of inflation!
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Bringmann, Scott & Akrami, 2011, ArXiv:1110.2484 k (Mpc™1)

Amplitude of power spectrum rather uncertain at k > 3 Mpc™’
iImproved limits at smaller scales can rule out many inflationary models

CMB spectral distortions would extend our lever arm to k ~ 10* Mpc™'
very complementary piece of information about early-universe physics

e.g., JC, Khatri & Sunyaev, 2012; JC, Erickcek & Ben-Dayan, 2012; JC & Jeong, 2013



COBE/FIRAS limits on the amplitude of the
small-scale power spectrum

JC, Erickcek & Ben-Dayan, 2012

——— equivalent of PBHs
equivalent of UCMHs

‘optimistic’ limit P(k)< 8.4x10-°
Conservative constraint
~103 stronger that PBHs limit

UCMHSs limit still ~10 times
stronger but more uncertain

PIXIE could improve limit to
P(k) <108

constant power limit even
P(k) < 10-°



Primordial power spectra with ‘step’ at small scales

Energy Release for the Standard Power Spectrum with a Step

standard power spectrum
n.=096,and n 0
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simple formula to compute the
effective y and y-parameter

COBE/FIRAS = amplitude of the

small-scale power spectrum can't

_ change by more than ~2x10 at
Integral constraint on small-scale power wavenumber k ~ 1 Mpc’

JC, Erickcek & Ben-Dayan, 2012




Primordial power spectra with ‘bend’ at small scales

Energy Release for the Standard Power Spectrum with a Kink
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Probing the small-scale power spectrum

y - distortion LL—y transition L - distortion
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Probing the small-scale power spectrum

1T 1T 1T 11 | | 1T 1T 1T T L
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y-distortion with y = 2x10”

standard power spectrum ,
standard power spectrum with step (X 1/16) _:;’
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Average CMB spectral distortions

Monopole distortion signals

I | I I |
negative branch: ‘thin’
positive branch: ‘heavy’
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Average CMB spectral distortions

Monopole distortion signals

I | I I | I I I l
negative branch: ‘thin’
positive branch: ‘heavy’
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Probing the small-scale power spectrum

Fiducial values:
Af=12x1074
Ve =4 %1077
AA; =4 x1077
ks = 30 Mpc™!




Dissipation scenario: 10-detection limits for PIXIE

Notice different
pivot scale

JC & Jeong, 2013

P((k) = 27T2A§k—3(k/k0)ns—l+%—nmnln(k/ko)




Distinguishing dissipation and decaying particle scenarios

PIXIE sensitivity

Decaying particles
....... ~ Dassipationn__=-0.6
mn

..... — Dissipationn_ = -0.2
nn

Dissipationn_ =0
mn

Dissipationn_ =0.2
mn

JC & Jeong, 2013

measurement of p,
U1 & Y2

trajectories of
decaying particle
and dissipation
scenarios differ!

scenarios can in
principle be
distinguished

AC — 9 X 10_8



Distinguishing dissipation and decaying particle scenarios

5 x PIXIE sensitivity

measurement of p,
U1 & Y2

trajectories of
decaying particle
and dissipation
scenarios differ!

. scenarios can in
—— Decaying particles —07-\ principle be
....... - Dissipationn_ =-0.6 \ distinguished

nmn .
..... — Dissipationn__=-0.2

Dissipationn__ =0
un

Dissipation n__ = 0.2 | AC — 5 % 10—8

JC & Jeong, 2013



Dependence of heating rate on the perturbation type

Adiabatic modes:
u - era u-y transition y - era recombination he ating rate ~ 1 / 7
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Dependence of heating rate on the perturbation type

u - era u-y transition y - era recombination
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Adiabatic modes:
heating rate ~ 1/z
at high z

baryon/CDM iso-
curvature modes:

A ~ k/keq

during radiation
dominated epoch




Dependence of heating rate on the perturbation type

Adiabatic modes:
w-y transition y - era recombination heating rate ~ 1/z
T T TIT] 1 T T 111 |||||t5| I athlghz

baryon/CDM iso-
curvature modes:

A ~ k/keq

during radiation
dominated epoch
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Dependence of heating rate on the perturbation type

u-y

transition y - era recombination
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Adiabatic modes:
heating rate ~ 1/z
at high z

baryon/CDM iso-
curvature modes:

A ~ k/keq

during radiation
dominated epoch

hiso ~ 3 = heating
rate ~ 1/z

neutrino I1So-
curvature modes
very similar to
adiabatic modes




Dependence of heating rate on the perturbation type

u-y transition y - era
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Dependence of heating rate on the perturbation type

u-y transition y - era

recombination
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Adiabatic modes:
heating rate ~ 1/z
at high z

baryon/CDM iso-
curvature modes:

A ~ k/keq

during radiation
dominated epoch

hiso ~ 3 = heating
rate ~ 1/z

neutrino I1So-
curvature modes
very similar to
adiabatic modes

compensated
Isocurvature modes:
practically no
heating




Anisotropic u-distortions from non-Gaussianity

(a) squeezed triangle

Modes that dissipate energy have k1 = ko >> k3 (k 2k, >>k,)

Non-Gaussian power spectrum — presence of positive
long-wavelength mode enhances small-scale power

More small-scale power — larger u-distortion

— Spatially varying p-distortion caused by non-Gaussianity!
(Pajer & Zaldarriaga, 2012; Ganc & Komatsu, 2012)

Non-vanishing y-T correlation at large scales

Might be detectable with PIXIE-type experiment for fn. > 10°
Requirements m
precise cross-calibration of 4|
frequency channels

higher ang U|ar reSO|Uti0n doeS ’.;:' = full transfer function (ideal)
nOt im prove Cu m u Iative S/N - -':‘I w=e=e=+ Sachs—-Wolfe approx. 3

full ransfer funcuon (Pixie) :

