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Physical mechanisms that lead to spectral distortions

• Cooling by adiabatically expanding ordinary matter                                                                     

(JC, 2005; JC & Sunyaev 2011; Khatri, Sunyaev & JC, 2011)

• Heating by decaying or annihilating relic particles                                                       
(Kawasaki et al., 1987; Hu & Silk, 1993; McDonald et al., 2001; JC, 2005; JC & Sunyaev, 2011; JC, 2013; JC & Jeong, 2013)

• Evaporation of primordial black holes & superconducting strings                                                                            
(Carr et al.  2010; Ostriker & Thompson, 1987; Tashiro et al. 2012; Pani & Loeb, 2013)

• Dissipation of primordial acoustic modes & magnetic fields                                                                
(Sunyaev & Zeldovich, 1970; Daly 1991; Hu et al. 1994; JC & Sunyaev, 2011; JC et al. 2012 - Jedamzik et al. 2000; Kunze & Komatsu, 2013)

• Cosmological recombination radiation                                                                     
(Zeldovich et al., 1968; Peebles, 1968; Dubrovich, 1977; Rubino-Martin et al., 2006; JC & Sunyaev, 2006; Sunyaev & JC, 2009)

•                                                                                  

• Signatures due to first supernovae and their remnants                                        
(Oh, Cooray & Kamionkowski, 2003)

• Shock waves arising due to large-scale structure formation                                    
(Sunyaev & Zeldovich, 1972; Cen & Ostriker, 1999)

• SZ-effect from clusters; effects of reionization                                                              
(Refregier et al., 2003; Zhang et al. 2004; Trac et al. 2008)

• more exotic processes                                                                                          
(Lochan et al. 2012; Bull & Kamionkowski, 2013; Brax et al., 2013; Tashiro et al. 2013)
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Quasi-Exact Treatment: Thermalization Green’s Function

• But: distortions are small ⇒ thermalization problem becomes linear!

• Case-by-case computation of the distortion (e.g., with CosmoTherm, JC & 
Sunyaev, 2012, ArXiv:1109.6552) still rather time-consuming 

• Simple solution: compute “response function” of the thermalization 
problem ⇒ Green’s function approach (JC, 2013, ArXiv:1304.6120) 

• Final distortion for fixed energy-release history given by

�I⌫ ⇡
Z 1

0
Gth(⌫, z

0)
d(Q/⇢�)

dz0
dz0

• Fast and quasi-exact! No additional approximations!

• For real forecasts of future prospects a precise & fast method for 
computing the spectral distortion is needed!

Thermalization Green’s function
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Response function: 
energy injection ⇒ distortion

What does the spectrum look like after energy injection?

JC & Sunyaev, 2012, ArXiv:1109.6552
JC, 2013, ArXiv:1304.6120



Explicitly taking out the superposition of µ & y distortion

JC & Sunyaev, 2012, ArXiv:1109.6552
JC, 2013, ArXiv:1304.6120; JC, 2013, ArXiv:1304.6121; JC & Jeong, 2013

Residual (non-µ/non-y) 
distortion ⟹ more info!

• Allows us to distinguish different energy release scenarios!
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CMB spectrum adds another dimension to the problem!
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Explicitly enforcing energy 
conservation:

Jµ(z) ⇡ [1� Jy] e
�
⇣

z
2⇥106

⌘5/2

Temperature shift:
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Fiducial values:

�f = 1.2 ⇥ 10�4

yre = 4 ⇥ 10�7

fann,s = 10�22 eV sec�1

fann,p = 10�26 eV sec�1

Figure 3. Large distortion s- and p-wave annihilation scenario. Contours
and lines are as before. Degeneracies between the parameters prevent a dis-
tinction of the signatures of both particles, even for high sensitivity.

nature should be possible, the two signals are simply too similar
and strong correlations cause large uncertainties and biases in the
parameters, which only disappear at high sensitivity. This makes
the projected 2D probability distributions shown in Fig. 3 very non-
Gaussian. At ' 20 times the sensitivity of PIXIE, we find a ' 2�
detection of the s-wave annihilation signature and fann,p ' 1% from
the p-wave annihilation signal.

Considering a small distortion scenario with more compara-
ble contributions from s- and p-wave annihilations ( fann,s ' 2 ⇥
10�23 eV sec�1 and fann,p ' 10�28 eV sec�1), we find that an im-
provement of the sensitivity by a factor of ' 40 is needed to start
distinguishing the signals from both particles, rendering an analysis
along these lines more futuristic. This is because for this scenario
the signal is close to the detection limit of PIXIE, and the di↵er-
ences with respect to a pure superposition of µ- and y-distortions,
which could be used to distinguish the two cases, are only a small
correction, necessitating this large improvement of the sensitivity.

4 DECAYING PARTICLE SCENARIOS

Decaying relic particles with lifetimes ' 380 kyr (corresponding to
the time of recombination) are again tightly constrained by mea-
surement of the CMB anisotropies (Zhang et al. 2007; Giesen et al.
2012), while particles with lifetimes comparable to minutes can af-
fect the light-element abundances and bounds derived from BBN
apply (Kawasaki et al. 2005; Jedamzik 2008). However, experi-
mental constraints for particles with lifetimes ' 106 � 1012 sec are
less stringent, still leaving rather large room for extra energy re-
lease �⇢�/⇢� . 10�6 � 10�5 (e.g., Hu & Silk 1993b; Kogut et al.
2011). Large energy-release rates are especially possible for very
light particles with masses . MeV. A PIXIE-type CMB experi-
ment thus has a large potential to discover the signature of some
long-lived relic particles or at least provide complementary and in-
dependent constraints to these scenarios. If most of the energy is

(�⇤ ⌘ � � �f )

Fiducial values:

�f = 1.2 ⇥ 10�4

yre = 4 ⇥ 10�7

fX = 5 ⇥ 105 eV

zX = 5 ⇥ 104 (�X ' 1.1 ⇥ 10�8sec�1)

(�⇤ ⌘ � � �f )

Fiducial values:

�f = 1.2 ⇥ 10�4

yre = 4 ⇥ 10�7

fX = 104 eV

zX = 5 ⇥ 104 (�X ' 1.1 ⇥ 10�8sec�1)

Figure 4. Large- and small-distortion decaying particle scenario. Contours
and lines are as before. For large energy release the distortion can be easily
constrained; however, for small energy release the parameter space becomes
more complicated and higher sensitivity improves matters significantly.

released at z & 3 ⇥ 105, a pure µ-distortion is created, so that this
case is practically degenerate, e.g., with scenarios that include an
annihilating particle with p-wave annihilation cross-section. How-
ever, for energy release around z ' 5⇥ 104, the distortion can di↵er
su�ciently to become distinguishable.

In Fig. 4, we show the projected constraints for a large- and
small-distortion scenario, with energy release �⇢�/⇢� ' 6.4 ⇥ 10�6

and �⇢�/⇢� ' 1.3⇥10�7, respectively. Since the total energy release
scales as �⇢�/⇢� / fX/zX (cf. Chluba & Sunyaev 2012), it is best
to consider the variables fX/zX and zX ' 4.8 ⇥ 109 �1/2

X sec1/2 as
parameters. This reduces the parameter covariance significantly. To
accelerate the computation, we furthermore tabulate the distortion

c� 0000 RAS, MNRAS 000, 000–000

Why model-independent approach to distortion signal

• Model-dependent analysis makes model-selection non-trivial

• Real information in the distortion signal limited by sensitivity and foregrounds

• Principle Component Analysis (PCA) can help optimizing this!

• useful for optimizing experimental designs (frequencies; sensitivities, ...)!
Distortion constraints 5

(�⇤ ⌘ � � �f )

Fiducial values:

�f = 1.2 ⇥ 10�4

yre = 4 ⇥ 10�7

fann = 10�26 eV sec�1

Figure 2. Large p-wave annihilation scenario. The solid black lines show
the constraint for PIXIE sensitivity, while the red curves are for 4 times
higher sensitivity. The contours show 68% and 95% confidence levels. The
shaded regions illustrate the shape of the projected 2D probability distri-
bution function for PIXIE sensitivity only. The marginalized distributions
were all normalized to unity at the maximum.

Since the signal is directly proportional to fann, we find

� fann,p

fann,p
⇡ 2%

"
fann,p

10�26 eV sec�1

#�1 "
�I⌫
�IPIXIE
⌫

#�1

(6)

for the error, where �IPIXIE
⌫ ' 5 ⇥ 10�26 W m�2 s�1 Hz�1 sr�1 de-

notes PIXIE’s sensitivity (we confirmed this statement numeri-
cally). The rough 1�-detection limit of PIXIE therefore is fann,p '
2 ⇥ 10�28 eV sec�1. Increasing the sensitivity 2 or 4 times might be
within reach, e.g., by extending the total time spent on spectral dis-
tortion measurements or by slightly improving the instrument. As
our results show, this would further tighten possible limits on this
scenario, allowing us to constrain Majorana particles annihilating
into lighter fermions (Goldberg 1983).

Figure 2 also shows that the monopole temperature and reion-
ization y-parameter could be measured with impressive accuracy,
corresponding to �T ' 3 nK and �yre/yre . 1%. Both � and yre are
anti correlated with fann: although the annihilation distortion sig-
nal does not include any pure temperature shift contribution, it is
not fully orthogonal to the signal related to � [see. Eq. (5)]. Simi-
larly, every annihilation is associated with some late energy release
(z . 104), during the y-era, and thus boosted annihilation e�ciency
leaves less room for contribution to y from after recombination and
during reionization, explaining the behavior.

Assuming a relic particle with fann,p ' 10�28 eV sec�1, we find
that for PIXIE’s sensitivity the signal is below the detection limit,
and even at 4 times increased sensitivity, only a marginal detection
of the distortion caused by the annihilation energy release is possi-
ble. The measurements of � and yre are not severely compromised
by adding this possibility to the parameter estimation problem, be-
cause the additional signal is very small. To obtain an unambiguous
5�-detection of the p-wave annihilation signal in this scenario, the
sensitivity needs to be increased ' 10 times over PIXIE.

Assuming that the relic particle is non-relativistic without any
p-wave Sommerfeld enhancement one has h�vi / v2 / (1+ z)2. As
mentioned above, in this case most energy is released very early
causing a pure µ-distortion. However, the limits from BBN and
light-element abundances are expected to be much stronger, so that
we do not discuss this case any further.

Next we consider energy release due to s-wave annihilation,
for instance associated with a dark matter particle. The annihilation
e�ciency is already tightly constrained by the e↵ect on the CMB
anisotropies (Peebles et al. 2000; Chen & Kamionkowski 2004;
Padmanabhan & Finkbeiner 2005; Zhang et al. 2006), where the
best observational limit is obtained from WMAP (Galli et al. 2009;
Hütsi et al. 2009; Slatyer et al. 2009; Hütsi et al. 2011), translating
into fann,s . 2⇥10�23 eV sec�1 (Chluba et al. 2010). This case is as-
sociated with an energy release of�⇢�/⇢� ' 8.3⇥10�9, available for
spectral distortions. In contrast to the p-wave annihilation scenario,
energy is liberated more evenly per logarithmic redshift interval,
so that the associated spectral distortion lies between a µ and y-
distortion (see Fig. 1). Annihilations with fann,s ' 2⇥10�23 eV sec�1

remain undetectable, even at 4 times the sensitivity of PIXIE, in
agreement with conclusion from previous analyses (Chluba et al.
2010; Chluba & Sunyaev 2012). A ' 3�-detection becomes possi-
ble with 10 times the sensitivity of PIXIE.

On the other hand, assuming fann,s ' 10�22 eV sec�1, a ' 6�-
detection would be possible at 4 times PIXIE sensitivity, although
this scenario is already in tension with CMB anisotropy constraints.
The error for the s-wave annihilation scenario roughly scales as

� fann,s

fann,s
⇡ 17%

"
fann,s

10�22 eV sec�1

#�1 "
�I⌫

4�IPIXIE
⌫

#�1

. (7)

The current limit on fann,s derived from CMB anisotropies may be
improved by another factor of ' 6 (e.g., see Hütsi et al. 2009,
2011, for projections) with the next release of Planck (which will
include all the temperature and polarization data), ACTpol and SPT-
pol (Niemack et al. 2010; McMahon et al. 2009). At this level of
sensitivity it will be hard to directly compete using spectral distor-
tion measurements; however, the spectral distortion constraints are
independent and probe di↵erent epochs of the evolution, providing
another important handle on possible systematics, e.g., related to
possible uncertainties in the cosmological recombination process
(Farhang et al. 2012, 2013). Additional freedom could be added
due to Sommerfeld enhancement of the annihilation cross-section
(e.g., see Hannestad & Tram 2011), but a more detailed investiga-
tion of this aspect is beyond the scope of this work.

Figure 1 also indicates that in the p-wave annihilation scenario
with fann,p ' 10�26 eV sec�1 a similar amount of energy is deposited
during hydrogen recombination (z ' 103) as in the well constrained
s-wave annihilation scenario with fann,s ' 2 ⇥ 10�23 eV sec�1. We
thus did not consider cases with larger p-wave annihilation cross-
section, because these would already be in tension with the CMB
anisotropy data. Improving the limit on p-wave annihilation sce-
narios with CMB anisotropy measurements will, however, be very
hard and the distortion signal has a larger leverage, o↵ering a way
to detect the signatures from particles with p-wave annihilation ef-
ficiency fann,p & few ⇥ 10�28 eV sec�1 at PIXIE’s sensitivity.

Finally, in Fig. 3 for illustration we show the large distortion
scenario ( fann,s ' 10�22 eV sec�1 and fann,p ' 10�26 eV sec�1) of
Fig. 1, with simultaneous energy release due to particles with s-
and p-wave annihilation. The parameters becomes rather degen-
erate, and a separate detection of the s-wave annihilation e↵ect
remains challenging even at 4 times the sensitivity of PIXIE. Al-
though an individual detection of the s- or p-wave annihilation sig-

c� 0000 RAS, MNRAS 000, 000–000

Annihilation scenario Decaying particle scenario

How do we compare these?
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Figure 4. First few eigenmodes E(k) and S(k) for PIXIE-type settings
(νmin = 30 GHz, νmax = 1000 GHz and "νs = 15 GHz). In the mode
construction, we assumed that energy release only occurred at 103 ≤ z ≤
5 × 106.

amplitudes are positive for Q = const > 0. The first energy-release
mode, E(1), has a maximum at z # 5.3 × 104, while higher modes
show more variability, extending both towards lower and higher
redshift. The corresponding distortion modes, S(k), show increasing
variability and decreasing overall amplitude with growing k. They
capture all corrections to the simple superposition of pure µ- and
y-distortion, needed to morph between these two extreme cases.

In Table 1, we summarize the projected errors for the first six
mode amplitudes. The errors, "µk, increase rapidly with mode
number (this is how we order the eigenmodes), meaning that for a
fixed amplitude of the distortion signal the information in the higher
modes can only be accessed at higher spectral sensitivity.

Knowing the signal eigenvectors, S(k), we can directly relate
the mode amplitudes, µk, to the fractional energy, ε, stored by
the residual distortion. It thus allows us to estimate how much
information is contained by the residual distortion. Since integration
over frequency can be written as a sum over all frequency bins, with
εk = 4

∑
i S

(k)
i /

∑
i Gi,T we have ε ≈

∑
kεk µk. The first six εk are

given in Table 1. The signal modes, S(1) and S(2), contribute most to
the energy, while energy release into the higher modes is suppressed
by an order of magnitude or more.

Even if individual mode amplitudes cannot be separated, the
total energy density contained in the residual distortion might

Table 1. Forecasted 1σ errors of the first six eigenmode amplitudes, E(k).
We also give εk = 4

∑
i S

(k)
i /

∑
i Gi,T , and the scalar products S(k) · S(k)

(in units of [10−18 W m−2 Hz−1 sr−1]2). The fraction of energy release to
the residual distortion and its uncertainty are given by ε ≈

∑
kεk µk and

"ε ≈ (
∑

k ε2
k"µ2

k)1/2, respectively. For the mode construction we used
PIXIE-settings ({νmin, νmax, "νs} = {30, 1000, 15}GHz and channel
sensitivity "Ic = 5 × 10−26 W m−2 Hz−1 sr−1). The errors roughly scale as
"µk ∝ "Ic/

√
"νs.

k "µk "µk/"µ1 εk S(k) · S(k)

1 1.48 × 10−7 1 −6.98 × 10−3 1.15 × 10−1

2 7.61 × 10−7 5.14 2.12 × 10−3 4.32 × 10−3

3 3.61 × 10−6 24.4 −3.71 × 10−4 1.92 × 10−4

4 1.74 × 10−5 1.18 × 102 8.29 × 10−5 8.29 × 10−6

5 8.52 × 10−5 5.76 × 102 −1.55 × 10−5 3.45 × 10−7

6 4.24 × 10−4 2.86 × 103 2.75 × 10−6 1.39 × 10−8

still be detectable. The error of ε can be found using Gaussian
error propagation, "ε ≈ (

∑
k ε2

k"µ2
k)1/2 # {3.68 × 10−9, 3.53 ×

10−9, 3.14 × 10−9, 2.84 × 10−9}, where the numbers show, respec-
tively, uncertainties when all modes, all but µ1, all but µk with k ≤
2 and all but µk with k ≤ 3 are included. Another estimator for the
residual distortion is the modulus of the residual distortion vector
|R|2 ≈

∑
k S(k) · S(k) µ2

k . The required scalar product amplitudes
are also given in Table 1. Similar to ε, the error of |R|2 scales like
"|R|2 ≈ 2(

∑
k[S(k) · S(k)µk]2"µ2

k)1/2. Both ε and |R|2 can be used
to estimate how much information is left in the residual when the
mode hierarchy is truncated at some fixed value k. If the signal-to-
noise ratio is larger than unity, more modes should be added.