T80 100 120 140
llulX




effective heating rate (1+z) d(Q/p) / dz

Dissipation of tensor perturbations

8 y - distortion

u - distortion
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* heating rate can be computed
similar to adiabatic modes

* heating rate much smaller than for
scalar perturbations

* roughly constant per dinz for n1~0.5

* distortion signal very small
compared to adiabatic modes

* N0 severe contamination In
simplest cases

* models with ‘large’ distortion
already constrained by BBN/CMB
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JC et al., 2014, ArXiv:1407.3653



Comparison of the distortion window functions

IO AL L AL B IURAALL B ALLL I RLLL BEURALL S ALY B
aF ————- no transfer correction : at

10 £ with transfer correction 7
gL e improved transfer corr 47

10 EE ------ Data from Ota 2014

10°
k[ Mpc ]

* small-scale modes important for
blue tensor power spectra

e Ota et al. underestimated
distortion in this case ~7 times

* 2dk
Mi zf — Pi(k)W;(k)
0

272

k-space window function

e adiabatic modes sensitive to a
smaller range of scales

e tensors even have contributions
from close to the horizon scale

* power-law decay at small scales

Tensors E
————— Scalars :

k| Mpc_l ]

JC et al., 2014, ArXiv:1407.3653



Small-scale photon transfer function for tensors
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* simple analytic expressions for the
envelope and phase

* tensors never really disappear at

small scales

e decay of amplitude only power-law

5

Heating rate x 10

instead of exponential as for

adiabatic modes

3.5

25

Running averages

numerical,/ =2

max
numerical, lmax =3
numerical, lmax =20
Approximation Eq. (13)
Approximation Eq. (17)

JC et al., 2014, ArXiv:1407.3653



Structure of the Lectures (cont.)

Lecture lll:
Overview of different sources of distortions
Dissipation of acoustic modes

Decaying particles



Structure of the Lectures (cont.)

Lecture lll:
Overview of different sources of distortions
Dissipation of acoustic modes

Decaying particles

Lecture |V:

Recombination physics and why it is important

The cosmological recombination radiation

Sunyaev-Zeldovich effect and what the signals could tell us



Structure of the Lectures (cont.)

Lecture lll:
Overview of different sources of distortions
Dissipation of acoustic modes

Decaying particles

Lecture |V:

Recombination physics and why it is important

The cosmological recombination radiation

Sunyaev-Zeldovich effect and what the signals could tell us

Sadly we won't have time for this...




The cosmological recombination radiation &
lonization history and why they are so important



Sketch of the Cosmic lonization History
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Cosmic Microwave Background Anisotropies

Planck all sky map

« CMB has a blackbody spectrum in every direction

« tiny variations of the CMB temperature AT/T ~ 10-°




Cosmological Time in Years
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Cosmological Time in Years

790,000 370,000 260,000 130,000
I I I

1.4

CMB-Anisotropies Where Does the lonization
| ' History Enter Here?

Free Electron Fraction ﬁlasma fully |

1onized
Ne/ [Np+NH]

Free electron fraction determines the shape of the
Thomson /
(maximum at z~1100 where Ne/ N1 ~ 16% )

in the computation of N_(z) will affect the
theoretical predictions for the CMB power spectra

This will the inferred values of the cosmological
parameters

Experimental goal of 0.1% - 1% requires 0.1% - 1%
understanding of N (z) at z~1100

Errors in N_(z) in particular
n,and its possible running (— inflation)

,Getting 10’6 GeV physics right means we have to
understand eV physics with high precision’ (quote D. Scott)
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Redshift 7z

'\ <<— Plasma neutral




CMB Sky - Cosmology

Power spectra

WMAP CMB Sky
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Cosmological (Joint) analysis : = e
Parameters large scales Multipole moment (1) small scales
Qtot, Qma Qb! QA,
h.t. n Other cosmological Dataset:

y Uy Flgymns

small-scale CMB, Supernovae, large-scale structure/
BAO, Lyman-o forest, lensing, ...



CMB Sky - Cosmology

N, (z) is a crucial input

Power spectra

WMAP CMB Sky
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1 10 1000
large scales Multipole moment (1) small scales

Cosmological (Joint) analysis
Parameters

Qtot, Qma Qb! QA’
h, T, ng,...

Other cosmological Dataset:

small-scale CMB, Supernovae, large-scale structure/
BAO, Lyman-o forest, lensing, ...



Why are the ionization history and
recombination radiation connected?

e To interpret high-precision CMB data we need to
understand the ionization history very well!

e The recombination radiation is a direct record of
the recombination process

* measuring the recombination radiation allows us
to directly check our understanding of the
recombination process!

* High-frequency distortion actually controls
recombination dynamics, so we need to
understand both well!



How does cosmological recombination work?




What is the recombination problem about?

* coupled system describing the
interaction of matter with the
ambient CMB photon field

« atoms can be in different
excitation states

— |ots of levels to worry about

* recombination process changes
Wien tail of CMB and this affects
the recombination dynamics

— radiative transfer problem
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What is the recombination problem about?

* coupled system describing the
interaction of matter with the
ambient CMB photon field

« atoms can be in different
excitation states

— lots of levels to worry about

* recombination process changes
Wien tail of CMB and this affects
the recombination dynamics

— radiative transfer problem

Only problem in time!

Have to follow evolution of: Ne,Ts, Ny, N; and Al,



Physical Conditions during Recombination

Temperature T, ~2.725 (1+z) K~ 3000 K
Baryon number density N, ~ 2.5x10"cm=3 (1+z)3~ 330 cm3

Photon number density N, ~ 410 cm3 (1+2)3 ~ 2x10° N,

= photons in very distant Wien tail of blackbody spectrum can keep
hydrogen ionized until hva~ 40 kT, < T,~ 0.26 eV

Collisional processes negligible (compietely ditferent in starsii

Rates dominated by radiative processes

(e.q. stimulated emission & stimulated recombination)

Compton interaction couples electrons very tightly to
photons until z~200 =T, ~T,~ T,
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3-level Hydrogen Atom and Continuum

Routes to the ground state ?

continuum:

Hydrogen atom

Zeldovich, Kurt & Sunyaev, 1968, ZhETF, 55, 278
Peebles, 1968, ApJ, 153, 1
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3-level Hydrogen Atom and Continuum

Routes to the ground state ?

continuum:

direct recombination to 1s
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immediate re-absorption

recombination to 2p followed by
Lyman-a emission

- medium optically thick to Ly-a phot.
- many resonant scatterings
- escape very hard (p ~10° @ z ~1100)

recombination to 2s followed by
2s two-photon decay

- 2s 2> 1s ~108 times slower than Ly-a

- 2s two-photon decay profile > maximum
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Hydrogen atom

3-level Hydrogen Atom and Continuum

continuum:

Zeldovich, Kurt & Sunyaev, 1968, ZhETF, 55, 278
Peebles, 1968, ApJ, 153, 1
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Hydrogen atom

3-level Hydrogen Atom and Continuum

continuum:

Zeldovich, Kurt & Sunyaev, 1968, ZhETF, 55, 278
Peebles, 1968, ApJ, 153, 1

Routes to the ground state ?

direct recombination to 1s )

- Emission of photon is followed by o \'[o]
immediate re-absorption

recombination to 2p followed by
Lyman-a emission

- medium optically thick to Ly-a phot. \ ~ 43%
- many resonant scatterings
- escape very hard (p ~10° @ z ~1100)

recombination to 2s followed by
2s two-photon decay

- 2s 2> 1s ~108 times slower than Ly-a

- 2s two-photon decay profile > maximum
atv~1/2v,

- immediate escape

\~ 57%

ANe / Ne "t 100/0 ~ 200/0




These first computations were completed in 1968!

Moscow

Princeton

Yakov Zeldovich

Jim Peebles

. Rashid Sunyaev
Viadimir Kurt

(UV astronomer)



Multi-level Atom < Recfast-Code

Output of N /N,

Hydrogen:

- up to 300 levels (shells)
- n =22 - full SE for I-sub-states

Total number of shells
crucial for freeze-out tail

Helium:

- Hel 200-levels (z~ 1400-1500)
- Hell 100-levels (z ~ 6000-6500)

10-level - Helll 1 equation
effective 3—level
— — — 50-level

= O Low Redshifts:

- H chemistry (only at low 2z)
- cooling of matter (Bremsstrahlung,

500 1000 1500 collisional cooling, line cooling)
redshift

Seager, Sasselov & Scott, 1999, ApJL, 523, L1
Seager, Sasselov & Scott, 2000, ApJS, 128, 407




Multi-level Atom < Recfast-Code

Output of N /N,

Hydrogen:

- up to 300 levels (shells)
- n =22 - full SE for I-sub-states

Total number of shells
crucial for freeze-out tail

Helium:

- Hel 200-levels (z~ 1400-1500)
- Hell 100-levels (z ~ 6000-6500)

10-level - Helll 1 equation
effective 3—level
— — — 50-level

= O Low Redshifts:

- H chemistry (only at low 2z)
- cooling of matter (Bremsstrahlung,

500 1000 1500 collisional cooling, line cooling)
redshift

Seager, Sasselov & Scott, 1999, ApJL, 523, L1
Seager, Sasselov & Scott, 2000, ApJS, 128, 407

ANe | Ne ~ 1% - 3%




Hydrogen recombination

Getting the job done for Planck

Two-photon decays from higher levels

(Dubrovich & Gracheyv, 2005, Astr. Lett., 31, 359; Wong & Scott, 2007; JC & Sunyaeyv, 2007; Hirata, 2008; JC & Sunyaev 2009)

Induced 2s two-photon decay for hydrogen
(JC & Sunyaev, 2006, A&A, 446, 39; Hirata 2008)

Feedback of the Lyman-a distortion on the 1s-2s two-photon absorption rate

(Kholupenko & Ivanchik, 2006, Astr. Lett.; Fendt et al. 2008; Hirata 2008)

Non-equilibrium effects in the angular momentum sub-states

(Rubino-Martin, JC & Sunyaev, 2006, MNRAS; JC, Rubifno-Martin & Sunyaev, 2007, MNRAS; Grin & Hirata, 2009; JC, Vasil & Dursi, 2010)

Feedback of Lyman-series photons (Ly[n] = Ly[n-1])

(JC & Sunyaeyv, 2007, A&A; Kholupenko et al. 2010; Haimoud, Grin & Hirata, 2010)

Lyman-oc escape problem (atomic recoil, time-dependence, partial redistribution)
(Dubrovich & Grachev, 2008; JC & Sunyaev, 2008; Forbes & Hirata, 2009; JC & Sunyaev, 2009)

Collisions and Quadrupole lines

(JC, Rubiino-Martin & Sunyaev, 2007; Grin & Hirata, 2009; JC, Vasil & Dursi, 2010;
JC, Fung & Switzer, 2011)

Raman scattering
(Hirata 2008; JC & Thomas , 2010; Haimoud & Hirata, 2010)

Helium recombination

Similar list of processes as for hydrogen

(Switzer & Hirata, 2007a&b; Hirata & Switzer, 2007)

Spin forbidden 2p-1s triplet-singlet transitions

(Dubrovich & Grachev, 2005, Astr. Lett.; Wong & Scott, 2007; Switzer & Hirata, 2007; Kholupenko, Ivanchik&Varshalovich, 2007)

......