4 PARAMETER ESTIMATION USING
E N E R G Y- R E L E A S E E I G E N M O D E S

In the previous sections, we created a set of orthogonal signal modes
that can be constrained by future SD experiments and used to re-
cover part of the energy-release history in a model-independent
way. We derived a set of energy-release eigenmodes that describes
the residual distortion signal that cannot be expressed as simple
superposition of temperature shift, µ- and y-distortion.

As explained above, nothing can be learned from the change in the
value of the CMB temperature caused by energy release. Thus, the
useful part of the primordial signal is determined by the parameters
pprim = {y, µ, µk}. The number of residual modes, µk, that can
be constrained depends on the typical amplitude of the distortion
and instrumental aspects. To the primordial signal, we need to add
yre to describe the late-time y-distortion, and "T to parametrize the
uncertainty in the exact value of the CMB monopole. The total
distortion signal therefore takes the form

"Ii = "I T
i + "I

y
i + "I

µ
i + "IR

i

"I T
i = Gi,T"T [1 + "T ] + Yi,SZ "2

T /2

"I
y
i = Yi,SZ (yre + y)

"I
µ
i = Mi µ, (11)

where Gi,T, Yi,SZ and Mi are the average signals of GT, YSZ and M
over the ith channel. The dependence of "I T

i on "T is quadratic, but
since "T ( 1, the problem remains quasi-linear, with the second-
order term leading to a negligible correction to the covariance
matrix, once expanded around the best-fitting value for "T. For
estimates one can thus set "I T

i ≈ Gi,T "T without loss of gener-
ality. This defines the parameter set p = {"T, y∗, µ, µk}, where

MNRAS 438, 2065–2082 (2014)
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Figure 4. First few eigenmodes E(k) and S(k) for PIXIE-type settings
(νmin = 30 GHz, νmax = 1000 GHz and "νs = 15 GHz). In the mode
construction, we assumed that energy release only occurred at 103 ≤ z ≤
5 × 106.

amplitudes are positive for Q = const > 0. The first energy-release
mode, E(1), has a maximum at z # 5.3 × 104, while higher modes
show more variability, extending both towards lower and higher
redshift. The corresponding distortion modes, S(k), show increasing
variability and decreasing overall amplitude with growing k. They
capture all corrections to the simple superposition of pure µ- and
y-distortion, needed to morph between these two extreme cases.

In Table 1, we summarize the projected errors for the first six
mode amplitudes. The errors, "µk, increase rapidly with mode
number (this is how we order the eigenmodes), meaning that for a
fixed amplitude of the distortion signal the information in the higher
modes can only be accessed at higher spectral sensitivity.

Knowing the signal eigenvectors, S(k), we can directly relate
the mode amplitudes, µk, to the fractional energy, ε, stored by
the residual distortion. It thus allows us to estimate how much
information is contained by the residual distortion. Since integration
over frequency can be written as a sum over all frequency bins, with
εk = 4

∑
i S

(k)
i /

∑
i Gi,T we have ε ≈

∑
kεk µk. The first six εk are

given in Table 1. The signal modes, S(1) and S(2), contribute most to
the energy, while energy release into the higher modes is suppressed
by an order of magnitude or more.

Even if individual mode amplitudes cannot be separated, the
total energy density contained in the residual distortion might

Table 1. Forecasted 1σ errors of the first six eigenmode amplitudes, E(k).
We also give εk = 4

∑
i S

(k)
i /

∑
i Gi,T , and the scalar products S(k) · S(k)

(in units of [10−18 W m−2 Hz−1 sr−1]2). The fraction of energy release to
the residual distortion and its uncertainty are given by ε ≈

∑
kεk µk and

"ε ≈ (
∑

k ε2
k"µ2

k)1/2, respectively. For the mode construction we used
PIXIE-settings ({νmin, νmax, "νs} = {30, 1000, 15}GHz and channel
sensitivity "Ic = 5 × 10−26 W m−2 Hz−1 sr−1). The errors roughly scale as
"µk ∝ "Ic/

√
"νs.

k "µk "µk/"µ1 εk S(k) · S(k)

1 1.48 × 10−7 1 −6.98 × 10−3 1.15 × 10−1

2 7.61 × 10−7 5.14 2.12 × 10−3 4.32 × 10−3

3 3.61 × 10−6 24.4 −3.71 × 10−4 1.92 × 10−4

4 1.74 × 10−5 1.18 × 102 8.29 × 10−5 8.29 × 10−6

5 8.52 × 10−5 5.76 × 102 −1.55 × 10−5 3.45 × 10−7

6 4.24 × 10−4 2.86 × 103 2.75 × 10−6 1.39 × 10−8

still be detectable. The error of ε can be found using Gaussian
error propagation, "ε ≈ (

∑
k ε2

k"µ2
k)1/2 # {3.68 × 10−9, 3.53 ×

10−9, 3.14 × 10−9, 2.84 × 10−9}, where the numbers show, respec-
tively, uncertainties when all modes, all but µ1, all but µk with k ≤
2 and all but µk with k ≤ 3 are included. Another estimator for the
residual distortion is the modulus of the residual distortion vector
|R|2 ≈

∑
k S(k) · S(k) µ2

k . The required scalar product amplitudes
are also given in Table 1. Similar to ε, the error of |R|2 scales like
"|R|2 ≈ 2(

∑
k[S(k) · S(k)µk]2"µ2

k)1/2. Both ε and |R|2 can be used
to estimate how much information is left in the residual when the
mode hierarchy is truncated at some fixed value k. If the signal-to-
noise ratio is larger than unity, more modes should be added.

4 PARAMETER ESTIMATION USING
E N E R G Y- R E L E A S E E I G E N M O D E S

In the previous sections, we created a set of orthogonal signal modes
that can be constrained by future SD experiments and used to re-
cover part of the energy-release history in a model-independent
way. We derived a set of energy-release eigenmodes that describes
the residual distortion signal that cannot be expressed as simple
superposition of temperature shift, µ- and y-distortion.

As explained above, nothing can be learned from the change in the
value of the CMB temperature caused by energy release. Thus, the
useful part of the primordial signal is determined by the parameters
pprim = {y, µ, µk}. The number of residual modes, µk, that can
be constrained depends on the typical amplitude of the distortion
and instrumental aspects. To the primordial signal, we need to add
yre to describe the late-time y-distortion, and "T to parametrize the
uncertainty in the exact value of the CMB monopole. The total
distortion signal therefore takes the form

"Ii = "I T
i + "I

y
i + "I

µ
i + "IR

i

"I T
i = Gi,T"T [1 + "T ] + Yi,SZ "2

T /2

"I
y
i = Yi,SZ (yre + y)

"I
µ
i = Mi µ, (11)

where Gi,T, Yi,SZ and Mi are the average signals of GT, YSZ and M
over the ith channel. The dependence of "I T

i on "T is quadratic, but
since "T ( 1, the problem remains quasi-linear, with the second-
order term leading to a negligible correction to the covariance
matrix, once expanded around the best-fitting value for "T. For
estimates one can thus set "I T

i ≈ Gi,T "T without loss of gener-
ality. This defines the parameter set p = {"T, y∗, µ, µk}, where
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Estimated error bars 
(under idealistic assumptions...)
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Figure 12. Expected uncertainties of A⇣ (k0 = 45 Mpc�1), nS, and nrun using
measurements of µ, µ1, and µ2. We assumed 5 times the sensitivity of PIXIE
and A⇣ = 5⇥10�8 as reference value (other cases can be estimated by simple
rescaling). For the upper panel we also varied nrun as indicated, while in the
lower panel it was fixed to nrun = 0. The corresponding error in the particle
lifetime is �tX/tX ' 2�zX/zX.

though the absolute distance between line varies relative to the er-
ror bars they seem rather constant. To show this more explicitly,
from µ, µ1, and µ2 we computed we the expected 1�-errors on
A⇣(k0 = 45 Mpc�1), nS, and nrun around the maximum likelihood
value using the Fisher information matrix, Fi j = �µ�2 @piµ @p jµ +P

k �µ
�2
k @piµk@p jµk, with p ⌘ {A⇣ , nS, nrun}. Figure 12 shows the

corresponding forecasts assuming PIXIE-setting but with 5 times
its sensitivity. If only p ⌘ {A⇣ , nS} are estimate for fixed nrun, the
errors of A⇣ and nS are only a few percent. Also trying to constrain
nrun we see that the errors increase significantly, with an absolute
error on �nrun ' 0.07 rather independent of nS. If we change the
sensitivity by a factor f = �Ic/[10�26 W m�2 Hz�1 sr�1, all curved
can be rescaled by this factor to obtain the new estimate. Similarly,
if A⇣(k0 = 45 Mpc�1) di↵ers by f⇣ = A⇣/5 ⇥ 10�8, we have to
rescale the error estimates by f �1

⇣ . Overall, our analysis shows that
CMB spectral distortion measurement provide an unique probe of
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Figure 13. Detectability of µ, µ1, µ2, and µ3. For a given particle lifetime,
we compute the required value of ✏X = fX/zX for which a 1�-detection of
the corresponding variable is possible with PIXIE. The violet shaded area is
excluded by measurements of the primordial 3He/D abundance ratio (65%
c.l., adapted from Fig. 42 of Kawasaki et al. 2005).

the small-scale power spectrum, which can be utilized to directly
constraint inflationary models.

5.2.3 Decaying relic particles

The distortion signals for the three decaying particle scenarios pre-
sented in Table 1 will all be detectable with a PIXIE-like experi-
ment. More generally, Fig. 13 shows the 1�-detection limits for µ,
µ1, µ2, and µ3, as a function of the particle lifetime. CMB spec-
tral distortions are sensitive to decaying particles with ✏X as low as
' 10�2 eV for particle lifetimes 107 sec . tX . 1010 sec. To directly
constrain tX, at least a measurement of µ1 is needed. At PIXIE sen-
sitivity this means that the lifetime of particles with 2 ⇥ 109 sec .
tX . 6⇥1010 sec for ✏X & 0.1 eV and 3⇥108 sec . tX . 1012 sec for
✏X & 1 eV will be directly measurable. Most of this parameter space
is completely unconstrained [see upper limit from measurements of
the primordial 3He/D abundance ratio2 (from Fig. 42 of Kawasaki
et al. 2005) in Fig. 13]. Higher sensitivity will allow cutting deeper
into the parameter space and widen the range over which the parti-
cle lifetime can be directly constrained.

To illustrate this even further we can again look at the µ �
⇢k-parameter space covered by decaying particles. The projections
into the µ � ⇢1 and ⇢1 � ⇢2-plane are shown in Fig. 14 for ✏X =
1 eV and PIXIE settings. Varying ✏X moves the µ�⇢1 trajectory left
or right, as indicated. Furthermore, all error bars of ⇢k have to be
rescales by f = [✏X/1 eV]�1 under this transformation. Measuring
µ and ⇢1 is in principle su�cient for determination of ✏X and the
particle lifetime, tX = [4.9⇥109/(1+zX)]2 sec, with most sensitivity
around zX ' 5 ⇥ 104 � 105 or tX ' 2.4 ⇥ 109 � 9.6 ⇥ 109 sec for
the shown scenario. For short lifetime, the signal is very close to a

2 In the particle physics community the abundance yield, YX = NX/S ,
and deposited particle energy, Evis [GeV], are commonly used. Here NX
is the particle number density at t ⌧ tX and S = 4

3
⇢

kT ' 7 N� '
2.9 ⇥ 103 (1 + z)3 cm�3 denotes the total entropy density. We thus find
✏X ⌘ (Evis YX) 109S/[NH (1 + zX)] ' 1.5 ⇥ 1019(Evis YX)/(1 + zX).

c� 0000 RAS, MNRAS 000, 000–000

Distortions could shed light on decaying (DM) particles!

JC & Jeong, 2013

Kawasaki et al., 2005

Estimated 1σ detection 
limits for PIXIE

             

PRISM sensitive to 
lifetime over even 
wider range!

Complementary to 
CMB anisotropies!



Structure of the Lectures (cont.)

• Overview of different sources of distortions

• Decaying particles

• Dissipation of acoustic modes

Lecture III:



The dissipation of small-scale acoustic modes
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Dissipation of small-scale acoustic modes



Hu & White, 1997, ApJ

Silk-damping is 
equivalent to 
energy release!

Dissipation of small-scale acoustic modes



Energy release caused by dissipation process

‘Obvious’ dependencies:
• Amplitude of the small-scale power spectrum

• Shape of the small-scale power spectrum

• Dissipation scale → kD ~ (H0 Ωrel1/2 Ne,0)1/2 (1+z)3/2 at early times

not so ‘obvious’ dependencies:
• primordial non-Gaussianity in the ultra squeezed limit                          

(Pajer & Zaldarriaga, 2012; Ganc & Komatsu, 2012)

• Type of the perturbations (adiabatic ↔ isocurvature)                               
(Barrow & Coles, 1991; Hu et al., 1994; Dent et al, 2012, JC & Grin, 2012)

• Neutrinos (or any extra relativistic degree of freedom)



Energy release caused by dissipation process

‘Obvious’ dependencies:
• Amplitude of the small-scale power spectrum

• Shape of the small-scale power spectrum

• Dissipation scale → kD ~ (H0 Ωrel1/2 Ne,0)1/2 (1+z)3/2 at early times

not so ‘obvious’ dependencies:
• primordial non-Gaussianity in the ultra squeezed limit                          

(Pajer & Zaldarriaga, 2012; Ganc & Komatsu, 2012)

• Type of the perturbations (adiabatic ↔ isocurvature)                               
(Barrow & Coles, 1991; Hu et al., 1994; Dent et al, 2012, JC & Grin, 2012)

• Neutrinos (or any extra relativistic degree of freedom)

CMB Spectral distortions could add additional numbers beyond 
‘just’ the tensor-to-scalar ratio from B-modes!



Handwavy derivation of the heating rate



Dissipation of acoustic modes: ‘classical treatment’

Sunyaev & Zeldovich, 1970
Hu, Scott & Silk, 1994, ApJ

• energy stored in plane sound waves 

Landau & Lifshitz, ‘Fluid Mechanics‘, § 65 ⇒  Q ~ cs2 ρ (δρ/ρ)2

• expression for normal ideal gas where ρ is ‘mass 
density’ and cs denotes ‘sounds speed’
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 ‘minus’ because decrease of Θ 
at small scales means increase 
for average spectrum

 can be calculated using first 
order perturbation theory
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Dissipation of acoustic modes: ‘classical treatment’

Sunyaev & Zeldovich, 1970
Hu, Scott & Silk, 1994, ApJ

• energy stored in plane sound waves 

Landau & Lifshitz, ‘Fluid Mechanics‘, § 65 ⇒  Q ~ cs2 ρ (δρ/ρ)2

• expression for normal ideal gas where ρ is ‘mass 
density’ and cs denotes ‘sounds speed’

• photon-baryon fluid with baryon loading R << 1

(cs/c)2 = [ 3 (1+R) ]-1 ~ 1/3
ρ → ργ  = aR T4

δρ/ρ → 4(δT0/T) ≡ 4Θ0  
⇒   (a4ργ)-1 da4Qac/dt = -16/3 d<Θ02>/dt 

‣ total energy release is 9/4 ~ 2.25 
times larger!

‣ only 1/3 of the released energy 
goes into distortions

• Simple estimate does not capture 
all the physics of the problem:              
(JC, Khatri & Sunyaev, 2012)
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H Early power spectrum constraints from FIRAS

Hu, Scott & Silk, 1994

• based on classical 
estimate for heating rate

• Tightest / cleanest 
constraint at that point!

• simple power-law 
spectrum assumed

• µ~10-8 for scale-invariant 
power spectrum

• nS ≲ 1.6



Dissipation of acoustic modes: ‘microscopic picture’

JC, Khatri & Sunyaev, 2012

• average energy stored in photon field at                  
any given moment

   < ργ > = aR <T4> ≈ aR <T>4 [1+ 4<Θ> + 6<Θ2> ]

• after inflation: photon field has spatially 
varying temperature T

 E.g., our snapshot at z=0== 0
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Dissipation of acoustic modes: ‘microscopic picture’

JC, Khatri & Sunyaev, 2012

• average energy stored in photon field at                  
any given moment

   < ργ > = aR <T4> ≈ aR <T>4 [1+ 4<Θ> + 6<Θ2> ]

• after inflation: photon field has spatially 
varying temperature T

 E.g., our snapshot at z=0

⇒   (a4ργ)-1 da4Qac/dt = -6 d<Θ2>/dt 

• Monopole actually drops out of the equation!

• In principle all higher multipoles contribute to the energy release

== 0

‣ net (gauge-invariant) dipole and contributions from 
higher multipoles are negligible

• At high redshifts (z ≥ 104):

‣ dominant term caused by quadrupole anisotropy

⇒   (a4ργ)-1 da4Qac/dt ≈ -12 d<Θ02>/dt 

9/4 larger than classical estimate



Where does the 2:1 ratio come from?
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ΔT/T0 = 0.4

 Blackbody T2=T0+ΔT

 Blackbody T1=T0-ΔT
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Superpositions of blackbody spectra

Zeldovich, Illarionov & Sunyaev, 1972 
JC & Sunyaev 2004

 Average spectrum is NOT 
a blackbody at the 
average temperature T0 !

y-distortionstemperature shift

<T> = (T1+T2)/2==T0 t

0

⇒ 2/3 of the stored energy 
appears as temperature shift

⇒ 1/3 as y-distortion!



Distortions caused by superposition of blackbodies

• average spectrum

⇒  

• known with very high precision 

JC & Sunyaev, 2004
JC, Khatri & Sunyaev, 2012
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Distortions caused by superposition of blackbodies

• average spectrum

⇒  

• known with very high precision 

JC & Sunyaev, 2004
JC, Khatri & Sunyaev, 2012

y ' 1
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• CMB dipole ( βc ~ 1.23x10-3)

⇒  

• electrons are up-scattered
• can be taken out at the level 

of ~ 10-9

�Tsup ' T
�2

c

3
⇡ 1.4µK

y ' �2
c

6
⇡ 2.6⇥ 10�7

COBE/DMR: ΔT = 3.353 mK



• Effective heating rate from full 2x2 Boltzmann treatment (JC, Khatri & Sunyaev, 2012)

Effective energy release caused by damping effect

gauge-independent dipole effect of polarization higher multipoles
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• Effective heating rate from full 2x2 Boltzmann treatment (JC, Khatri & Sunyaev, 2012)

Effective energy release caused by damping effect

JC, Khatri & Sunyaev, 2012

gauge-independent dipole effect of polarization higher multipoles

hXY i =
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k2dk

2⇡2
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Primordial power spectrum
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• quadrupole dominant at high z
• net dipole important only at 

low redshifts
• polarization ~5% effect
• contribution from higher 

multipoles rather small

nS = 0.96

Units: Aς H / σT Ne c

Scale factor a=1/(1+z)



Our computation for the effective energy release

JC, Khatri & Sunyaev, 2012

WMAP7 case

Power spectrum 
with running

scaled such that constant for nS =1

• Amplitude of the distortion 
depends on the small-
scale power spectrum

• Computation carried out 
with CosmoTherm              
(JC & Sunyaev 2011)

• Our 2. order perturbation 
calculation showed that 
the classical picture was 
slightly inconsistent

Primordial power spectrum of curvature 
perturbations is input for the calculation



Which modes dissipate in the µ and y-eras?

JC, Erickcek & Ben-Dayan, 2012

• Modes with wavenumber                  
50 Mpc-1 < k < 104 Mpc-1  
dissipate their energy 
during the µ-era

• Modes with k < 50 Mpc-1 
cause y-distortion

• Single mode with 
wavenumber k 
dissipates its energy at 

    

  zd ~ 4.5x105(k Mpc/103)2/3



Constraints on the standard primordial power spectrum

JC, Khatri & Sunyaev, 2012

• For the standard power spectrum PIXIE 
might detect the µ-distortion caused by 
acoustic damping at ~ 1.5σ level

• For any given power spectrum very precise 
predictions are possible!

• The physics going into the computation 
are well understood

• y-distortion will be harder to measure, 
since many other astrophysical processes 
cause y-distortions at low redshift

• PIXIE could independently rule out a scale-
invariant power spectrum at ~ 2.5σ level
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Planck+WP+highL

PRISM (Imager)

PRISM (Imager+Spec)

Fiducial model

k0 = 0.05Mpc

�1

A⇣ = 2.2⇥ 10

�9

nS = 0.96

nrun = 0

JC & Jeong, 2013
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the case with no running and scale-invariant power spectrum. For
these two dissipation scenarios the y-parameter will contribute at
a few σ -level to y∗ = yre + y for a PIXIE-like experiment, while
no information can be extracted from the residual distortion (none
of the µk can be detected). For a scale-invariant power spectrum
also a non-vanishing µ-parameter could be found ("2.3σ ) with a
PIXIE-like experiment (see also Chluba et al. 2012b). For PRISM,
a more than 20 σ detection of µ for a scale-invariant power spec-
trum should be feasible, while for Aζ " 2.2 × 10−9, nS " 0.96 and
nrun " 0 we expect a " 17 σ detection of µ.

Since the y-parameter is degenerate with yre, only µ can be used
to place constraints in these cases, however, the degeneracy among
model parameters is very large. For example, the small difference
in the value of µ for the two considered cases can be compensated
by adjusting Aζ at small scales. Increasing the sensitivity 10 times
over PIXIE will allow an additional detection of the first eigenmode
("3.7σ and "2.0σ for the two dissipation scenarios given Table 2,
respectively). In this case, the parameter degeneracies (Aζ , nS, and
nrun) can be partially broken (two numbers, µ and µ1, are used to
limit three variables). Improvement by another factor of 10 allows
marginal detections of the second mode amplitude, but to truly
constrain the shape of the small-scale power spectrum (assuming
the standard parametrization) using SD data alone an overall factor
! 200 over PIXIE will be necessary, making this application of SDs
rather futuristic (see also Chluba 2013a).

These simple estimates indicate that SD alone only provide com-
petitive constraints on Aζ , nS and nrun for much higher spectral sen-
sitivity; however, SD data can help to slightly improve the constraint
on nrun when combined with future CMB anisotropy measurements
(see Powell 2012; Khatri & Sunyaev 2013, for similar discussion).
This is simply because both Aζ and nS can be tightly constrained
with the CMB anisotropy measurement, while the long lever arm
added with SD measurements improves the sensitivity to running
of the power spectrum. We illustrate this in Fig. 11 for PRISM and
current constraints from Planck, Wilkinson Microwave Anisotropy
Probe (WMAP) (e.g. Komatsu et al. 2011) and high # data from ACT
(e.g. Dunkley et al. 2011) and SPT (e.g. Keisler et al. 2011). For the
standard power spectrum, SD data add little with respect to Aζ and
nS, but do improve the constraint on nrun for nrun > −0.02. However,
similar improvements can also be expected from future small-scale
(Stage IV) CMB measurements (Abazajian et al. 2013). At PIXIE’s
sensitivity, we do not find any significant improvement of power
spectrum constraints derived from CMB anisotropy measurements
when adding the SD data.

5.3.3 Dissipation of small-scale acoustic modes: generalization

The above statements assume that the three-parameter Ansatz for
the primordial curvature power spectrum holds for more than six
to seven decades in scales. Strictly speaking, the exact shape and
amplitude of the small-scale power spectrum are unknown and a
large range of viable early-universe models (e.g. Salopek, Bond
& Bardeen 1989; Starobinskij 1992; Ivanov, Naselsky & Novikov
1994; Randall, Soljačić & Guth 1996; Stewart 1997; Copeland et al.
1998; Starobinsky 1998; Chung et al. 2000; Hunt & Sarkar 2007;
Joy, Sahni & Starobinsky 2008; Barnaby et al. 2009; Barnaby 2010;
Ben-Dayan & Brustein 2010; Achúcarro et al. 2011; Céspedes, Atal
& Palma 2012) producing enhanced small-scale power exist (see,
Chluba et al. 2012a, for more examples and simple SD constraints).
Observationally, the amplitude of the primordial small-scale power
spectrum is limited to Aζ " 10−7–10−6 at wavenumber 3 Mpc−1 "

Figure 11. Forecasted constraints on Aζ , nS and nrun. The case labelled
Planck+WP+highL uses the published covariance matrix of Planck with
inclusion of WMAP polarization data and the high # data from ACT and SPT.
The case labelled PRISM is based on estimates given in André et al. (2013)
for the PRISM imager and spectrometer part. The upper panel shows the 2D
contours and marginalized distributions for Aζ , nS and nrun, while the lower
panel illustrates the expected improvement (decrease) in the measurement
uncertainty of the PRISM imager over Planck (horizontal lines) and the
additional gain when adding the PRISM SD data. Note that the PRISM
spectrometer is about one order of magnitude more sensitive that PIXIE.

k " few × 104 Mpc−1 (the range that is of most interest for CMB
distortions) using ultracompact mini-haloes (Bringmann, Scott &
Akrami 2012; Scott, Bringmann & Akrami 2012). Although slightly
model-independent, this still leaves a lot of room for non-standard
dissipation scenarios, with enhanced small-scale power.

To study how well the small-scale power spectrum might be
constrained by future SD measurements, it is convenient to con-
sider the shape and amplitude of the curvature power spectrum
at 3 Mpc−1 " k " few × 104 Mpc−1 independent of the large-scale
power spectrum. We therefore change the question as follows: by
shifting the pivot scale to k0 = 45 Mpc−1 (corresponding to heat-
ing around zdiss " 4.5 × 105[k/103 Mpc−1]2/3 " 5.7 × 104) and
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But this is not all that one could look at !!!



Distortions provide additional power spectrum constraints!

• Amplitude of power spectrum rather uncertain at k > 3 Mpc-1

• improved limits at smaller scales can rule out many inflationary models

Bringmann, Scott & Akrami, 2011, ArXiv:1110.2484 

CMB et al.

rather model dependent

e.g., JC, Khatri & Sunyaev, 2012; JC, Erickcek & Ben-Dayan, 2012; JC & Jeong, 2013



Distortions provide additional power spectrum constraints!

• Amplitude of power spectrum rather uncertain at k > 3 Mpc-1

• improved limits at smaller scales can rule out many inflationary models

Bringmann, Scott & Akrami, 2011, ArXiv:1110.2484 

CMB et al.

rather model dependent

CMB distortions

• CMB spectral distortions would extend our lever arm to k ~ 104 Mpc-1

• very complementary piece of information about early-universe physics

             

e.g., JC, Khatri & Sunyaev, 2012; JC, Erickcek & Ben-Dayan, 2012; JC & Jeong, 2013

Probe extra 
≃10 e-folds 
of inflation!



COBE/FIRAS limits on the amplitude of the 
small-scale power spectrum

• ~103 stronger that PBHs limit

JC, Erickcek & Ben-Dayan, 2012

• UCMHs limit still ~10 times 
stronger but more uncertain

• PIXIE could improve limit to 
P(k) < 10-8

• ‘optimistic’ limit P(k)< 8.4x10-6

• Conservative constraint

• constant power limit even  
P(k) < 10-9



Primordial power spectra with ‘step’ at small scales

JC, Erickcek & Ben-Dayan, 2012

• simple formula to compute the 
effective µ and y-parameter

Text • COBE/FIRAS ⇒ amplitude of the 
small-scale power spectrum can’t 
change by more than ~2x10-6 at 
wavenumber k ~ 1 Mpc-1Integral constraint on small-scale power



Primordial power spectra with ‘bend’ at small scales

JC, Erickcek & Ben-Dayan, 2012

Text

• COBE/FIRAS ⇒ spectral index at 
k ~ 1 Mpc-1 cannot change by 
more than Δn~1

• PIXIE will place very tight 
constraints on such modelsIntegral constraint on small-scale power
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type experiment is unable to constrain the lifetime of the particle.
The degeneracy is already broken at twice the sensitivity of PIXIE,
yielding ' 29% error on fX/zX and ' 17% error on zX. This fur-
ther improves to ' 14% uncertainty in fX/zX and a ' 9% error on
zX for four times the sensitivity of PIXIE. This energy-release sce-
nario corresponds to �⇢�/⇢� ' 6.4 ⇥ 10�7, so that the distortion is
comparable in amplitude to the y-signal from late times. Assuming
that less energy is liberated by the decaying particle increases the
errors (and hence the degeneracy), and conversely, for larger decay
energy the errors diminish. Overall, a PIXIE-type experiment will
provide a pretty good probe for long-lived particles with lifetimes
tX ' 6 ⇥ 108 sec � 1010 sec and fX/zX & 1 eV.

5 DISSIPATION OF SMALL-SCALE ACOUSTIC MODES

The prospect of accurate measurements of the CMB spectrum with
a PIXIE-type experiment spurred renewed interests in how primor-
dial perturbations at small-scales dissipate their energy (Chluba
& Sunyaev 2012; Khatri et al. 2012a; Pajer & Zaldarriaga 2012;
Chluba et al. 2012b; Dent et al. 2012; Ganc & Komatsu 2012;
Chluba et al. 2012a; Powell 2012; Khatri & Sunyaev 2013; Chluba
& Grin 2013). It was shown, that this e↵ect can be used to place
tight limits on the amplitude and shape of the power spectrum at
scales far smaller than what is probed with measurements of the
CMB anisotropies, in principle allowing to discover the distortion
signatures from several classes of early universe models (e.g., see
Chluba et al. 2012a).

Taking a conservative perspective, one can assume that the
power spectrum of curvature perturbations is fully determined by
CMB anisotropy measurements at large scales, implying an ampli-
tude A⇣ ' 2.2 ⇥ 10�9, spectral index nS ' 0.96, and its running
nrun ' �0.02, at pivot scale k0 = 0.05 Mpc�1 (Planck Collaboration
et al. 2013b). This is a significant extrapolation from wavenumbers
k < 1 Mpc�1 all the way to k ' few⇥104 Mpc�1, and it was already
argued that for a PIXIE-type experiment the signal remains just
short of the 1�-detection limit (Chluba & Sunyaev 2012; Chluba
et al. 2012b). Improving the sensitivity a few times will allow a de-
tection of this signal, however, given that the errors on A⇣ and nS

from CMB data are now . 1%, to use spectral distortion alone as
a competitive probe, we find that a factor of ' 100 � 200 improve-
ment in the sensitivity is necessary. The strongest dependence of
the distortion signal is due to nrun (see Fig. 6 for illustration), since
small changes a↵ect the amplitude of the small-scale power spec-
trum and hence the associated spectral distortion by a large amount
(Khatri et al. 2012a; Chluba et al. 2012b), providing some ampli-
fication. Still, this application of spectral distortion measurements
remains futuristic, being comparable to the challenge of measuring
the cosmological hydrogen and helium recombination features with
high precision.

Both from the theoretical and observational point of view,
there is, however, no reason to believe that the small-scale power
spectrum is described by what is dictated by large-scale measure-
ments. There is no shortage of models that create, bumps, kinks,
steps, or oscillatory features in the primordial power spectrum (e.g.,
Salopek et al. 1989; Starobinskij 1992; Ivanov et al. 1994; Ran-
dall et al. 1996; Stewart 1997b; Copeland et al. 1998; Starobinsky
1998; Chung et al. 2000; Hunt & Sarkar 2007; Joy et al. 2008;
Barnaby et al. 2009; Barnaby 2010a; Ben-Dayan & Brustein 2010;
Achúcarro et al. 2011; Céspedes et al. 2012), and direct observa-
tional constraints (e.g., see Bringmann et al. 2012, for overview)
leave large room for excess power at k & few ⇥Mpc�1. The recent
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Figure 6. E↵ective heating rate (upper panel) and associated spectral dis-
tortion (lower panel) caused by the dissipation of small-scale acoustic
modes in di↵erent scenarios. For reference we show a y-distortion with
y = 2 ⇥ 10�9. For the standard power spectrum we used A⇣ = 2.2 ⇥ 10�9

and nS = 0.96 at pivot scale k0 = 0.05 Mpc�1. All but one case are without
running. The two scenarios with a step and bend of the primordial power
spectrum lead to rather similar distortions (modulo and overall factor), and
thus become hard to distinguish, although each model should be detectable
with a PIXIE-like experiment at more than 5�-confidence.

results obtained with Planck, e.g., from limits to non-Gaussianity
(Planck Collaboration et al. 2013e), certainly further reduce the
allowed parameter space for di↵erent models, but the existence
of large-scale anomalies (Planck Collaboration et al. 2013d), and
possible small-scale power spectrum features (Planck Collabora-
tion et al. 2013c) indicate that matters might be more complex. A
PIXIE-type experiment will therefore open up a new window to
early-universe models, no matter if a distortion is detected or not.

Given the range of possibilities, we shall pick a few illustrative
cases, representing simple classes of models. Detailed constraints
on specific models should be derived in a case-by-case basis, how-
ever, our selection provides some intuition for what could be possi-
ble in the future. We start with a simple step, �A⇣ > 0, in the ampli-
tude of the curvature power spectrum at di↵erent k & few⇥Mpc�1,
assuming a spectral index n0S. If n0S ' 1 and ks ' 3 Mpc�1, from
the practical point of view this case is degenerate with the spectral
distortion produced by s-wave annihilation [both have a heating
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type experiment is unable to constrain the lifetime of the particle.
The degeneracy is already broken at twice the sensitivity of PIXIE,
yielding ' 29% error on fX/zX and ' 17% error on zX. This fur-
ther improves to ' 14% uncertainty in fX/zX and a ' 9% error on
zX for four times the sensitivity of PIXIE. This energy-release sce-
nario corresponds to �⇢�/⇢� ' 6.4 ⇥ 10�7, so that the distortion is
comparable in amplitude to the y-signal from late times. Assuming
that less energy is liberated by the decaying particle increases the
errors (and hence the degeneracy), and conversely, for larger decay
energy the errors diminish. Overall, a PIXIE-type experiment will
provide a pretty good probe for long-lived particles with lifetimes
tX ' 6 ⇥ 108 sec � 1010 sec and fX/zX & 1 eV.
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& Grin 2013). It was shown, that this e↵ect can be used to place
tight limits on the amplitude and shape of the power spectrum at
scales far smaller than what is probed with measurements of the
CMB anisotropies, in principle allowing to discover the distortion
signatures from several classes of early universe models (e.g., see
Chluba et al. 2012a).