Hydrolgen continuum oEacity duringTHe | recombination

(Switzer & Hirata, 2007; Kholupenko, Ivanchik & Varshalovich, 2 Rubifio-Martin, JC & Sunyaeyv, 2007; JC, Fung & Switzer, 2011)

Detailed feedback of helium photons
(Switzer & Hirata, 2007a; JC & Sunyaev, 2009, MNRAS; JC, Fung & Switzer, 2011) ANe / Ne - O 1 %




Solving the problem for the Planck Collaboration was
a common effort!

Recombinati
see: http://www.k
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Simple example: stimulated 2s - 1s decay

7= 1500 Vacuum rate:

Transition rate in vacuum
> Ay~ 8.22 sec

CMB ambient photons field
- A, increased by ~1%-2%

- HI - recombination faster
by ANe/Ne ~ 1.3%

2s-1s emission profile

JC & Sunyaev, 2006, A&A
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Simple example: stimulated 2s - 1s decay

Transition rate in vacuum
> Ay~ 8.22 sec

CMB ambient photons field

With CMB blackbody: I
i ackbody - A, increased by ~1%-2%

Ao [ ov/m

- HI - recombination faster
by ANe/Ne ~ 1.3%

Low Frequency
CMB Photons

2s-1s emission profile

JC & Sunyaev, 2006, A&A



Processes for the upper levels

continuum:

recombination & photoionization

- nsmall - I-dependence not drastic

- high shells - more likely to I<<n
- large n - induced recombination

many radiative dipole transitions

- Lyman-series optically thick
- Al =*1 restriction (electron cascade)

- large n & small An = induced emission

I-changing collisions

- help to establish full SE within the shell
- only effective for n > 25-30

Hydrogen atom

/

n-changing collisions
Collisional photoionization
Three-body-recombination




Two-photon emission profile

Seaton cascade (1+1 photon)

No collisions - two photons (mainly
H-o and Ly-a) are emitted!

Maria-Goppert-Mayer (1931):
description of two-photon emission
as single process in Quantum
Mechanics

- Deviations of the two-photon line
profile from the Lorentzian in the
damping wings

—>Changes in the optically thin
(below ~500-5000 Doppler width)
parts of the line spectra




3s and 3d two-photon decay spectrum

R R R S

-

SCC
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Direct Escape in optically thin regions:

- HI -recombination is a bit slower due - HI -recombination is a bit faster due
to 2y-transitions from s-states to 2y-transitions from d-states

JC & Sunyaev, A&A, 2008



2s-1s Raman scattering

Computation similar to two-photon
decay profiles

collisions weak = process needs
to be modeled as single quantum act

(d) 2s-1s Raman scattering rate

LU IR

Enhances blues side of Ly-a line

associated feedback delays 0-(1) -e 0.8
recombination around z~900 ' '

Figure from: Hirata 2008

Hirata 2008
JC & Thomas, 2010



Evolution of the HI Lyman-series distortion

Lyman-series spectral distortion at z = 2189
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Computation includes all important radiative
transfer processes (e.g. photon diffusion;
two-photon processes; Raman-scattering)
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Effect of Raman scattering and 2y decays

reference case
w 2y-emission

L1l lll

w 2y-ecmission and Raman-scattering
no scattering

| 2s-1s Raman scattering:
2s+y > 1s+y’
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= delay Hl recombination
= result in good agreement
with Hirata 2008
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Hydrogen recombination

Getting Ready for Planck

Two-photon decays from higher levels

(Dubrovich & Gracheyv, 2005, Astr. Lett., 31, 359; Wong & Scott, 2007; JC & Sunyaeyv, 2007; Hirata, 2008; JC & Sunyaev 2009)

Induced 2s two-photon decay for hydrogen
(JC & Sunyaev, 2006, A&A, 446, 39; Hirata 2008)

Feedback of the Lyman-a distortion on the 1s-2s two-photon absorption rate

(Kholupenko & Ivanchik, 2006, Astr. Lett.; Fendt et al. 2008; Hirata 2008)

Non-equilibrium effects in the angular momentum sub-states

(Rubino-Martin, JC & Sunyaev, 2006, MNRAS; JC, Rubifno-Martin & Sunyaev, 2007, MNRAS; Grin & Hirata, 2009; JC, Vasil & Dursi, 2010)

Feedback of Lyman-series photons (Ly[n] = Ly[n-1])

(JC & Sunyaeyv, 2007, A&A; Kholupenko et al. 2010; Haimoud, Grin & Hirata, 2010)

Lyman-oc escape problem (atomic recoil, time-dependence, partial redistribution)
(Dubrovich & Grachev, 2008; JC & Sunyaev, 2008; Forbes & Hirata, 2009; JC & Sunyaev, 2009)

Collisions and Quadrupole lines

(JC, Rubiino-Martin & Sunyaev, 2007; Grin & Hirata, 2009; JC, Vasil & Dursi, 2010;
JC, Fung & Switzer, 2011)

Raman scattering
(Hirata 2008; JC & Thomas , 2010; Haimoud & Hirata, 2010)

Helium recombination

Similar list of processes as for hydrogen

(Switzer & Hirata, 2007a&b; Hirata & Switzer, 2007)

Spin forbidden 2p-1s triplet-singlet transitions

(Dubrovich & Grachev, 2005, Astr. Lett.; Wong & Scott, 2007; Switzer & Hirata, 2007; Kholupenko, Ivanchik&Varshalovich, 2007)

......