Taking a conservative perspective, one can assume that the
power spectrum of curvature perturbations is fully determined by
CMB anisotropy measurements at large scales, implying an ampli-
tude A⇣ ' 2.2 ⇥ 10�9, spectral index nS ' 0.96, and its running
nrun ' �0.02, at pivot scale k0 = 0.05 Mpc�1 (Planck Collaboration
et al. 2013b). This is a significant extrapolation from wavenumbers
k < 1 Mpc�1 all the way to k ' few⇥104 Mpc�1, and it was already
argued that for a PIXIE-type experiment the signal remains just
short of the 1�-detection limit (Chluba & Sunyaev 2012; Chluba
et al. 2012b). Improving the sensitivity a few times will allow a de-
tection of this signal, however, given that the errors on A⇣ and nS

from CMB data are now . 1%, to use spectral distortion alone as
a competitive probe, we find that a factor of ' 100 � 200 improve-
ment in the sensitivity is necessary. The strongest dependence of
the distortion signal is due to nrun (see Fig. 6 for illustration), since
small changes a↵ect the amplitude of the small-scale power spec-
trum and hence the associated spectral distortion by a large amount
(Khatri et al. 2012a; Chluba et al. 2012b), providing some ampli-
fication. Still, this application of spectral distortion measurements
remains futuristic, being comparable to the challenge of measuring
the cosmological hydrogen and helium recombination features with
high precision.

Both from the theoretical and observational point of view,
there is, however, no reason to believe that the small-scale power
spectrum is described by what is dictated by large-scale measure-
ments. There is no shortage of models that create, bumps, kinks,
steps, or oscillatory features in the primordial power spectrum (e.g.,
Salopek et al. 1989; Starobinskij 1992; Ivanov et al. 1994; Ran-
dall et al. 1996; Stewart 1997b; Copeland et al. 1998; Starobinsky
1998; Chung et al. 2000; Hunt & Sarkar 2007; Joy et al. 2008;
Barnaby et al. 2009; Barnaby 2010a; Ben-Dayan & Brustein 2010;
Achúcarro et al. 2011; Céspedes et al. 2012), and direct observa-
tional constraints (e.g., see Bringmann et al. 2012, for overview)
leave large room for excess power at k & few ⇥Mpc�1. The recent
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Figure 6. E↵ective heating rate (upper panel) and associated spectral dis-
tortion (lower panel) caused by the dissipation of small-scale acoustic
modes in di↵erent scenarios. For reference we show a y-distortion with
y = 2 ⇥ 10�9. For the standard power spectrum we used A⇣ = 2.2 ⇥ 10�9

and nS = 0.96 at pivot scale k0 = 0.05 Mpc�1. All but one case are without
running. The two scenarios with a step and bend of the primordial power
spectrum lead to rather similar distortions (modulo and overall factor), and
thus become hard to distinguish, although each model should be detectable
with a PIXIE-like experiment at more than 5�-confidence.

results obtained with Planck, e.g., from limits to non-Gaussianity
(Planck Collaboration et al. 2013e), certainly further reduce the
allowed parameter space for di↵erent models, but the existence
of large-scale anomalies (Planck Collaboration et al. 2013d), and
possible small-scale power spectrum features (Planck Collabora-
tion et al. 2013c) indicate that matters might be more complex. A
PIXIE-type experiment will therefore open up a new window to
early-universe models, no matter if a distortion is detected or not.

Given the range of possibilities, we shall pick a few illustrative
cases, representing simple classes of models. Detailed constraints
on specific models should be derived in a case-by-case basis, how-
ever, our selection provides some intuition for what could be possi-
ble in the future. We start with a simple step, �A⇣ > 0, in the ampli-
tude of the curvature power spectrum at di↵erent k & few⇥Mpc�1,
assuming a spectral index n0S. If n0S ' 1 and ks ' 3 Mpc�1, from
the practical point of view this case is degenerate with the spectral
distortion produced by s-wave annihilation [both have a heating
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(�⇤ ⌘ � � �f )

Fiducial values:

�f = 1.2 ⇥ 10�4

yre = 4 ⇥ 10�7

�A⇣ = 4 ⇥ 10�7

ks = 30 Mpc�1

Figure 7. Large-distortion scenario caused by a step in the small-scale
power spectrum. Contours and lines are as before. A PIXIE-like experiment
allows constraining scale and amplitude of a step in the power spectrum at
ks ' 20 Mpc�1 � 50 Mpc�1 with �A⇣ & 4 ⇥ 10�7 to . 6% precision.

tortion produced by s-wave annihilation [both have a heating rate
d(Q/⇢�)/ dz / z�1 over most redshifts]. The di↵erence is, how-
ever, that a step in the small-scale power spectrum at ks ' 3 Mpc�1

is not as tightly constrained by large-scale CMB anisotropy mea-
surements, but could be tightly constrained with a PIXIE-type ex-
periment (Chluba et al. 2012a). More generally, degeneracy with
annihilation scenarios and h�vi / (1 + z)k exists if n0S ' k + 1. For
simplicity, below we consider only the case n0S ⌘ nS.

In Fig. 6, we show the heating rate and expected distortion
for this scenario, assuming �A⇣ ' 4 ⇥ 10�8, ks = 30 Mpc�1 and
n0S = 0.96 for illustration. At z & 5 ⇥ 105, the e↵ective heating rate
is ' 25 times larger than that for the standard background power
spectrum without running. Consequently, also the µ-type contribu-
tion to the resulting spectral distortion is found to be ' 16 times
larger, with additional contributions from the µ � y-transition era.
We can also see that the e↵ective heating rate changes gradually
to the one of the background model around z ' 4 ⇥ 104. Modes
with fixed wavenumber k dissipate their energy in a range of red-
shifts with a maximum at redshifts zdiss ' 4.5⇥105[k/103 Mpc�1]2/3

(Chluba et al. 2012a). Thus, no abrupt change of the heating rate is
expected.

Since the distortion in principle depends on how energy is
released at 104 . z . 3 ⇥ 105, one does expect to be sensitive
to ks. From the discussion of decaying particle scenarios, it is al-
ready clear that only for rather large distortions (i.e., a step am-
plitude �A⇣ & few ⇥ 10�7) will a PIXIE-type experiment be able
to constrain the position of the step. In Fig. 7, we show the pro-
jected constraints on this scenario, assuming that n0S = 0.96 is fixed
with �A⇣ = 4 ⇥ 10�7 and ks = 30 Mpc�1. Both the amplitude and
position of the step are well constrained, with �ks/ks ' 5% and
��A⇣/�A⇣ ' 1%. Increasing the sensitivity (or similarly consider-
ing a scenario with larger step amplitude) further tightens the con-
straints. Similar to the discussion for the decaying particle case,
moving ks closer to ' 3 Mpc�1 (zdiss ' 104) or ' 540 Mpc�1

(zdiss ' 3 ⇥ 105), the sensitivity on the position of the step is ex-
pected to degrade. A PIXIE-type experiment will be most sensitive
to a step at ks ' 20 Mpc�1 � 50 Mpc�1 giving �ks/ks . 6% and
��A⇣/�A⇣ . 2% for �A⇣ & 4 ⇥ 10�7. For ks & 150 Mpc�1 and
ks . 2 Mpc�1, the error in ks increases above ' 30%, although at
the boundaries, the amplitude of the step can still be constrained
rather precisely (' 6% and ' 1%, respectively). This is because
the distortion is rather large and only the information about the po-
sition of the step is lost at these limits. Improved sensitivity again
helps breaking degeneracies, allowing us to tighten the constraints
on this scenario and broadening the range over which the location
of the step can be determined, analogous to the decaying particle
case.

As an additional example, we shall consider a primordial
power spectrum with a change of the spectral index from nS to nb at
some scale kb, introducing a simple bend. This behavior could be
expected from running mass models (e.g., Stewart 1997a,b; Covi
& Lyth 1999) or a small-scale isocurvature mode with blue spec-
tral index that is completely subdominant at large scales (Chluba &
Grin 2013). The shape of the distortion is determined by nb, since it
sets the µ/y-distortion mixture and how significant deviations from
this simple superposition are. The value of kb just parametrizes the
overall amplitude of the distortion, with spectral distortion mea-
surements being insensitive to scenarios with kb & few⇥104 Mpc�1

(Chluba et al. 2012a). Also, if nb < nS, this scenario will be hard
to constrain, since already the signature from the standard power
spectrum is rather small. For nb > nS, more energy is dissipated
and hence a detection should be possible with a PIXIE-like experi-
ment (see Fig. 6 for illustration).

Estimates for the amplitude of the distortion can be computed
from the model of the small-scale power spectrum, using Eq. (4)
and �⇢�/⇢� '

R
d(Q/⇢�)/ dz e�(z/zµ)5/2 dz. Furthermore, an approx-

imation of how large the e↵ective µ- and y-parameters are can be
obtained using the k-space window function given in Chluba et al.
(2012a) and Chluba & Grin (2013) or the simple approximations
for the Green’s function provided in Chluba (2013). From these
considerations, it follows that the larger kb, the steeper does the
small-scale power spectrum have to become for fixed experimental
sensitivity to allow determination of the spectral index and bend
location. Similarly, for a fixed value of nb, sensitivity to the loca-
tion of the bend is diminished, the larger kb becomes (the distortion
becomes smaller since less energy is liberated).

For parameter estimations, it is better to specify the ampli-
tude of the small-scale power spectrum at some pivot scale in-
stead of using kb. Setting the power spectrum amplitude, Ab, at
k0,b ' 45 Mpc�1 keeps the total energy release roughly constant
when changing nb. To determine Ab(kb), assuming no running of the
background power spectrum, we can use Ab = A⇣k

nS�nb
b k1�nS

0 knb�1
0,b .

To ensure that kb � 1 Mpc�1 (we shall not consider cases with both
step and change of the spectral index here), we have the condition
Ab . 2.0 ⇥ 10�9 45nb�1.

To give some examples, for nb = 1.5 and kb = 3 Mpc�1(Ab '
7.2 ⇥ 10�9), the total energy available for creation of distortions is
�⇢�/⇢� ' 2.5 ⇥ 10�7. The associated signal should be easily de-
tectable with a PIXIE-like experiment; however, due to degenera-
cies the underlying parameters are less constrained. We find that
for 10 times PIXIE’s sensitivity, the errors are �nb/nb ' 10% and
�Ab/Ab ' 15% around the most probable solution; however, ad-
ditional low-probability solutions away from the input parameters
were found, showing how challenging it is to constrain this scenario
even at this sensitivity.

Matters do not improve when assuming a larger change of
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Figure 10. 1�-detection limits for µ, µ1, µ2, and µ3 caused by dissipation
of small-scale acoustic modes for PIXIE-like settings. We used the standard
parametrization for the power spectrum with amplitude, A⇣ , spectral index,
nS, and running nrun around pivot scale k0 = 45 Mpc�1. The heavy lines are
for nrun = 0, while all other lines are for nrun = {�0.1, 0.1} in each group.
For reference we marked the case nrun = 0.1.

tor & 200 over PIXIE will be necessary, making this application of
spectral distortions very futuristic (see also Chluba 2013a).

The exact shape and amplitude of the small-scale power spec-
trum are, however, unknown, and a large range of viable early-
universe models producing enhanced small-scale power exist (see,
Chluba et al. 2012a, for examples). Observationally, the amplitude
of the small-scale power spectrum is limited to A⇣ . 10�7 � 10�6 at
wavenumber 3 Mpc�1 . k . few ⇥ 104 Mpc�1 (the range that is of
most interest for CMB distortions) using ultra-compact minihalos
(Bringmann et al. 2012; Scott et al. 2012). Although not absolutely
model-independent, this leaves lots of room for non-standard dissi-
pation scenarios.

Shifting the pivot scale to k0 = 45 Mpc�1 (corresponding to
heating around zdiss ' 4.5 ⇥ 105[k/103 Mpc�1]2/3 ' 5.7 ⇥ 104) and
using the standard parameterization for the power spectrum, we can
ask, how large A⇣(k0 = 45 Mpc�1) has to be to obtain a 1�-detection
of µ, µ1, µ2, and µ3, respectively. The results of this exercise are
shown in Fig. 10 for PIXIE settings. Around nS ' 1, detections of
µ are possible for A⇣ & 10�9, while A⇣ & 6 ⇥ 10�9 is necessary
to also have a detection of µ1. In this case two of the three model-
parameters can in principle be constrained independently. To also
access information from µ2 and µ3 one furthermore needs A⇣ &
10�7. In this case we could expect to break the degeneracy between
all three parameters.

These statements can be phrased in another way. Assuming
A⇣ ' 10�9, at least a factor of 5 improvement over PIXIE sensitivity
is needed to allow constraining combinations of two power spec-
trum parameters. To measure all p = {A⇣(k0 = 45 Mpc�1), nS, nrun}
independently an overall factor of ' 200 improvement over PIXIE
sensitivity is required, although in this (very conservative) case the
corresponding constraints would still not be competitive with those
reached at large scales using CMB anisotropy measurements.

We can also ask the question of how well the power spec-
trum parameters can be constrained for di↵erent cases. If only µ is
available, then the corresponding constraints on small-scale power
spectrum parameters remain rather weak, but could still be used to
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Figure 11. Parameter range of µ, µ1, and µ2 for dissipation scenarios. We
assumed PIXIE settings with 5 times its sensitivity, and power spectrum
amplitude A⇣ (k0 = 45 Mpc�1) = 5⇥10�8 (i.e. A ⌘ A⇣/5⇥10�8). The heavy
solid black lines are for nrun = 0, while the thin solid brown lines indicate
nS = const. The other light lines are for nrun = {�0.2,�0.1, 0.1, 0.2}. The
open symbols mark nS in steps �nS = 0.1. The blue symbols with error
bars (tiny in the upper panel) are for nS = {0.5, 1, 1.5, 1.8} and nrun = 0 and
illustrate how the error scales in di↵erent regions of the parameter space.
Measurements in the µ � ⇢1 plane can be used to fix the overall amplitude
of the small-scale power spectrum for a given pair nS and nrun, but no in-
dependent constraint on nS and nrun can be deduced. The constraints on ⇢1
and ⇢2 allow to partially break the remaining degeneracy.

limit the parameters space (e.g., Chluba et al. 2012b,a). If µ and µ1

can be accessed, we can limit the overall amplitude of the power
spectrum for given pairs of nS and nrun. This can be seen from the
upper panel of Fig. 11, where we illustrate the possible parameter
space of µ, ⇢1 / µ1/µ and ⇢2 / µ2/µ in some range of nS and
nrun. For the considered sensitivity, the errors on µ and ⇢1 are very
small, but since the overall amplitude, A⇣ , can be adjusted without
a↵ecting ⇢1, the measurement is not independent of nS and nrun.

If in addition µ2 can be constrained the degeneracy can be bro-
ken. As Fig. 11 (lower panel) indicates, the relative dependence
on nrun seems rather similar in all parts of parameter space: al-
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Anisotropic µ-distortions from non-Gaussianity

• Modes that dissipate energy have k1 ≈ k2 >> k3

• Non-Gaussian power spectrum → presence of positive 
long-wavelength mode enhances small-scale power

• More small-scale power → larger µ-distortion

• → Spatially varying µ-distortion caused by non-Gaussianity!             
(Pajer & Zaldarriaga, 2012; Ganc & Komatsu, 2012)

• Non-vanishing µ-T correlation at large scales

• Might be detectable with PIXIE-type experiment for fNL > 103

Requirements
• precise cross-calibration of 

frequency channels

• higher angular resolution does 
not improve cumulative S/N                                              

Ganc & Komatsu, 2012
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Figure 5. Resulting µ-parameter from heating due to tensor perturba-
tions. The two groups are for {AT , k0} = {2.4 ⇥ 10�10, 0.002 Mpc�1} and
{2.2 ⇥ 10�10, 0.05 Mpc�1}. We used Eq. (18) to compute the heating rate,
but for the red dashed line we only included modes with k  2⇥104 Mpc�1.
The stars show the result obtained with approximation Eq. (19). For the sim-
plest parametrizations of the primordial tensor power spectrum, the shaded
region is ruled out by BBN/CMB constraints (Smith et al. 2006; Boyle &
Buonanno 2008).

accounts for the e�ciency of thermalization at early times. Correc-
tions to the shape of the spectral distortion caused by dissipation of
tensor perturbations in the µ � y transition era (104 . z . 3 ⇥ 105)
can be included using the Green’s function method of the CosmoTh-
erm

6 software package (Chluba & Sunyaev 2012; Chluba 2013b),
but for the purpose of this work, Eq. (24) is su�cient.

For k0 = 0.05 Mpc, with the approximation Eq. (19) for the
tensor heating rate, we find µ ⇡ {7.3 ⇥ 10�5, 7.8 ⇥ 10�3, 5.8} AT for
nT = {0, 0.5, 1}, respectively. Thus with AT ' 0.1A⇣ ' 2.2 ⇥ 10�10

we have a distortion µ ⇡ {1.6 ⇥ 10�14, 1.7 ⇥ 10�12, 1.3 ⇥ 10�9}. For
nT . 1, this agrees to within ' 10% � 30% with our more detailed
calculation (see Fig. 5). Generally, our numerical results show that
for nearly scale invariant tensor power spectra, the µ-distortion re-
mains six orders of magnitudes smaller than for the dissipation of
adiabatic modes, which for standard curvature power spectrum with
A⇣ = 2.2 ⇥ 10�9 at pivot scale k0 = 0.05 Mpc and nS = 0.96 gives
µ⇣ ' 1.4⇥10�8 (Chluba et al. 2012b). The adiabatic signal is just at
the detection limit of PIXIE (Kogut et al. 2011), showing that a de-
tection of the tensor contribution is very futuristic. For blue power
spectra, the distortion can become comparable to the signal caused
by adiabatic modes. However, in this case constraints on tensors
from CMB and big bang nucleosynthesis (BBN) become impor-
tant (Smith et al. 2006), limiting nT < 0.36 for r ' 0.1 (Boyle &
Buonanno 2008). Overall, the distortion signal from tensors is thus
expected to be much smaller than for adiabatic modes (see Fig. 5).

5.1 Comparing with Ota et al.

Our conclusions from the previous section are in broad agree-
ment with those of Ota et al. (2014). To compare more directly,
we change the power spectrum parameters to k0 = 0.002 Mpc
and AT = 2.4 ⇥ 10�10 and introduce a hard small-scale cuto↵

6 Available at www.Chluba.de/CosmoTherm

10-2 10-1 100 101 102 103 104 105 106 107 108 109

k [ Mpc-1 ]

10-18

10-17

10-16

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

dµ
 / 

dl
nk

no transfer correction
with transfer correction
improved transfer corr
Data from Ota 2014

nT = 0

nT = 0.5

nT = 1

Figure 6. Di↵erential contribution to the µ-distortion from di↵erent scales.
Transfer e↵ects introduce a cuto↵ at very small scales. The dotted vertical
line indicates the position of the cuto↵ used by Ota et al. (2014), while the
dashed-dotted lines are the data taken from their Fig. 2 (and divided by 2 to
convert to r = 0.1). See Sect. 5.1 text for more detailed explanation.

at kcut = 2 ⇥ 104 Mpc�1. Numerically integrating Eq. (13) with
Eq. (24), we find µ ⇡ {1.8 ⇥ 10�14, 6.0 ⇥ 10�9} for nT = {0, 1}.
This is about 10% � 20% smaller than the values reported in their
paper, µOta ⇡ {2.2⇥10�14, 7⇥10�9} for r = 0.1. A part of this di↵er-
ence can be explained by adding the other terms for ` = 2, Eq. (17),
which then gives µ ⇡ {1.9 ⇥ 10�14, 6.3 ⇥ 10�9}, but in particular for
nT = 0, the di↵erence remains comparable to ' 20%.

To understand the remaining di↵erence a little better, in Fig. 6
we show the digitized points (purple, dash-dotted) for dµ/ d ln k
taken from Fig. 2 of Ota et al. (2014) in comparison with our nu-
merical results. For the solid lines we used Eq. (13) for the heating
rate, while the dotted lines were computed with Eq. (18) for the
photon transfer function. For illustration, we also show the result
for dµ/ d ln k, when neglecting any photon transfer e↵ects (dashed
lines), which emphasizes the importance of free streaming e↵ects.
At the largest scales (k ' 0.3 Mpc�1), our curves for dµ/ d ln k prac-
tically coincide, although we find slightly larger contributions at
k . 0.1 Mpc�1. However, at smaller scales the curves of Ota et al.
(2014) are roughly 1.5 times larger than ours. Ota et al. (2014) used
the numerical output from the CLASS code (Lesgourgues 2011;
Blas et al. 2011; Tram & Lesgourgues 2013) to obtain the trans-
fer functions. The e↵ect of neutrino damping was only included
to CLASS recently (version 2.2; private communication, Lesgour-
gues). We find that after neglecting the damping e↵ect of neutrinos
our curves practically agree. Nevertheless, these corrections do not
change any of the main conclusions.

However, we do find that modes at k & 2 ⇥ 104 Mpc�1, which
were neglected by Ota et al. (2014), contribute significantly to
the heating, in particular for blue tensor power spectra. Includ-
ing all modes relevant at smaller scales, k0 = 0.002 Mpc and
AT = 2.4 ⇥ 10�10 we find µ ⇡ {1.9 ⇥ 10�14, 5.3 ⇥ 10�8}. Due to
the logarithmic dependence of the heating rate on the small-scale
cuto↵ [cf., Eq. (19)], for nT = 0 this did not make much of a di↵er-
ence. However, for nT ' 1, the distortion is underestimated roughly
7 times when neglecting modes at k > 2 ⇥ 104 Mpc�1 (see Fig. 5).
This becomes apparent when looking at the di↵erential contribu-
tion to µ as a function of scale (Fig. 6). For nT = 1, even scales
up to k ' 108 Mpc�1 contribute significantly to the value of µ,
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• distortion signal very small 
compared to adiabatic modes

• no severe contamination in 
simplest cases

• models with ‘large’ distortion 
already constrained by BBN/CMB
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4.4 Energy release in the y-distortion era

For modes entering the horizon during the y-era (z . 104), we
have to include modifications related to the transition from radi-
ation to matter domination around z ' 3 ⇥ 103. Even if gener-
ally y-distortion constraints are harder to interpret because a very
large signal is produced at late times by structure formation and
reionization, it is still interesting to ask how large the tensor con-
tribution to the photon heating is. For modes that enter the hori-
zon in the matter-dominated era (k < keq ' 10�2 Mpc�1), the free
streaming damping from neutrinos can be neglected (they become
dynamically subdominant). In this case, the approximate solution
of the tensor transfer function reads (Watanabe & Komatsu 2006)
h0 ' 3 j2(k⌘)/⌘, with ⌘ = 2c/(Ha) / a�1/2 for matter domination.
The partial heating rate from these large-scale modes thus is

d(Q/⇢�)
dt

������
T,late
⇡ 4

45⌧̇
H2

4

Z keq

0

k2dk
2⇡2 PT (k)Th(k⌘)

Th(x) ⇡ 18 j2
2(x), (20)

where we scaled out the leading term / c2/(a⌘)2 ⇡ H2/4(/ a�3)
of the transfer function of h0. For nT = 0, we can evaluate the
k-space integral, Imat =

R keq

0
k2dk
2⇡2 PT (k)Th(k⌘), numerically. If we

instead use the transfer function for the radiation dominated era,
Th(x) ⇡ 2(k⌘)2 j2

1(k⌘), and compare the results, we find that typi-
cally Imat/Irad ' 0.36 � 0.9. For the heating rates shown in Fig. 4,
we assumed that the transfer function of h0 is given by the one for
radiation domination. Since in the radiation dominated era we have
c2/(a⌘)2 ⇡ H2(/ a�4), in Fig. 4 we overestimated the contributions
from modes with k < keq at least by a factor of Irad/(Imat/4) ' 5.
Since our numerical computations already show that the heating
in the y-era remains very small (see Fig. 4 around z ' 103 � 104;
although not shown, at z . 103 we find the heating rate to drop
sharply), we conclude that the late time heating always remains
small and thus can be neglected.

4.5 Alternative derivation for the tensor heating rate

To check the consistency of our derivations, we can obtain the ex-
pression for the e↵ective heating rate caused by tensors in another
way, starting from the gravitational wave energy density, ⇢gw(z).
The gravitational wave contribution to the energy density of the
Universe can be written as5 (e.g., Boyle & Steinhardt 2008; Watan-
abe & Komatsu 2006)

⇢gw(z) ⇡ ⇢tot

Z kcut

0

k2dk
2⇡2

PT (k)
12

Th(k⌘)
2

e���⌘, (21)

where kcut is a small scale cuto↵ that will be discussed below. The
tensor energy transfer function, Th(k⌘), is given by Eq. (12) and
⇢tot ⇡ ⇢�/(1 � R⌫) denotes the total energy density of the Universe.

It is clear that without any energy exchange between gravity
waves, neutrinos and photons one has ⇢gw / a�4 in the radiation
dominated era. The time derivative a�4d(a4⇢gw)/dt thus describes
the real exchange of energy between di↵erent fluid components:

d(a4⇢gw)
a4 dt

⇡ ⇢tot

Z kcut

0

k2dk
2⇡2

PT (k)
12

d
dt

 Th(k⌘)
2

e���⌘
!
. (22)

The remaining time derivative describes the heating of the neutrino
fluid, / Ṫh, and the heating of the photon fluid, proportional to

d
dt

e���⌘ = �32H2(1 � R⌫)
15⌧̇

e���⌘,

where we used the definition of �� given in Appendix D2. Thus,
the transfer of energy from tensors to the photon field is given by

d(a4⇢gw)
a4 dt

������
�

⇡ ⇢tot

Z kcut

0

k2dk
2⇡2

PT (k)
12

Th(k⌘)
2

d
dt

e���⌘

= �32H2⇢tot(1 � R⌫)
15⌧̇

Z kcut

0

k2dk
2⇡2

PT (k)
12

Th(k⌘)
2

e���⌘

= �4H2

45⌧̇
⇢�

Z kcut

0

k2dk
2⇡2 PT (k)Th(k⌘) e���⌘. (23)

Comparing this with Eq. (12), we can confirm our expression for
the e↵ective heating rate of photons by tensors. For the shear vis-
cosity from photons, transfer e↵ects were neglected, which lead
to a scale-dependent correction of the damping factor, �⇤�(k, ⌘), that
can be deduced from Eq. (13). Also, in principle additional changes
due to modifications of the e↵ective number of relativistic degrees
of freedom can be accounted for, which leads to modulation of the
tensor power relative to the ⇢gw / a�4 scaling, but the basic conclu-
sion does not change.

5 RESULTS FOR µ-DISTORTION FROM TENSORS

Given the heating rate from tensor perturbations, we can estimate
the amplitude of the µ-distortion using (e.g., Hu & Silk 1993)

µ ⇡ 1.4
Z 1

zµ,y

d(Q/⇢�)
dz

������
T

e�(z/zdc)5/2
dz, (24)

with zµ,y ' 5 ⇥ 104 and zdc ' 2 ⇥ 106. Here, J(z) = e�(z/zdc)5/2 gives
a simple approximation of the distortion visibility function, which

5 We obtained this expression from Eq. (23) of Boyle & Steinhardt (2008),
identifying the initial tensor power spectrum as �2

h(k) = k3PT (k)/(2⇡2) and
using k2 |h|2 = |h0 |2 with the transfer function Th to relate the initial power
to later time. We also included the tiny correction to the energy density
caused by dissipation of energy in the photon fluid, Appendix D2, which
energetically is not important for the tensor perturbations but it is the origin
of the heating for photons.
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• Ota et al. underestimated 
distortion in this case ~7 times

Dissipation of tensor modes 9

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
nT

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

µ

k < 2 x 104 Mpc-1

all modes included
approximation

k 0
 = 0.05 Mpc

-1

k 0
 = 0.

00
2 M

pc
-1

BBN/CMB constraint

Expected µ distortion 
from adiabaic modes

Figure 5. Resulting µ-parameter from heating due to tensor perturba-
tions. The two groups are for {AT , k0} = {2.4 ⇥ 10�10, 0.002 Mpc�1} and
{2.2 ⇥ 10�10, 0.05 Mpc�1}. We used Eq. (18) to compute the heating rate,
but for the red dashed line we only included modes with k  2⇥104 Mpc�1.
The stars show the result obtained with approximation Eq. (19). For the sim-
plest parametrizations of the primordial tensor power spectrum, the shaded
region is ruled out by BBN/CMB constraints (Smith et al. 2006; Boyle &
Buonanno 2008).

accounts for the e�ciency of thermalization at early times. Correc-
tions to the shape of the spectral distortion caused by dissipation of
tensor perturbations in the µ � y transition era (104 . z . 3 ⇥ 105)
can be included using the Green’s function method of the CosmoTh-
erm

6 software package (Chluba & Sunyaev 2012; Chluba 2013b),
but for the purpose of this work, Eq. (24) is su�cient.

For k0 = 0.05 Mpc, with the approximation Eq. (19) for the
tensor heating rate, we find µ ⇡ {7.3 ⇥ 10�5, 7.8 ⇥ 10�3, 5.8} AT for
nT = {0, 0.5, 1}, respectively. Thus with AT ' 0.1A⇣ ' 2.2 ⇥ 10�10

we have a distortion µ ⇡ {1.6 ⇥ 10�14, 1.7 ⇥ 10�12, 1.3 ⇥ 10�9}. For
nT . 1, this agrees to within ' 10% � 30% with our more detailed
calculation (see Fig. 5). Generally, our numerical results show that
for nearly scale invariant tensor power spectra, the µ-distortion re-
mains six orders of magnitudes smaller than for the dissipation of
adiabatic modes, which for standard curvature power spectrum with
A⇣ = 2.2 ⇥ 10�9 at pivot scale k0 = 0.05 Mpc and nS = 0.96 gives
µ⇣ ' 1.4⇥10�8 (Chluba et al. 2012b). The adiabatic signal is just at
the detection limit of PIXIE (Kogut et al. 2011), showing that a de-
tection of the tensor contribution is very futuristic. For blue power
spectra, the distortion can become comparable to the signal caused
by adiabatic modes. However, in this case constraints on tensors
from CMB and big bang nucleosynthesis (BBN) become impor-
tant (Smith et al. 2006), limiting nT < 0.36 for r ' 0.1 (Boyle &
Buonanno 2008). Overall, the distortion signal from tensors is thus
expected to be much smaller than for adiabatic modes (see Fig. 5).

5.1 Comparing with Ota et al.

Our conclusions from the previous section are in broad agree-
ment with those of Ota et al. (2014). To compare more directly,
we change the power spectrum parameters to k0 = 0.002 Mpc
and AT = 2.4 ⇥ 10�10 and introduce a hard small-scale cuto↵

6 Available at www.Chluba.de/CosmoTherm
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Figure 6. Di↵erential contribution to the µ-distortion from di↵erent scales.
Transfer e↵ects introduce a cuto↵ at very small scales. The dotted vertical
line indicates the position of the cuto↵ used by Ota et al. (2014), while the
dashed-dotted lines are the data taken from their Fig. 2 (and divided by 2 to
convert to r = 0.1). See Sect. 5.1 text for more detailed explanation.

at kcut = 2 ⇥ 104 Mpc�1. Numerically integrating Eq. (13) with
Eq. (24), we find µ ⇡ {1.8 ⇥ 10�14, 6.0 ⇥ 10�9} for nT = {0, 1}.
This is about 10% � 20% smaller than the values reported in their
paper, µOta ⇡ {2.2⇥10�14, 7⇥10�9} for r = 0.1. A part of this di↵er-
ence can be explained by adding the other terms for ` = 2, Eq. (17),
which then gives µ ⇡ {1.9 ⇥ 10�14, 6.3 ⇥ 10�9}, but in particular for
nT = 0, the di↵erence remains comparable to ' 20%.

To understand the remaining di↵erence a little better, in Fig. 6
we show the digitized points (purple, dash-dotted) for dµ/ d ln k
taken from Fig. 2 of Ota et al. (2014) in comparison with our nu-
merical results. For the solid lines we used Eq. (13) for the heating
rate, while the dotted lines were computed with Eq. (18) for the
photon transfer function. For illustration, we also show the result
for dµ/ d ln k, when neglecting any photon transfer e↵ects (dashed
lines), which emphasizes the importance of free streaming e↵ects.
At the largest scales (k ' 0.3 Mpc�1), our curves for dµ/ d ln k prac-
tically coincide, although we find slightly larger contributions at
k . 0.1 Mpc�1. However, at smaller scales the curves of Ota et al.
(2014) are roughly 1.5 times larger than ours. Ota et al. (2014) used
the numerical output from the CLASS code (Lesgourgues 2011;
Blas et al. 2011; Tram & Lesgourgues 2013) to obtain the trans-
fer functions. The e↵ect of neutrino damping was only included
to CLASS recently (version 2.2; private communication, Lesgour-
gues). We find that after neglecting the damping e↵ect of neutrinos
our curves practically agree. Nevertheless, these corrections do not
change any of the main conclusions.

However, we do find that modes at k & 2 ⇥ 104 Mpc�1, which
were neglected by Ota et al. (2014), contribute significantly to
the heating, in particular for blue tensor power spectra. Includ-
ing all modes relevant at smaller scales, k0 = 0.002 Mpc and
AT = 2.4 ⇥ 10�10 we find µ ⇡ {1.9 ⇥ 10�14, 5.3 ⇥ 10�8}. Due to
the logarithmic dependence of the heating rate on the small-scale
cuto↵ [cf., Eq. (19)], for nT = 0 this did not make much of a di↵er-
ence. However, for nT ' 1, the distortion is underestimated roughly
7 times when neglecting modes at k > 2 ⇥ 104 Mpc�1 (see Fig. 5).
This becomes apparent when looking at the di↵erential contribu-
tion to µ as a function of scale (Fig. 6). For nT = 1, even scales
up to k ' 108 Mpc�1 contribute significantly to the value of µ,
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Figure 7. Comparison of the k-space window functions for adiabatic modes
and tensors. To illustrate the redshift dependence of the heating rate, we
also vary the lower redshift in the integrals, Eq. (26). In each group we used
zmin = {5⇥104(⌘ zµ,y), 3⇥105, 106, 2⇥106}, respectively. We also indicated
the scales that are relevant for the integrated constraints of the tensor power
from the CMB damping tail and BBN measurements (see Smith et al. 2006).

which again emphasizes that for tensors spectral distortions are sen-
sitive to much smaller scales than for scalars. We mention, however,
that even our results need refinements in this regime, since we ne-
glected several e↵ects that modify the tensor power spectrum at
small scales by ' 10% � 30% [see discussion in Sect. 4.1].

5.2 Window function in k-space for scalar and tensor modes

Another way to illustrate the dependence of the distortion signal on
scale is to introduce k-space window functions that determine the
contributions to the µ-distortion from di↵erent modes. A similar
procedure was used by Chluba et al. (2012a) and Chluba & Grin
(2013) to compute the signals for adiabatic and isocurvature modes.
The window function can be directly obtained from the definition of
the e↵ective heating rates, Eq. (8) and (18), and the approximation
for µ, Eq. (24). With this, for scalars and tensors we may write

µi ⇡
Z 1

0

k2dk
2⇡2 Pi(k)Wi(k), (25)

where i = {⇣,T }. The window functions are

W⇣(k) ⇡ 1.4
Z 1

zµ,y

32c2k2

45a2⌧̇
D2 sin2(krs) e�2k2/k2

D e�(z/zdc)5/2
dz (26a)

WT (k) ⇡ 1.4
Z 1

zµ,y

4H2

45⌧̇
Th(k⌘)T⇥(k/⌧0) e��

⇤
�⌘ e�(z/zdc)5/2

dz. (26b)

The results for Wi are shown in Fig. 7. For adiabatic perturba-
tions, most of the contributions to the value of µ arise from scales
few Mpc�1 . k . few ⇥ 104 Mpc�1, while for tensor perturbations
modes with wavenumbers 0.1 Mpc�1 . k . few ⇥ 105 Mpc�1 con-
tribute significantly for nearly scale invariant power spectra. As
explained above, this is due to the fact that for adiabatic modes
the damping by photon di↵usion plays an important role, while for
tensors free streaming is relevant. We can furthermore see that for
adiabatic perturbations, the heating at early times is dominated by
the smallest scales, while for tensors the heating in di↵erent epochs
is less scale dependent.