Hydrolgen continuum oEacity duringTHe | recombination

(Switzer & Hirata, 2007; Kholupenko, Ivanchik & Varshalovich, 2 Rubifio-Martin, JC & Sunyaeyv, 2007; JC, Fung & Switzer, 2011)

Detailed feedback of helium photons
(Switzer & Hirata, 2007a; JC & Sunyaev, 2009, MNRAS; JC, Fung & Switzer, 2011) ANe / Ne - O 1 %




Main corrections during Hel Recombination

Corrections to the lonization History during Helium Recombination
.08

—— U MOSL recent computation

Absorption of Hel
photons by small
amount of HI

-~

1600 1800 2000 2200 2400 2600 2800

with spin-forbidden
transition

o

&

L

AN /N in %

0.98

1600 | SO0 2000 2200 2400 2600
Figure from Fendt et al, 2009

Kholupenko et al, 2007
Switzer & Hirata, 2007



Evolution of the Hel high frequency distortion

CosmoRec v2.0 only!
Hel Lyman-series spectral distortion at z = 2996

- partially overlapping lines at n>2 : :
- resonance scattering
- electron scattering in kernel approach

T rrrrn
L L L LIl

- HI absorpion

I 11 lelll
LI l’lllI
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|| lell]
I

|

0.001

I lllllll
= 'llllll

0.0001 . Lo '_ | . Lo
(.96 ().98 | 1.02 .04 .06 1.08 l.1 s 14 1.16
viwv,
21 Triplet of intercombination,
quadrupole & singlet lines

JC, Fung & Switzer, 2011




Effect of electron scattering during Hel recombination

. 3 1. . ; . .
1solated 2P - 1 S intercombination line at z = 2395

1 ] |
- NoO e-scat

e-scat Fokker-Planck
e-scat Kernel

Sazonov & Sunyaev, 2000

’
’
’
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, b
4 ~
4 \
4

distant jumps caused
by electron scattering




Effect of electron scattering during Hel recombination

3 1. . .. .
2 Pl -1 SO mtercombination line

no feedback, no e-scat

no feedback, e-scat Fokker-Planck
no feedback, e-scat Kemel

with feedback, no e-scat

with feedback, e-scat Fokker-Planck
with feedback, e-scat Kernel

feedback photons jump
to the red side of line
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JC, Fung & Switzer, 2011




Overall effect of detailed Hel radiative transfer

Comparison with Recfast v1.5 (CosmoRec is reference)
{ I | T 1 ] { 1 1 l { 1 I I 1 1 T

~ 3 /1 benchmark (Seljak 2003)

| R I L

l.‘ L |

U S AN SN TR S N S

1000 1500 2000 2500

JC, Fung & Switzer, 2011




Cosmological Recombination Code: CosmoRec

uses an effective multi-level approach (waimoud & Hirata, 2010
very accurate and fast (for ‘default’ setting ~1.3 sec per model!)
solves the detailed radiative transfer problem for Ly-n
no fudging (recfast) Or multi-dimensional interpolation (ricoy
different runmodes/accuracies implemented

easily extendable (effect of dark matter annihilation already included)
was already tested in a wide range of cosmologies

NOW runs SmOOtth with CAMB/CosmoMC (Shaw & JC, MNRAS, 2011)

eC

i

CosmoRec is available at;: www.Chluba.de/CosmoF


http://cosmos.astro.uiuc.edu/rico
http://cosmos.astro.uiuc.edu/rico

Cumulative Changes to the lonization History

CosmoRec vs Recfast++ (Recfast++ is reference)
| | | | | | | | | | | | | | |

Detailed Lyman-series
transport for hydrogen

/ identical to Recfast

/

Change in the freeze
out tail because of
high-n recombinations

S5
$=
Z,
2
<

Acceleration of Hel
recombination by HI
continuum absorption

III|III|III|III|III|III|IIIIIII|II

| ] ] ] | ] ] ] | ] ] ] | ] ] ]
1000 1500 2000 2500 3000

V4

JC & Thomas, MNRAS, 2010; Shaw & JC, MNRAS, 2011




Cumulative Changes to the lonization History

CosmoRec vs Recfast++ (Recfast++ is reference)
| r o T STy | | | | | | | | | |
|

Detailed Lyman-series
transport for hydrogen

identical to Recfast

Change in the freeze
out tail because of
high-n recombinations

/

S5
$=
Z,
2
<

\

This is where it

matters most! Acceleration of Hel

recombination by HI
continuum absorption

III|III|III|III|III|III|IIIIIII|II

I_--------

|_ 1L | ] ] ] | ] ] ] | ] ] ]
1000 1500 2000 2500 3000

V4

JC & Thomas, MNRAS, 2010; Shaw & JC, MNRAS, 2011




Cumulative Change in the CMB Power Spectra

AC,/C, in %

change in ‘tilt’ of CMB power
spectra « width of visibility
function < ns & Quh?

‘wiggles’ < change in
position of last scattering
surface « Qph?
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QOph?

Importance of recombination for inflation

S~
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Qh?

Planck 143GHz channel forecast

—  CosmoRec
— Recfast++

— Recfast++ (correction factor)

Precise recombination
history is crucial for

0.108 0.112 0.116

understanding inflation!

N\

0.108 0.112 0.116

-3.20|-0.012

0.108 0.112 0.116

B

D

v

1.1 0]-0.01

0.108 0.112 0.116

0945 0960 0.975

b

0.108 0.112 0.116

0945 0960  0.975 3.000 3.025 .050 3.075

Shaw & JC, 2011, and references therein



Importance of recombination for inflation constraints

Planck+WP
Planck+WP-+highL
Planck +WP-+BAO

Natural Inflation
Power law inflation

Low Scale SSB SUSY
R? Inflation

V o 23
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Primordial Tilt (ng)

Planck Collaboration, 2013, paper XXII

Analysis uses refined recombination model (CosmoRec/HyRec)




Importance of recombination for inflation constraints

\ 1

Without improved recombination Planck+WP
modules people would be talking Planck+WP-+highL

about different inflation models!
(e.g., Shaw & JC, 2011) Planck+WP+BAO

Natural Inflation

Power law inflation

Low Scale SSB SUSY
R? Inflation
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Planck Collaboration, 2013, paper XXII

Analysis uses refined recombination model (CosmoRec/HyRec)




CMB constraints on Nest and Yy

Excluded by
Serenelli & Basu (2010)

_\‘m
N

Planck+WP+highL

Both parameters
are varied — larger
uncertainties

6

Planck Collaboration, 2013, paper XV

Consistent with SBBN and standard value for Nes

Future CMB constraints (SPTPol & ACTPol) on Y, will reach 1% level



Importance of recombination for measuring helium

0.0224 0.0226 0.0228 0.0230

Qh?

©

| | | |
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cosmic variance limited case (/<2000)
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How does the cosmological recombination
radiation look and how can it help us?



Simple estimates for hydrogen recombination

Hydrogen recombination:

per recombined hydrogen atom an energy
of ~ 13.6 eV in form of photons is released

atz~ 1100 > Ae/e ~ 13.6 eV N, / (N, 2.7kT,) ~ 109-108

- recombination occurs at redshifts z < 104
- At that time the thermalization process doesn’'t work anymore!

- There should be some small spectral distortion due to
additional Ly-a and 2s-1s photons!

(Zeldovich, Kurt & Sunyaev, 1968, ZhETF, 55, 278; Peebles, 1968, ApJ, 153, 1)

- In 1975 Viktor Dubrovich emphasized the possibility to
observe the recombinational lines from n > 3 and An << n!



100-shell hydrogen atom and continuum

CMB spectral distortions

— {ree-bound emission
- bound-bound transitions + 2s spectrum

sum of all
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JC & Sunyaev, 2006, A&A, 458, L29 (astro-ph/0608120)

Piund cont, ———>

Bracket cont,

Paschen cont.

1000

bound-bound & 2s:

- atv > 1GHz: distinct
features

- slope ~ 0.46

free-bound:
- only a few features

distinguishable
- slope ~ 0.6

Total:

- f-b contributes ~ 30%
and more

- Balmer cont. ~90%
- Balmer: 1y per HI

- in total 5y per HI



100-shell hydrogen atom and continuum
Relative distortions

Wien-region:
- L, and 2s distortions

are very strong
- but CIB more dominant

'8

@ CMB maximum:

- relative distortions
extremely small

- strong v-dependence
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RJ-region:

- relative distortion exceeds
level of ~ 107 below v ~
1-2 GHz

free-bound emission < : F - oscillatory frequency
bound-bound transitions + 2s spectrum . koo : dependence with ~ 1-10
sum of all percent-level amplitude:
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I 10 100 1000 - hard to mimic by known

v [GHz] foregrounds or systematics
JC & Sunyaev, 2006, A&A, 458, L29 (astro-ph/0608120)
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What about the contributions from helium
recombination?

Nuclear reactions: Y,~0.24 <> Ny, / Ny ~8 %
- expected photon number rather small

BUT:
(/) two epochs of He recombination
Helll=>Hell at z~6000 and Hell=>Hel at z~2500

(/1) Helium recombinations faster
- more narrow features with larger amplitude

(7if) non-trivial superposition
- local amplification possible
(iv) of Hell & Hel photons by Hel and HI

- increases the number of helium-related photons

- May opens a way to directly measure the
primordial (pre-stellar!!!) helium abundance!



Grotrian diagram for neutral helium

Contitmum of Tonized States

|

20,000-
40,000-
60,000-

Fine-structure transitions 30,000~

Singlet Terms ' Triplet Terms
: 100,000~
120,000~
140,000-

160,000-

[
»

a
<

Semi-forbidden transitions are very important 120,000-

for Hel-recombiniation!!!
' 200,000-

220,000-

240,000-




Helium contributions to the cosmological
recombination spectrum
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Cosmological Recombination Spectrum

— Hydrogen only Shifts in the line positions — =, /

Hvd d Hel; due to presence of Helium Photons released
ydrogen and felium in the Universe \ O 00
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Changes in the line shape
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in the Universe
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Features due to presence
of Helium in the Universe

Another way to do CMB-based cosmology!
Direct probe of recombination physics!

\ Spectral distortion reaches level of ~107-10"
relative to CMB

10 100
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What would we actually learn by doing such hard job?

Cosmological Recombination Spectrum opens a way to measure:
> the specific entropy of our universe (related to 2, h?)
> the CMB monopole temperature T,

> the pre-stellar abundance of helium Y,



Hydrogen recombination spectrum:
dependence on Qph?
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Hydrogen recombination spectrum:
dependence on T,
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computations prepared by Chad Fendt
in 2009 using detailed recombination code

1075 1.118

— Large improvements! CMB based cosmology
alone

1.042

1.4

Spectrum helps to break
some of the parameter
degeneracies

0.5 0.083

Planning to provide a
module that computes the
recombination spectrum in
a fast way

2722 2728

0.236 0.254

detailed forecasts: which
lines to measure; how
important is the absolute
amplitude; how accurately
one should measure; best
frequency resolution;

0958 0.97%

3039 3077

nA,
225 2316 1075 1118 104 1042 0075 0093 2722 2728 0236 0254 0958 0976 3039 3077

Figure 7.3: The 1 and 2 dimensional marginalized parameter posterior using the
CMB spectral distortions. All three cases constrain the CMB power spectrum using
a Gaussian likelihood based on Planck noise levels. The black line adds constraints
due to a 10% measurement of the spectral distortions, while the blue line assumes a
1% measurement. The red line does not include the data from the spectral distortions.




What would we actually learn by doing such hard job?

Cosmological Recombination Spectrum opens a way to measure:
> the specific entropy of our universe (related to 2, h?)
> the CMB monopole temperature T,
> the pre-stellar abundance of helium Y,

> If recombination occurs as we think it does, then the lines can be predicted
with very high accuracy!