From Fig. 7, we can also conclude that CMB spectral distor-
tion measurements from COBE/FIRAS for individual modes do
not give any stringent constraint on the tensor power spectrum at
small scales. Directly translating µ . 9 ⇥ 10�5 (95% c.l.) yields
k3PT (k)/(2⇡2) . 10 at 0.45 Mpc�1 . k . 250 Mpc�1 and even
weaker otherwise. For adiabatic modes, we have the much stronger
limit k3P⇣(k)/(2⇡2) . 8 ⇥ 10�5 at 50 Mpc�1 . k . 103 Mpc�1

(see, Chluba et al. 2012a). Even for the integrated power the limit
remains extremely weak, only giving

R
k2 dk PT (k)/(2⇡2) . 1 at

0.45 Mpc�1 . k . 250 Mpc�1. With a PIXIE-like experiment this
could tighten by a factor of ' 103 � 104, providing a constraint
on a part of the tensor power spectrum that is complementary (al-
though weaker) to, e.g., pulsar timing measurements, CMB and fu-
ture gravitational wave observatories (e.g., Smith et al. 2006; Boyle
& Buonanno 2008). In principle, this could help to rule out very
non-standard early-universe scenarios.

6 CONCLUSIONS

We obtained general expressions for the e↵ective heating rate
caused by scalar, vector and tensor perturbations (Sect. 4). These
expressions include previously neglected terms from polarization
states and contributions from higher multipoles, which become no-
ticeable when the tight coupling approximation breaks down. We
explicitly confirmed that only scattering terms are relevant for the
dissipation process of scalar, vector and tensor perturbations (Ap-
pendix B). We furthermore showed that the heating rate due to
tensors can be approximated very well using tight coupling solu-
tions with additional radiative transfer corrections in the quasi-free
streaming regime [see Eq. (13)]. The required photon transfer func-
tions can be derived analytically, as we explain in Appendix E.
These expressions represent both the amplitude and phase of the
photon transfer functions for ` = 2 very well. Using energetics ar-
guments, we also directly linked the photon heating term to the loss
of energy from the tensor perturbations (see Sect. 4.5), confirming
the normalization of our analytic expressions for the heating rate.

Without additional radiative transfer corrections, the heating
rate from tensors is practically scale independent. However, scale
dependence is introduced due to free streaming. This is in stark
contrast to adiabatic perturbations, for which the relevant scales
is related to photon di↵usion. Since the free streaming scales is
smaller than the damping scale for adiabatic modes, spectral distor-
tions probe tensor perturbations to significantly smaller scales. In
particular, we find that for scale invariant tensor power spectrum,
distortions in the µ-era are sourced by tensor perturbations modes
with wavenumbers 0.1 Mpc�1 . k . few ⇥ 105 Mpc�1 (see Fig. 7).
Even smaller scales become important for blue tensor power spec-
tra, since the k-space distortion window function only decays as
a power law ' k�2 (instead of exponentially as for adiabatic per-
turbations). The small-scale contributions were previously ignored,
but can a↵ect the distortion amplitude significantly (see Fig. 5). We
also show that the heating from tensors caused during the y-era re-
mains subdominant (see Sect. 4.4).

For scale independent tensor power spectra with tensor am-
plitude AT = 2.2 ⇥ 10�10 at pivot scale k0 = 0.05 Mpc we find
a distortion µ ' 1.8 ⇥ 10�14, while for AT = 2.4 ⇥ 10�10 at
pivot scale k0 = 0.002 Mpc, we have µ ' 1.9 ⇥ 10�14. This is
some 6 orders of magnitudes smaller than for adiabatic modes
and thus extremely challenging to detect. For very blue tensor
power spectra with nT ' 1 we obtain µ ' 1.9 ⇥ 10�9, while us-
ing AT = 2.4 ⇥ 10�10 at pivot scale k0 = 0.002 Mpc, we find
µ ' 5.3 ⇥ 10�8. This signal is comparable to the one for adiabatic
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Figure 7. Comparison of the k-space window functions for adiabatic modes
and tensors. To illustrate the redshift dependence of the heating rate, we
also vary the lower redshift in the integrals, Eq. (26). In each group we used
zmin = {5⇥104(⌘ zµ,y), 3⇥105, 106, 2⇥106}, respectively. We also indicated
the scales that are relevant for the integrated constraints of the tensor power
from the CMB damping tail and BBN measurements (see Smith et al. 2006).

which again emphasizes that for tensors spectral distortions are sen-
sitive to much smaller scales than for scalars. We mention, however,
that even our results need refinements in this regime, since we ne-
glected several e↵ects that modify the tensor power spectrum at
small scales by ' 10% � 30% [see discussion in Sect. 4.1].

5.2 Window function in k-space for scalar and tensor modes

Another way to illustrate the dependence of the distortion signal on
scale is to introduce k-space window functions that determine the
contributions to the µ-distortion from di↵erent modes. A similar
procedure was used by Chluba et al. (2012a) and Chluba & Grin
(2013) to compute the signals for adiabatic and isocurvature modes.
The window function can be directly obtained from the definition of
the e↵ective heating rates, Eq. (8) and (18), and the approximation
for µ, Eq. (24). With this, for scalars and tensors we may write

µi ⇡
Z 1

0

k2dk
2⇡2 Pi(k)Wi(k), (25)

where i = {⇣,T }. The window functions are

W⇣(k) ⇡ 1.4
Z 1

zµ,y

32c2k2

45a2⌧̇
D2 sin2(krs) e�2k2/k2

D e�(z/zdc)5/2
dz (26a)

WT (k) ⇡ 1.4
Z 1

zµ,y

4H2

45⌧̇
Th(k⌘)T⇥(k/⌧0) e��

⇤
�⌘ e�(z/zdc)5/2

dz. (26b)

The results for Wi are shown in Fig. 7. For adiabatic perturba-
tions, most of the contributions to the value of µ arise from scales
few Mpc�1 . k . few ⇥ 104 Mpc�1, while for tensor perturbations
modes with wavenumbers 0.1 Mpc�1 . k . few ⇥ 105 Mpc�1 con-
tribute significantly for nearly scale invariant power spectra. As
explained above, this is due to the fact that for adiabatic modes
the damping by photon di↵usion plays an important role, while for
tensors free streaming is relevant. We can furthermore see that for
adiabatic perturbations, the heating at early times is dominated by
the smallest scales, while for tensors the heating in di↵erent epochs
is less scale dependent.

From Fig. 7, we can also conclude that CMB spectral distor-
tion measurements from COBE/FIRAS for individual modes do
not give any stringent constraint on the tensor power spectrum at
small scales. Directly translating µ . 9 ⇥ 10�5 (95% c.l.) yields
k3PT (k)/(2⇡2) . 10 at 0.45 Mpc�1 . k . 250 Mpc�1 and even
weaker otherwise. For adiabatic modes, we have the much stronger
limit k3P⇣(k)/(2⇡2) . 8 ⇥ 10�5 at 50 Mpc�1 . k . 103 Mpc�1

(see, Chluba et al. 2012a). Even for the integrated power the limit
remains extremely weak, only giving

R
k2 dk PT (k)/(2⇡2) . 1 at

0.45 Mpc�1 . k . 250 Mpc�1. With a PIXIE-like experiment this
could tighten by a factor of ' 103 � 104, providing a constraint
on a part of the tensor power spectrum that is complementary (al-
though weaker) to, e.g., pulsar timing measurements, CMB and fu-
ture gravitational wave observatories (e.g., Smith et al. 2006; Boyle
& Buonanno 2008). In principle, this could help to rule out very
non-standard early-universe scenarios.

6 CONCLUSIONS

We obtained general expressions for the e↵ective heating rate
caused by scalar, vector and tensor perturbations (Sect. 4). These
expressions include previously neglected terms from polarization
states and contributions from higher multipoles, which become no-
ticeable when the tight coupling approximation breaks down. We
explicitly confirmed that only scattering terms are relevant for the
dissipation process of scalar, vector and tensor perturbations (Ap-
pendix B). We furthermore showed that the heating rate due to
tensors can be approximated very well using tight coupling solu-
tions with additional radiative transfer corrections in the quasi-free
streaming regime [see Eq. (13)]. The required photon transfer func-
tions can be derived analytically, as we explain in Appendix E.
These expressions represent both the amplitude and phase of the
photon transfer functions for ` = 2 very well. Using energetics ar-
guments, we also directly linked the photon heating term to the loss
of energy from the tensor perturbations (see Sect. 4.5), confirming
the normalization of our analytic expressions for the heating rate.

Without additional radiative transfer corrections, the heating
rate from tensors is practically scale independent. However, scale
dependence is introduced due to free streaming. This is in stark
contrast to adiabatic perturbations, for which the relevant scales
is related to photon di↵usion. Since the free streaming scales is
smaller than the damping scale for adiabatic modes, spectral distor-
tions probe tensor perturbations to significantly smaller scales. In
particular, we find that for scale invariant tensor power spectrum,
distortions in the µ-era are sourced by tensor perturbations modes
with wavenumbers 0.1 Mpc�1 . k . few ⇥ 105 Mpc�1 (see Fig. 7).
Even smaller scales become important for blue tensor power spec-
tra, since the k-space distortion window function only decays as
a power law ' k�2 (instead of exponentially as for adiabatic per-
turbations). The small-scale contributions were previously ignored,
but can a↵ect the distortion amplitude significantly (see Fig. 5). We
also show that the heating from tensors caused during the y-era re-
mains subdominant (see Sect. 4.4).

For scale independent tensor power spectra with tensor am-
plitude AT = 2.2 ⇥ 10�10 at pivot scale k0 = 0.05 Mpc we find
a distortion µ ' 1.8 ⇥ 10�14, while for AT = 2.4 ⇥ 10�10 at
pivot scale k0 = 0.002 Mpc, we have µ ' 1.9 ⇥ 10�14. This is
some 6 orders of magnitudes smaller than for adiabatic modes
and thus extremely challenging to detect. For very blue tensor
power spectra with nT ' 1 we obtain µ ' 1.9 ⇥ 10�9, while us-
ing AT = 2.4 ⇥ 10�10 at pivot scale k0 = 0.002 Mpc, we find
µ ' 5.3 ⇥ 10�8. This signal is comparable to the one for adiabatic
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• simple analytic expressions for the 
envelope and phase

• tensors never really disappear at 
small scales

• decay of amplitude only power-law 
instead of exponential as for 
adiabatic modes
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The tensor power spectrum furthermore is modified by
changes of the e↵ective number of relativistic degrees of free-
dom during the electron-positron annihilation and the quark-gluon
phase transition (Watanabe & Komatsu 2006). This introduces sev-
eral features into the tensor power spectrum at small scales (see
Figs. 4 and 5 of Watanabe & Komatsu 2006), however, we ne-
glect these complications, which are only noticeable for very blue
tensor power spectra, and just include the e↵ect of neutrino free
streaming at all small scales. With this simplification, we find that
at 200 Mpc�1 . k . 2 ⇥ 104 Mpc�1 the tensor power is on av-
erage overestimated by ' 10% � 20%. At 2 ⇥ 104 Mpc�1 . k .
106 Mpc�1, the power is underestimated by a factor of ' 1.5, while
at 106 Mpc�1 . k . 109 Mpc�1 it is overestimated ' 1.5 times (cf.
Fig. 5 of Watanabe & Komatsu 2006).

A simple analytic expression for h(t, k) that include the e↵ect
of neutrino damping was derived by Dicus & Repko (2005). In-
cluding the small correction to ḣ = h0c/a due to photon damping4

(see Appendix D2), with Eq. (D9) and (11) we can approximate
the tensor contribution to the heating rate as (see Sect. 4.5 for an
alternative derivation)

d(Q/⇢�)
dt

������
T
⇡ 4H2

45⌧̇

Z kcut

0

k2dk
2⇡2 PT (k)Th(k⌘) e���⌘

= � 1
24(1 � R⌫)

Z kcut

0

k2dk
2⇡2 PT (k)Th(k⌘)

d
dt

e���⌘

Th(x) ⇡ 2

8>><
>>:

6X

n

an[n jn(x) � x jn+1(x)]

9>>=
>>;

2

(12)

where jn(x) denote spherical Bessel functions with the numeri-
cal coe�cients a0 = 1, a2 = 0.243807, a4 = 5.28424 ⇥ 10�2

and a6 = 6.13545 ⇥ 10�3 and d(��⌘)/ dt = 32H2(1 � R⌫)/[15⌧̇].
We also introduced a cuto↵ scale kcut (to regularize the integral),
which we discuss below, and assumed radiation domination so that
H ⇡ c/(a⌘). The dependence of Th(x) on x, both with and with-
out the e↵ect of neutrinos, is shown in Fig. 1. The contribution at
small scales is overestimated ' 1.5 times if neutrino damping is
neglected. At k⌘ & 5, one has Th(x) ' 1.29 cos2(k⌘).

For PT = 2⇡2ATk�3(k/k0)nT , the integrand of Eq. (12) scales
as ' knT k3 as k ! 0, while for k⌘ � 1 we have ' knT�1 cos2(k⌘).
At large scales, ḣ vanishes, so that no super-horizon heating oc-
curs. However, at small scales, we need to introduce a cut-o↵ scale,
kcut, to regularize the integral. For nT = 0, the dependence on the
cut-o↵ scale is only logarithmic, but for nT > 0 it becomes rather
strong (cf. Sect. 4.3.1). One scale is due to the end of inflation and
reheating, kend ' 1023 Mpc�1 (e.g., Boyle & Steinhardt 2008), how-
ever, a much larger scale is related to the photon mean free path,
�mfp/a ' (�TNea)�1 or kcut = �TNea ' 4.5⇥10�7(1+ z)2 Mpc�1. At
smaller scales, photons stream quasi freely, undergoing very few
scatterings and adding little extra heating, as we explain below. At
redshifts z ' 104 � 2 ⇥ 106 (relevant for the non-y distortion), we
thus have kcut ' 45 Mpc�1� few⇥106 Mpc�1. In contrast, for scalar
perturbations, only modes with wavenumber k . few ⇥ 104 Mpc�1

are important. Spectral distortions hence allow probing tensor per-
turbations to significantly smaller scales, simply because for scalar
perturbations Silk damping erases all temperature fluctuations be-
fore they can even reach the quasi-free streaming phase.

4 Although energetically this does not make a significant di↵erence, the
extra factor of e���⌘ is the origin of the heating, as we explain below. It also
emphasizes the similarities to the heating rate for adiabatic modes, Eq. (8).

Figure 2. Transfer function T (2)
2 at k = 10 Mpc�1 and k = 104 Mpc�1.

For k ⌧ ⌧0, the tight coupling approximation describes the solution very
well, while later the response of the photon field becomes weaker. The en-
velope of the solution can be represented with the approximation Eq. (E3a),
multiplied by

p
1.29/2 ' 0.8 to account for the suppression of the tensor

amplitude by neutrino damping after horizon crossing. The vertical lines in-
dicate the scale factor at horizon crossing, aH, and when the mode reaches
the di↵usion scale for scalar modes, aD, and free-streaming scale, afs.

4.2 Quasi-tight coupling approximation for tensors

To improve the approximation for the e↵ective heating rate caused
by tensor perturbations, we need to include radiative transfer e↵ects
at small scales, when photons approach the free streaming regime.
The evolution of fluctuations in the photon field that are sourced by
tensor perturbations is generally simpler than for scalars. Tensors
only excite modes with m = ±2 and in contrast to scalar perturba-
tions, the e↵ect of photons on the amplitude of the tensor perturba-
tions is negligible. Thus the photon transfer functions are character-
ized by the driving force of the tensor fluctuations at all phases of
the evolution, while for scalar perturbations the potentials quickly
disappear after entering the horizon.

With the analytic solution, Eq. (D9), for the tensor ampli-
tude h in the radiation dominated era, we can numerically solve
the photon Boltzmann hierarchy for ⇥(2)

` , E(2)
` and B(2)

` . We mod-
ified the Boltzmann solver of CosmoTherm (Chluba & Sunyaev

c� 0000 RAS, MNRAS 000, 000–000
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2012) for this purpose. For k ⌧ ⌧0, where ⌧0 = (a/c)⌧̇, we
are in the tight coupling regime having ⇥(2)

2 ' �(4/3) h0/⌧0 and
E(2)

2 ' �
p

6⇥(2)
2 /4 =

p
2/3 h0/⌧0. To discuss numerical solutions

and the corrections caused by radiative transfer e↵ects, it is thus
useful to introduce the transfer functions

T (2)
` =

⇥(2)
`

�4/(3⌘⌧0)
, E(2)

` =
E(2)
`

�4/(3⌘⌧0)
, H (2)

` =
B(2)
`

�4/(3⌘⌧0)
.

Here, we set the initial amplitude of h to unity and used the domi-
nant scaling with conformal time, h0 ' Ah/⌘.