> In principle allows us to directly check our understanding of the standard
recombination physics



Difference in the hydrogen spectrum if collisions
were more efficient

n =100,n_. =2

b = 100, with collisions

Lyman- o unchanged

Balmer-series:
- B lower for ng,;=2

- for ng,=2 second peak more
than 2 times higher

- ratio first to second peak
decreases from 6 > 2
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higher series:
- Ng,=2 > emission lower

y -1
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Rubiino-Martin, JC & Sunyaev, 2006, astro-ph/0607373
JC, Rubiino-Martin & Sunyaev, 2006, astro-ph/0608242



The importance of Hl continuum absorption
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3 shell Hydrogen atom
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frequency redistribution
cumulative result

Changes in Ly a escape
probability directly translate
into changes of the CMB
Ly a distortion

APIP=10% = Al/,=10%

Since Ly a line controls
dynamics of recombination
also all other lines will be
affected by this process
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What would we actually learn by doing such hard job?

Cosmological Recombination Spectrum opens a way to measure:
> the specific entropy of our universe (related to 2, h?)
> the CMB monopole temperature T,
> the pre-stellar abundance of helium Y,

> If recombination occurs as we think it does, then the lines can be predicted
with very high accuracy!

> In principle allows us to directly check our understanding of the standard
recombination physics



What would we actually learn by doing such hard job?

Cosmological Recombination Spectrum opens a way to measure:
> the specific entropy of our universe (related to 2, h?)
> the CMB monopole temperature T,
> the pre-stellar abundance of helium Y,

> If recombination occurs as we think it does, then the lines can be predicted
with very high accuracy!

> In principle allows us to directly check our understanding of the standard
recombination physics

If something unexpected or non-standard happened:



Extra Sources of lonizations or Excitations

,Hypothetical’ source of extra photons
parametrized by €q & €;

Extra excitations = delay of Recombination

Extra ionizations = affect ‘freeze out’ tail

This affects the Thomson visibility function

500 1000 1500 2000

. From WMAP = €4 <0.39 & € < 0.058 at
redshift

95% confidence level (Galli et al. 2008)

Extra ionizations & excitations should also
lead to additional photons in the
recombination radiation!!!

This in principle should allow us to check for
such sources at z~1000

500 1000 1500 2000
redshift

Peebles, Seager & Hu, ApJ, 2000



Dark matter annihilations / decays

10 shell Hydrogen & 10 shell Helium atom

bound-bound HI recombination spectrum H,

reference model

\  pre-recombinational
\ signal from mteraction
'\ withHel

e . JC, 2009, arXiv:0910.3663
Additional photons at all frequencies

Broadening of spectral features

Shifts in the positions



Energy injection = CMB Spectral Distortions

How easy is it actually to learn something
interesting about the thermal history?

CMB distortion can be predicted for different energy injection
histories and mechanisms (e.g. Hu & Silk,1993a&b; Burigana & Salvaterra, 2003)

- Spectral distortions are broad and featureless
- Absolute (COBE-type) measurements are required

Different injection histories yield very similar spectral distortion!

Simplest example: pre- and post-recombinational y-type distortions

N

- energy release at redshifts 1000 < z < 50000

- SZ-effect e.g. due to unresolved clusters, - = y-distortion
supernova remnants, shockwaves, etc.




Energy injection = CMB Spectral Distortions

How easy is it actually to learn something
interesting about the thermal history?

CMB distortion can be predicted for different energy injection
histories and mechanisms (e.g. Hu & Silk,1993a&b; Burigana & Salvaterra, 2003)

- Spectral distortions are broad and featureless
- Absolute (COBE-type) measurements are required

Different injection histories yield very similar spectral distortion!

Simplest example: pre- and post-recombinational y-type distortions

N

- energy release at redshifts 1000 < z < 50000

- SZ-effect e.g. due to unresolved clusters, - = y-distortion
supernova remnants, shockwaves, etc.

J

Absence of narrow spectral features makes it very hard to
understand real details!!!




Pre-recombinational atomic transitions after possible
early energy release

pure blackbody CMB
9

non-blackbody CMB

(Lyubarsky & Sunyaev, 1983)

- atoms “try” to restore full
equilibrium

2 develop :
(Cont.9 bound = COnt.) Continuum  »Lyman“c cycle

- “splitting” of photons

—> cycles mainly end in
Lyman-continuum

—> Balmer-cont. cycles work
just before recombination




CMB spectral distortions after single energy release
25 shell HI and Hell bb&fb spectra:

Hydrogen Helium +

HI bb+fb-spectra
25

Hell bb+fb-spectra

25

lllll

max 2 X
z = 40000 z = 40000

1000 3000 10 ‘ ' 1000 3000

JC & Sunyaev, 2008, astro-ph/0803.3584



CMB spectral distortions after single energy release
25 shell HI and Hell bb&fb spectra:

Hydrogen Helium +

AL (Jm*s ' Hz s
Al [] m-s' Hz'sr ]|

Hell bb+fb-spectra
n 25
max

z_ = 40000

HI bb+fb-spectra
I‘chl\ 2:-)
z_ = 40000

A | L34
100 1000
v| GHz ]

100 ‘ 1000 3000
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JC & Sunyaev, 2008, astro-ph/0803.3584



CMB spectral distortions after single energy release
25 shell HI and Hell bb&fb spectra:

Hydrogen Helium +
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Hell bb+fb-spectra
n 25
max

z_ = 40000

HI bb+fb-spectra
I‘chl\ 2:-)
z_ = 40000

100 : 1000
v| GHz ]

100 ‘ 1000 3000
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JC & Sunyaev, 2008, astro-ph/0803.3584



CMB spectral distortions after single energy release
25 shell HI and Hell bb&fb spectra:

Hydrogen Helium +

AL (Jm*s ' Hz s
Al [] m-s' Hz'sr ]|

Hell bb+fb-spectra
n 25
max

z_ = 40000

HI bb+fb-spectra
n 25
max
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JC & Sunyaev, 2008, astro-ph/0803.3584
Large increase in the total amplitude of the distortions with value of y/!
Strong emission-absorption feature in the Wien-part of CMB (absent for y=01!!)

Hell contribution to the pre-recombinational emission as strong as the one from
Hydrogen alone !



CMB spectral distortions after single energy release
25 shell HI and Hell bb&fb spectra:

Hydrogen and Helium +

HI + Hell bb+fb-spectra 2= 40000

n 25
max

08}~ ¥=10"

\

Value allowed by Cobe/Firas

T P
Jm"s Hz sr |

[10%
Al | 10° ) m’s ' Hz s’ |

v
v

Al

HI + Hell bb+fb-spectra
Mnax 23

y=10"

00 : ' ‘ 1000
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10
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JC & Sunyaev, 2008, astro-ph/0803.3584

Large increase in the total amplitude of the distortions with injection redshift!
Number of spectral features depends on injection redshift!

Emission-Absorption feature increases ~2 for energy injection z =11000



What would we actually learn by doing such hard job?

Cosmological Recombination Spectrum opens a way to measure:
> the specific entropy of our universe (related to 2, h?)
> the CMB monopole temperature T,
> the pre-stellar abundance of helium Y,

> If recombination occurs as we think it does, then the lines can be predicted
with very high accuracy!

> In principle allows us to directly check our understanding of the standard
recombination physics

If something unexpected or non-standard happened:
- non-standard thermal histories should leave some measurable traces
-> possibility to distinguish pre- and post-recombinational y-type distortions
-> sensitive to energy release during recombination epochs



Change of HI distortion because of difference in a

Example for change in alpha by +/- 5%
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What would we actually learn by doing such hard job?

Cosmological Recombination Spectrum opens a way to measure:
> the specific entropy of our universe (related to 2, h?)
> the CMB monopole temperature T,
> the pre-stellar abundance of helium Y,

> If recombination occurs as we think it does, then the lines can be predicted
with very high accuracy!

> In principle allows us to directly check our understanding of the standard
recombination physics

If something unexpected or non-standard happened:

-> non-standard thermal histories should leave some measurable traces

- direct way to measure/reconstruct the recombination history!

-> possibility to distinguish pre- and post-recombinational y-type distortions
-> sensitive to energy release during recombination epochs

-> variation of fundamental constants



What would we actually learn by doing such hard job?

Cosmological Recombination Spectrum opens a way to measure:
> the specific entropy of our universe (related to 2, h?)
> the CMB monopole temperature T,
> the pre-stellar abundance of helium Y,

> If recombination occurs as we think it does, then the lines can be predicted
with very high accuracy!

> In principle allows us to directly check our understanding of the standard
recombination physics

If something unexpected or non-standard happened:

-> non-standard thermal histories should leave some measurable traces

- direct way to measure/reconstruct the recombination history!

-> possibility to distinguish pre- and post-recombinational y-type distortions
-> sensitive to energy release during recombination epochs

-> variation of fundamental constants

This would open a new way to constrain cosmological models










Average CMB spectral distortions

Monopole distortion signals
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Average CMB spectral distortions

Monopole distortion signals
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Average CMB spectral distortions

Monopole distortion signals
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Other extremely interesting new signals

Scattering signals from the dark ages

(e.g., Basu et al., 2004; Hernandez-Monteagudo et al., 2007; Schleicher et al., 2009)
- constrain abundances of chemical elements at high redshift

- learn about star formation history

Rayleigh / HI scattering signals

(e.g., Yu et al., 2001; Rubino-Martin et al., 2005; Lewis 2013)
- provides way to constrain recombination history

- important when asking questions about Net and Yp

Free-free signals from reionization

(e.g., Burigana et al. 1995; Trombetti & Burigana, 2013)
- constrains reionization history
- depends on clumpiness of the medium

All these effects give spectral-spatial
signals, and an absolute spectrometer
will help with channel cross calibration!
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Physical mechanisms that lead to spectral distortions

Cooling by adiabatically expanding ordinary matter Standard sources

(JC, 2005; JC & Sunyaev 2011; Khatri, Sunyaev & JC, 2011) Of dISl‘OI’tlonS

Heating by decaying or annihilating relic particles

(Kawasaki et al., 1987; Hu & Silk, 1993; McDonald et al., 2001; JC, 2005; JC & Sunyaev, 2011; JC, 2013; JC & Jeong, 2013)

Evaporation of primordial black holes & superconducting strings

(Carr et al. 2010; Ostriker & Thompson, 1987; Tashiro et al. 2012; Pani & Loeb, 2013)

Dissipation of primordial acoustic modes & magnetic fields

(Sunyaev & Zeldovich, 1970; Daly 1991; Hu et al. 1994; JC & Sunyaeyv, 2011; JC et al. 2012 - Jedamzik et al. 2000; Kunze & Komatsu, 2013) A

Cosmological recombination radiation

(Zeldovich et al., 1968; Peebles, 1968; Dubrovich, 1977; Rubino-Martin et al., 2006; JC & Sunyaev, 2006; Sunyaev & JC, 2009)

pre-recombination epoch

,high“ redshifts

Jow“ redshifts

Signatures due to first supernovae and their remnants

(Oh, Cooray & Kamionkowski, 2003)

Shock waves arising due to large-scale structure formation Y

(Sunyaev & Zeldovich, 1972; Cen & Ostriker, 1999)

post-recombination

SZ-effect from clusters; effects of reionization

(Refregier et al., 2003; Zhang et al. 2004; Trac et al. 2008)

more exotic processes

(Lochan et al. 2012; Bull & Kamionkowski, 2013; Brax et al., 2013; Tashiro et al. 2013)
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AT !@MB spectral distortions will open a new window to
S geaﬂy Universe

- new probe of the inflation epoch and particle physics

» complementary and independent source of
information not just confirmation

* In standard cosmology several processes Iead to
early energy release at a level that T
will be detectable in the future

- extremely interesting future for ,
CMB-based science! SFTRAN. -

We should make use of
all this information!