In Fig. 2 we illustrate the transfer functions for ⇥(2)
2 at

wavenumber k = 10 Mpc�1 and k = 104 Mpc�1. We included pho-
ton perturbations up to ` = 10 and assumed a standard cosmology
(Planck Collaboration et al. 2013) for the numerical computation.
We computed the recombination history with CosmoRec (Chluba
& Thomas 2011). For k ⌧ ⌧0 / ⌘�2, the tight coupling approx-
imation describes the solution very well, while later the response
of the photon field becomes much weaker. In this regime, photons
stream quasi freely and the response to the driving force becomes
weaker even if tensor modes are still present and wiggling around,
attempting to excite temperature and polarization anisotropies. The
problem becomes similar to a system of driven damped oscillators
that become more weakly coupled. The transition from tightly cou-
pled to weakly coupled occurs around afs ' 7 ⇥ 10�4(Mpc�1/k)1/2,
which for k = 10 Mpc�1 is afs ' 2 ⇥ 10�4 and afs ' 7 ⇥ 10�6 for
k = 104 Mpc�1. In contrast, for the di↵usion scale of scalar modes
we have aD ⇡ 2 ⇥ 10�4(k Mpc)�2/3, implying aD ⇡ 4.3 ⇥ 10�5 and
aD ⇡ 4.3 ⇥ 10�7, respectively.

With this picture in mind, one can find simple approxima-
tions for the envelope of the transfer functions, as explained in Ap-
pendix E. These approximations clearly capture the solution for
⇥(2)

2 very well (see Fig. 2), even close to the recombination era. In
the quasi-free streaming phase, the approximation slightly under-
estimates the envelope of the numerical solution. This is because
we only included multipoles ` = 2, but better agreement can be
achieved by adding term for ` = 3 (Appendix E1). We also find the
approximations for E(2)

2 and B(2)
2 to reproduce our numerical results

very well, but their contribution to the heating is generally smaller.
The amplitude of ⇥(2)

2 decays as ' ⌧0/k, while the one for E(2)
2 de-

clines faster ' (⌧0/k)2. This decay is much slower than for scalar
perturbations, which damp exponentially ' exp(�k2/k2

D) by photon
di↵usion. In the free streaming regime, also modes with ` > 2 are
excited, but overall these add a smaller correction [a few percent
for nearly scale invariant tensor power spectrum (Sect. 5)] to the
heating rate and thus can usually be neglected. In Sect. 4.2.3 we
include these corrections quasi-analytically.

To obtain the solutions for the photon transfer functions, we
introduced a hard cut at `max, setting multipoles with ` > `max to
zero. We find that the transfer functions coverage very rapidly at
all phases of the evolution relevant to us when changing `max. For
example, T (2)

2 changes only minimally when going from `max = 2
to 3, and changing to `max = 10, 20 and 40, already makes practi-
cally no di↵erence. The photon fluid simply does not support shear
waves at first order in perturbation theory, so that the error intro-
duced by truncating the mode hierarchy does not propagate very
strongly. We also find that the amplitude of the transfer functions
for higher multipoles drops rapidly in the free streaming regime.
This means that higher multipoles only add a tiny amount of extra
heating, implying that also the heating rate converges very rapidly
with `max (cf. Fig. 3 and Sect. 4.2.3).
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Figure 3. Averaged single-mode heating rate d(Q/⇢�)/ d ln z (amplitude
AT = 12) computed numerically for k = 103 Mpc�1 and di↵erent values
of `max. For comparison we show the result obtained with the approxima-
tions Eq. (13) and Eq. (17). We also indicated the location of afs.

4.2.1 Improved tight coupling approximation

With this more detailed understanding of the photon transfer e↵ects
at small scales, we can improve the approximation for the heating
rate. In particular, we do not need to add any cuto↵ scale, since
free streaming corrections naturally limit the contributions to the
heating from small scales. The more accurate heating rate reads

d(Q/⇢�)
dt

������
T
⇡ 4H2

45⌧̇

Z 1

0

k2dk
2⇡2 PT (k)Th(k⌘)T⇥(k/⌧0) e��

⇤
�(k,⌘) ⌘

= � 1
24(1 � R⌫)

Z kcut

0

k2dk
2⇡2 PT (k)Th(k⌘)

d
dt

e��
⇤
�(k,⌘) ⌘

T⇥(⇠) =
1 + 341

36 ⇠
2 + 625

324 ⇠
4

1 + 142
9 ⇠

2 + 1649
81 ⇠

4 + 2500
729 ⇠

6
, (13)

where the scale-dependent damping coe�cient is determined by

d(�⇤�⌘)
dt

=
32H2[1 � R⌫]T⇥(k/⌧0)

15⌧̇
. (14)

To obtain Eq. (13), we only used the transfer function for ⇥(2)
2 , re-

placing T (2)
2 ⇡ 1, which was used for the approximation Eq. (12),

with the more accurate expression from Eq. (E3a). We can see that
for k � ⌧0, the integrand of Eq. (13) scales as knT�1 cos2(k⌘)[⌧0/k]2,
so that for nT < 2 the integral converges. Due to the oscillatory be-
havior of Th(k⌘), in practice for k⌘ � 1 we use the averaged value,⌦Th(k⌘)

↵ ⇡ 1.29/2, over one oscillation phase. This eases the nu-
merical evaluation of the heating rate and does not make much of a
di↵erence for smooth power spectra.

In Fig. 3, we show the single-mode heating rate averaged
over one period for k = 103 Mpc�1. At early times, the single-
mode heating rate scales as d(Q/⇢�)/ d ln z ' a in all cases. In-
cluding all terms up to `max = 2 for the numerical calculation,
we see that Eq. (13) underestimates the heating rate by some
' 10%. This is because at this point we neglected corrections due
to E(2)

` , �
p

6⇥(2)
2 /4 and B(2)

` , 0, which become noticeable in the
free-streaming regime. These contributions can also be included
analytically, as we show next.
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Sadly we won’t have time for this...



The cosmological recombination radiation & 
ionization history and why they are so important
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Sketch of the Cosmic Ionization History

 

• at redshifts higher than 
~104 Universe               
→ fully ionized

• z ≥ 104 → free electron 
fraction Ne/NH ~ 1.16 
(Helium has 2 electrons and 
abundance ~ 8%) 

• HeIII → HeII 
recombination at z~6000 

• HeII → HeI 
recombination at z~2000

• HII → HI    
recombination at z~1000



Cosmic Microwave Background Anisotropies

Planck all sky map • CMB has a blackbody spectrum in every direction

• tiny variations of the CMB temperature ΔT/T ~ 10-5
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CMB-Anisotropies Where Does the Ionization 
History Enter Here?

• Free electron fraction determines the shape of the 
Thomson visibility function / last scattering surface 
(maximum at z~1100 where Ne / NH ~ 16% )

• Uncertainties in the computation of Ne(z) will affect the 
theoretical predictions for the CMB power spectra

• This will bias the inferred values of the cosmological 
parameters

• Experimental goal of 0.1% - 1% requires 0.1% - 1% 
understanding of Ne(z) at z~1100

• Errors in Ne(z) in particular compromise our ability to 
measure ns and its possible running (→ inflation)

• ,Getting 1016 GeV physics right means we have to 
understand eV physics with high precision’ (quote D. Scott)
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WMAP CMB Sky

alm
Power spectra

small scales large scales 

~1° 

TT

TE

EE

BB

(Joint) analysis

Other cosmological Dataset: 
small-scale CMB, Supernovae, large-scale structure/
BAO, Lyman-α forest, lensing, ... 

Cosmological 
Parameters
Ωtot, Ωm, Ωb, ΩΛ, 
h, τ, ns,...

Ne (z) is a crucial input



Why are the ionization history and 
recombination radiation connected?

• To interpret high-precision CMB data we need to 
understand the ionization history very well!

• The recombination radiation is a direct record of 
the recombination process

• measuring the recombination radiation allows us 
to directly check our understanding of the 
recombination process!

• High-frequency distortion actually controls 
recombination dynamics, so we need to 
understand both well!



How does cosmological recombination work?
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What is the recombination problem about?

• coupled system describing the 
interaction of matter with the 
ambient CMB photon field

• recombination process changes 
Wien tail of CMB and this affects 
the recombination dynamics          

     ⟹ radiative transfer problem 

• atoms can be in different 
excitation states   

     ⟹ lots of levels to worry about

electron

proton

He++

Hydrogen

Helium

Ne, Te, Np, Ni and �I⌫Have to follow evolution of: 

number densities

electron temperature

non-thermal photons

Only problem in time!



• Temperature Tγ  ~ 2.725 (1+z) K ~ 3000 K

• Baryon number density Nb ~ 2.5x10-7cm-3 (1+z)3 ~ 330 cm-3 

• Photon number density Nγ ~ 410 cm-3 (1+z)3 ~ 2×109 Nb        

⇒ photons in very distant Wien tail of blackbody spectrum can keep 

hydrogen ionized until hνα ~ 40 kTγ  ⟺ Tγ ~ 0.26 eV

• Collisional processes negligible (completely different in stars!!!)

• Rates dominated by radiative processes                     
(e.g. stimulated emission & stimulated recombination)

• Compton interaction couples electrons very tightly to 
photons until z ~ 200 ⇒ Tγ  ~ Te ~ Tm 

Physical Conditions during Recombination
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free electrons

Saha-Equation for ionization degree

George Gamov
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with free electrons

Recombination is 
much slower than 
in Saha case!

„freeze out“

Saha-Equation for ionization degree
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• recombination to 2s followed by 
2s two-photon decay
- 2s  1s ~108  times slower than Ly-α
- 2s two-photon decay profile  maximum 

at ν ∼ 1/2 να
- immediate escape

No

~ 43%

~ 57%

Zeldovich, Kurt & Sunyaev, 1968, ZhETF, 55, 278 
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These first computations were completed in 1968!

Yakov Zeldovich

Vladimir Kurt 
(UV astronomer)

Rashid Sunyaev

Iosif Shklovskii

Jim Peebles

Moscow

Princeton



Hydrogen:
 

- up to 300 levels (shells)
- n ≥ 2  full SE for l-sub-states

Multi-level Atom ⟺ Recfast-Code

Seager, Sasselov & Scott, 1999, ApJL, 523, L1
Seager, Sasselov & Scott, 2000, ApJS, 128, 407

Helium:
 

- HeI 200-levels  (z ~ 1400-1500)
- HeII 100-levels (z ~ 6000-6500)
- HeIII 1 equation

Low Redshifts:
 

- H chemistry (only at low z)
- cooling of matter (Bremsstrahlung, 

collisional cooling, line cooling)

Output of Ne/NH 

Total number of shells 
crucial for freeze-out tail
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- n ≥ 2  full SE for l-sub-states

Multi-level Atom ⟺ Recfast-Code

Seager, Sasselov & Scott, 1999, ApJL, 523, L1
Seager, Sasselov & Scott, 2000, ApJS, 128, 407

Helium:
 

- HeI 200-levels  (z ~ 1400-1500)
- HeII 100-levels (z ~ 6000-6500)
- HeIII 1 equation

Low Redshifts:
 

- H chemistry (only at low z)
- cooling of matter (Bremsstrahlung, 

collisional cooling, line cooling)

Output of Ne/NH 

ΔNe / Ne ~ 1% - 3%

Total number of shells 
crucial for freeze-out tail



Getting the job done for Planck
Hydrogen recombination
• Two-photon decays from higher levels                               

(Dubrovich & Grachev, 2005, Astr. Lett., 31, 359; Wong & Scott, 2007; JC & Sunyaev, 2007; Hirata, 2008; JC & Sunyaev 2009) 

• Induced 2s two-photon decay for hydrogen                                      
(JC & Sunyaev, 2006, A&A, 446, 39; Hirata 2008)

• Feedback of the Lyman-α distortion on the 1s-2s two-photon absorption rate    
(Kholupenko & Ivanchik, 2006, Astr. Lett.; Fendt et al. 2008; Hirata 2008)

• Non-equilibrium effects in the angular momentum sub-states                    
(Rubiño-Martín, JC & Sunyaev, 2006, MNRAS; JC, Rubiño-Martín & Sunyaev, 2007, MNRAS; Grin & Hirata, 2009; JC, Vasil & Dursi, 2010) 

• Feedback of Lyman-series photons (Ly[n]  Ly[n-1])                                        
(JC & Sunyaev, 2007, A&A; Kholupenko et al. 2010; Haimoud, Grin & Hirata, 2010) 

• Lyman-α escape problem (atomic recoil, time-dependence, partial redistribution)                    
(Dubrovich & Grachev, 2008; JC & Sunyaev, 2008; Forbes & Hirata, 2009; JC & Sunyaev, 2009) 

• Collisions and Quadrupole lines                                                                                                     
(JC, Rubiño-Martín & Sunyaev, 2007;  Grin & Hirata, 2009; JC, Vasil & Dursi, 2010;                                                                                                                       
JC, Fung & Switzer, 2011)

• Raman scattering                                                                                                     
(Hirata 2008; JC & Thomas , 2010; Haimoud & Hirata, 2010)

ΔNe / Ne ~ 0.1 %

Helium recombination
• Similar list of processes as for hydrogen                                                

(Switzer & Hirata, 2007a&b; Hirata & Switzer, 2007) 

• Spin forbidden 2p-1s triplet-singlet transitions                                             
(Dubrovich & Grachev, 2005, Astr. Lett.; Wong & Scott, 2007; Switzer & Hirata, 2007; Kholupenko, Ivanchik&Varshalovich, 2007) 

• Hydrogen continuum opacity during He I recombination                             
(Switzer & Hirata, 2007; Kholupenko, Ivanchik & Varshalovich, 2007; Rubiño-Martín, JC & Sunyaev, 2007; JC, Fung & Switzer, 2011)

• Detailed feedback of helium photons                                                                               
(Switzer & Hirata, 2007a; JC & Sunyaev, 2009, MNRAS; JC, Fung & Switzer, 2011)



Solving the problem for the Planck Collaboration was 
a common effort!
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Simple example: stimulated 2s 1s decay

Transition rate in vacuum
 A2s1s~ 8.22 sec-1

CMB ambient photons field
 A2s1s increased by ~1%-2%

 HI - recombination faster 
by ΔNe/Ne ~ 1.3%

2s-1s emission profile
JC & Sunyaev, 2006, A&A 
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 HI - recombination faster 
by ΔNe/Ne ~ 1.3%

2s-1s emission profile
JC & Sunyaev, 2006, A&A 
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Simple example: stimulated 2s 1s decay

Low Frequency 
CMB Photons

Transition rate in vacuum
 A2s1s~ 8.22 sec-1

CMB ambient photons field
 A2s1s increased by ~1%-2%

 HI - recombination faster 
by ΔNe/Ne ~ 1.3%

2s-1s emission profile
JC & Sunyaev, 2006, A&A 

A2s1s /
Z

�(⌫/⌫0)
d⌫

⌫0

Vacuum rate:

A⇤
2s1s /

Z
�(⌫/⌫0)[1 + n(⌫0 � ⌫)][1 + n(⌫)]

d⌫

⌫0

With CMB blackbody:



Processes for the upper levels
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collisions

• recombination & photoionization
- n small   l-dependence not drastic
- high shells  more likely to l<<n
- large n  induced recombination

• many radiative dipole transitions
- Lyman-series optically thick 
-  Δl = ±1  restriction (electron cascade)
- large n & small Δn  induced emission

• n-changing collisions
• Collisional photoionization
• Three-body-recombination

• l-changing collisions   
- help to establish full SE within the shell
- only effective for n > 25-30 



Two-photon emission profile

1s

2s 2p

3s 3p 3d

γ

γ

Seaton cascade (1+1 photon)

No collisions  two photons (mainly 
H-α and Ly-α) are emitted!

Maria-Göppert-Mayer (1931): 
description of two-photon emission 
as single process in Quantum 
Mechanics

Deviations of the two-photon line 
profile from the Lorentzian in the 
damping wings

Changes in the optically thin 
(below ~500-5000 Doppler width) 
parts of the line spectra



3s and 3d two-photon decay spectrum

Lorentzian profile

 HI -recombination is a bit slower due 
to 2γ-transitions from s-states

Lorentzian profile

 HI -recombination is a bit faster due 
to 2γ-transitions from d-states

Direct Escape in optically thin regions:

JC & Sunyaev, A&A, 2008 



2s-1s Raman scattering

1s

2s 2p

3s 3p 3d

γ

γ

Hirata 2008 
JC & Thomas, 2010 

Ly-β

Ly-α

• Computation similar to two-photon 
decay profiles

• collisions weak  ⟹ process needs 
to be modeled as single quantum act

• Enhances blues side of Ly-α line
• associated feedback delays 

recombination around z~900
Figure from: Hirata 2008



Evolution of the HI Lyman-series distortion

JC & Thomas, MNRAS, 2010

 Ly α  Ly β Ly γ

Computation includes all important radiative 
transfer processes (e.g. photon diffusion; 
two-photon processes; Raman-scattering) 



Effect of Raman scattering and 2γ decays

JC & Thomas, MNRAS, 2010

Decreased Ly-n feedback

⇒ delay HI recombination
⇒ result in good agreement 
with Hirata 2008

2s-1s Raman scattering: 
2s + γ → 1s + γ’

Increased Lyβ feedback



Getting Ready for Planck
Hydrogen recombination
• Two-photon decays from higher levels                               

(Dubrovich & Grachev, 2005, Astr. Lett., 31, 359; Wong & Scott, 2007; JC & Sunyaev, 2007; Hirata, 2008; JC & Sunyaev 2009) 

• Induced 2s two-photon decay for hydrogen                                      
(JC & Sunyaev, 2006, A&A, 446, 39; Hirata 2008)

• Feedback of the Lyman-α distortion on the 1s-2s two-photon absorption rate    
(Kholupenko & Ivanchik, 2006, Astr. Lett.; Fendt et al. 2008; Hirata 2008)

• Non-equilibrium effects in the angular momentum sub-states                    
(Rubiño-Martín, JC & Sunyaev, 2006, MNRAS; JC, Rubiño-Martín & Sunyaev, 2007, MNRAS; Grin & Hirata, 2009; JC, Vasil & Dursi, 2010) 

• Feedback of Lyman-series photons (Ly[n]  Ly[n-1])                                        
(JC & Sunyaev, 2007, A&A; Kholupenko et al. 2010; Haimoud, Grin & Hirata, 2010) 

• Lyman-α escape problem (atomic recoil, time-dependence, partial redistribution)                    
(Dubrovich & Grachev, 2008; JC & Sunyaev, 2008; Forbes & Hirata, 2009; JC & Sunyaev, 2009) 

• Collisions and Quadrupole lines                                                                                                     
(JC, Rubiño-Martín & Sunyaev, 2007;  Grin & Hirata, 2009; JC, Vasil & Dursi, 2010;                                                                                                                       
JC, Fung & Switzer, 2011)

• Raman scattering                                                                                                     
(Hirata 2008; JC & Thomas , 2010; Haimoud & Hirata, 2010)

Helium recombination
• Similar list of processes as for hydrogen                                                

(Switzer & Hirata, 2007a&b; Hirata & Switzer, 2007) 

• Spin forbidden 2p-1s triplet-singlet transitions                                             
(Dubrovich & Grachev, 2005, Astr. Lett.; Wong & Scott, 2007; Switzer & Hirata, 2007; Kholupenko, Ivanchik&Varshalovich, 2007) 

• Hydrogen continuum opacity during He I recombination                             
(Switzer & Hirata, 2007; Kholupenko, Ivanchik & Varshalovich, 2007; Rubiño-Martín, JC & Sunyaev, 2007; JC, Fung & Switzer, 2011)

• Detailed feedback of helium photons                                                                               
(Switzer & Hirata, 2007a; JC & Sunyaev, 2009, MNRAS; JC, Fung & Switzer, 2011) ΔNe / Ne ~ 0.1 %



Main corrections during HeI Recombination

Kholupenko et al, 2007
Switzer & Hirata, 2007

Absorption of HeI 
photons by small 
amount of HI

Figure from Fendt et al, 2009



Evolution of the HeI high frequency distortion

JC, Fung & Switzer, 2011

- partially overlapping lines at n>2
- resonance scattering
- electron scattering in kernel approach
- HI absorpion

Triplet of intercombination, 
quadrupole & singlet lines

CosmoRec v2.0 only!



Effect of electron scattering during HeI recombination

Sazonov & Sunyaev, 2000

JC, Fung & Switzer, 2011



Effect of electron scattering during HeI recombination

JC, Fung & Switzer, 2011



Overall effect of detailed HeI radiative transfer

JC, Fung & Switzer, 2011

CosmoRec v2.0 only



Cosmological Recombination Code: CosmoRec

• uses an effective multi-level approach (Haimoud & Hirata, 2010)

• very accurate and fast (for ‘default’ setting ~1.3 sec per model!)

• solves the detailed radiative transfer problem for Ly-n

• no fudging (Recfast) or multi-dimensional interpolation (RICO)

• different runmodes/accuracies implemented

• easily extendable (effect of dark matter annihilation already included)

• was already tested in a wide range of cosmologies 

• now runs smoothly with CAMB/CosmoMC (Shaw & JC, MNRAS, 2011)

• CosmoRec is available at: www.Chluba.de/CosmoRec

http://cosmos.astro.uiuc.edu/rico
http://cosmos.astro.uiuc.edu/rico
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This is where it 
matters most!
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 Comparison with Recfast++            

• change in ‘tilt’ of CMB power 
spectra ↔ width of visibility 
function ↔ ns & Ωbh2

• ‘wiggles’  ↔ change in 
position of last scattering 
surface ↔ Ωbh2

Shaw & JC, MNRAS, 2011
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Importance of recombination for inflation

- 2.1 σ | - 2.8 x 10-4

Planck 143GHz channel forecast

-0.8 σ | - 0.5

-3.2 σ | - 0.012

-1.1 σ | - 0.01

Precise recombination 
history is crucial for 
understanding inflation!
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Shaw & JC, 2011, and references therein



Planck Collaboration, 2013, paper XXII

Importance of recombination for inflation constraints

• Analysis uses refined recombination model (CosmoRec/HyRec)



Planck Collaboration, 2013, paper XXII

Importance of recombination for inflation constraints

• Analysis uses refined recombination model (CosmoRec/HyRec)

Without improved recombination 
modules people would be talking 
about different inflation models!
(e.g., Shaw & JC, 2011)



CMB constraints on Neff and Yp  

Both parameters         
are varied → larger 
uncertainties

• Consistent with SBBN and standard value for Neff

• Future CMB constraints (SPTPol & ACTPol) on Yp will reach 1% level

Planck Collaboration, 2013, paper XV

Planck+WP+highL
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2.0 σ | 1.1 • for 8 parameter case strongest bias in Yp

• different parameter combinations mimic 
the effect of recombination corrections 
on the CMB power spectra

• combination with other cosmological data 
sets and foregrounds will also lead to 
‘reshuffling’ of biases

Shaw & JC, 2011, and references therein

Importance of recombination for measuring helium



 How does the cosmological recombination 
radiation look and how can it help us?



Simple estimates for hydrogen recombination

Hydrogen recombination:

• per recombined hydrogen atom an energy 
 of ~ 13.6 eV in form of photons is released 

• at z ~ 1100  Δε/ε ~ 13.6 eV Nb / (Nγ 2.7kTr) ~ 10-9 -10-8  

 recombination occurs at redshifts z < 104

 At that time the thermalization process doesn’t work anymore!

 There should be some small spectral distortion due to  
additional Ly-α and 2s-1s photons! 

   (Zeldovich, Kurt & Sunyaev, 1968, ZhETF, 55, 278; Peebles, 1968, ApJ, 153, 1) 

 In 1975 Viktor Dubrovich emphasized the possibility to 
observe the recombinational lines from n > 3 and Δn << n!



100-shell hydrogen atom and continuum
CMB spectral distortions

free-bound:
 

- only a few features 
distinguishable

- slope ~ 0.6

bound-bound & 2s:
 

- at ν > 1GHz: distinct 
features 

- slope ~ 0.46

Total:
 

- f-b contributes ~ 30% 
and more

- Balmer cont.  ~ 90%
- Balmer: 1γ per HI
- in total 5γ per HI 

JC & Sunyaev, 2006, A&A, 458, L29 (astro-ph/0608120)



100-shell hydrogen atom and continuum
Relative distortions

Wien-region:
 

- L α and 2s distortions 

 are very strong 
- but CIB more dominant

@ CMB maximum:
 

- relative distortions 
extremely small 

- strong ν-dependence

RJ-region:
 

- relative distortion exceeds 
level of ~ 10-7 below ν ~ 
1-2 GHz 

- oscillatory frequency 
dependence with ~ 1-10 
percent-level amplitude: 

- hard to mimic by known
foregrounds or systematics

14 13

JC & Sunyaev, 2006, A&A, 458, L29 (astro-ph/0608120)
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What about the contributions from helium 
recombination?

• Nuclear reactions: Yp~0.24    NHeI / NH ~8 %    
               expected photon number rather small
• BUT: 
  (i)   two epochs of He recombination 

   HeIIIHeII at z~6000 and HeIIHeI at z~2500
  (ii)  Helium recombinations faster 
         more narrow features with larger amplitude
  (iii) non-trivial superposition 
         local amplification possible
  (iv) reprocessing of HeII & HeI photons by HeI and HI 
 

         increases the number of helium-related photons

 May opens a way to directly measure the 
primordial (pre-stellar!!!) helium abundance!



Semi-forbidden transitions are very important 
for HeI-recombiniation!!!

Grotrian diagram for neutral helium

 Fine-structure transitions



Helium contributions to the cosmological          
recombination spectrum

 Fine-structure absorption features

Rubino-Martin, JC & Sunyaev, 2008
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Features due to presence 
of Helium in the Universe

Changes in the line shape 
due to presence of Helium 
in the Universe

Shifts in the line positions 
due to presence of Helium 
in the Universe

Another way to do CMB-based cosmology!

Direct probe of recombination physics!
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What would we actually learn by doing such hard job?

Cosmological Recombination Spectrum opens a way to measure:
  the specific entropy of our universe (related to Ωbh2)

  the CMB monopole temperature T0

  the pre-stellar abundance of helium Yp



Hydrogen recombination spectrum: 
dependence on Ωbh2

Hα

Pα

Brα

14 13



Hydrogen recombination spectrum: 
dependence on T0

Hα

Pα

Brα

14 13



• CMB based cosmology 
alone

• Spectrum helps to break 
some of the parameter 
degeneracies

• Planning to provide a 
module that computes the 
recombination spectrum in 
a fast way

• detailed forecasts: which 
lines to measure; how 
important is the absolute 
amplitude; how accurately 
one should measure; best 
frequency resolution; 

computations prepared by Chad Fendt
in 2009 using detailed recombination code

Large improvements!



What would we actually learn by doing such hard job?

Cosmological Recombination Spectrum opens a way to measure:
  the specific entropy of our universe (related to Ωbh2)

  the CMB monopole temperature T0

  the pre-stellar abundance of helium Yp

  If recombination occurs as we think it does, then the lines can be predicted   
with very high accuracy! 

  In principle allows us to directly check our understanding of the standard 
recombination physics



Rubiño-Martín, JC & Sunyaev, 2006, astro-ph/0607373
JC, Rubiño-Martín & Sunyaev, 2006, astro-ph/0608242

Difference in the hydrogen spectrum if collisions  
were more efficient

• Lyman- α unchanged

• Balmer-series:
- B α lower for nsplit=2

- for nsplit=2 second peak more 
than 2 times higher

- ratio first to second peak 
decreases from 6  2

• higher series:
- nsplit=2  emission lower



The importance of HI continuum absorption

 Fine-structure absorption features

Rubino-Martin, JC & Sunyaev, A&A, 2008



Changes in the Lyman α escape probability
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3 shell Hydrogen atom

• Changes in Ly α escape 
probability directly translate 
into changes of the CMB 
Ly α distortion

• ΔP/P=10% ⇒ ΔIν/Iν=10%

• Since Ly α line controls 
dynamics of recombination 
also all other lines will be 
affected by this process



What would we actually learn by doing such hard job?

Cosmological Recombination Spectrum opens a way to measure:
  the specific entropy of our universe (related to Ωbh2)

  the CMB monopole temperature T0

  the pre-stellar abundance of helium Yp

  If recombination occurs as we think it does, then the lines can be predicted   
with very high accuracy! 

  In principle allows us to directly check our understanding of the standard 
recombination physics



What would we actually learn by doing such hard job?

Cosmological Recombination Spectrum opens a way to measure:
  the specific entropy of our universe (related to Ωbh2)

  the CMB monopole temperature T0

  the pre-stellar abundance of helium Yp

  If recombination occurs as we think it does, then the lines can be predicted   
with very high accuracy! 

  In principle allows us to directly check our understanding of the standard 
recombination physics

If something unexpected or non-standard happened:



Extra Sources of Ionizations or Excitations

Peebles, Seager & Hu, ApJ, 2000

• ,Hypothetical’ source of extra photons 
parametrized by εα & εi  

• Extra excitations ⇒ delay of Recombination

• Extra ionizations ⇒ affect ‘freeze out’ tail

• From WMAP ⇒ εα < 0.39 & εi < 0.058 at 
95% confidence level (Galli et al. 2008)

• Extra ionizations & excitations should also 
lead to additional photons in the 
recombination radiation!!!

• This in principle should allow us to check for 
such sources at z~1000

• This affects the Thomson visibility function



Dark matter annihilations / decays

JC, 2009, arXiv:0910.3663
•  Additional photons at all frequencies
•  Broadening of spectral features

•  Shifts in the positions



• CMB distortion can be predicted for different energy injection 
histories and mechanisms (e.g. Hu & Silk,1993a&b; Burigana & Salvaterra, 2003)

 Spectral distortions are broad and featureless
 Absolute (COBE-type) measurements are required 

• Different injection histories yield very similar spectral distortion!  
Simplest example: pre- and post-recombinational y-type distortions

- energy release at redshifts 1000 < z < 50000
- SZ-effect e.g. due to unresolved clusters,          

supernova remnants, shockwaves, etc.

Energy injection ⇒ CMB Spectral Distortions

How easy is it actually to learn something 
interesting about the thermal history?

⇒  y-distortion



• CMB distortion can be predicted for different energy injection 
histories and mechanisms (e.g. Hu & Silk,1993a&b; Burigana & Salvaterra, 2003)

 Spectral distortions are broad and featureless
 Absolute (COBE-type) measurements are required 

• Different injection histories yield very similar spectral distortion!  
Simplest example: pre- and post-recombinational y-type distortions

- energy release at redshifts 1000 < z < 50000
- SZ-effect e.g. due to unresolved clusters,          

supernova remnants, shockwaves, etc.

Energy injection ⇒ CMB Spectral Distortions

Absence of narrow spectral features makes it very hard to 
understand real details!!!

How easy is it actually to learn something 
interesting about the thermal history?

⇒  y-distortion



Pre-recombinational atomic transitions after possible 
early energy release

• non-blackbody CMB
     (Lyubarsky & Sunyaev, 1983)

     atoms “try” to restore full 
         equilibrium
     atomic loops develop
        (cont. bound  cont.)
     “splitting” of photons
     cycles mainly end in 
         Lyman-continuum
     Balmer-cont. cycles work       
         just before recombination

• pure blackbody CMB 

  no net emission or absorption of
    photons before recombination epoch!
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CMB spectral distortions after single energy release
25 shell HI and HeII bb&fb spectra: dependence on y

JC & Sunyaev, 2008, astro-ph/0803.3584

Hydrogen Helium +
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CMB spectral distortions after single energy release
25 shell HI and HeII bb&fb spectra: dependence on y

 Large increase in the total amplitude of the distortions with value of y!

 Strong emission-absorption feature in the Wien-part of CMB (absent for y=0!!!)

 HeII contribution to the pre-recombinational emission as strong as the one from 
Hydrogen alone !

JC & Sunyaev, 2008, astro-ph/0803.3584

Hydrogen Helium +



CMB spectral distortions after single energy release
25 shell HI and HeII bb&fb spectra: dependence on z

 Large increase in the total amplitude of the distortions with injection redshift!

 Number of spectral features depends on injection redshift!

 Emission-Absorption feature increases ~2 for energy injection z ⇒11000

JC & Sunyaev, 2008, astro-ph/0803.3584

Hydrogen and Helium +

Value allowed by Cobe/Firas



What would we actually learn by doing such hard job?

Cosmological Recombination Spectrum opens a way to measure:
  the specific entropy of our universe (related to Ωbh2)

  the CMB monopole temperature T0

  the pre-stellar abundance of helium Yp

  If recombination occurs as we think it does, then the lines can be predicted   
with very high accuracy! 

  In principle allows us to directly check our understanding of the standard 
recombination physics

If something unexpected or non-standard happened:
  non-standard thermal histories should leave some measurable traces
  possibility to distinguish pre- and post-recombinational y-type distortions
  sensitive to energy release during recombination epochs



Change of HI distortion because of difference in α
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If something unexpected or non-standard happened:
  non-standard thermal histories should leave some measurable traces
  direct way to measure/reconstruct the recombination history!
  possibility to distinguish pre- and post-recombinational y-type distortions
  sensitive to energy release during recombination epochs
  variation of fundamental constants



What would we actually learn by doing such hard job?

Cosmological Recombination Spectrum opens a way to measure:
  the specific entropy of our universe (related to Ωbh2)

  the CMB monopole temperature T0

  the pre-stellar abundance of helium Yp

  If recombination occurs as we think it does, then the lines can be predicted   
with very high accuracy! 

  In principle allows us to directly check our understanding of the standard 
recombination physics

If something unexpected or non-standard happened:
  non-standard thermal histories should leave some measurable traces
  direct way to measure/reconstruct the recombination history!
  possibility to distinguish pre- and post-recombinational y-type distortions
  sensitive to energy release during recombination epochs
  variation of fundamental constants

This would open a new way to constrain cosmological models
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Other extremely interesting new signals

• Scattering signals from the dark ages 
(e.g., Basu et al., 2004; Hernandez-Monteagudo et al., 2007; Schleicher et al., 2009)

- constrain abundances of chemical elements at high redshift

- learn about star formation history

• Rayleigh / HI scattering signals
(e.g., Yu et al., 2001; Rubino-Martin et al., 2005; Lewis 2013)

- provides way to constrain recombination history

- important when asking questions about Neff and Yp

• Free-free signals from reionization
(e.g., Burigana et al. 1995; Trombetti & Burigana, 2013)

- constrains reionization history

- depends on clumpiness of the medium

Rayleigh scattering 

Constraints on various elements

All these effects give spectral-spatial 
signals, and an absolute spectrometer 
will help with channel cross calibration!



Physical mechanisms that lead to spectral distortions

• Cooling by adiabatically expanding ordinary matter                                                                     

(JC, 2005; JC & Sunyaev 2011; Khatri, Sunyaev & JC, 2011)

• Heating by decaying or annihilating relic particles                                                       
(Kawasaki et al., 1987; Hu & Silk, 1993; McDonald et al., 2001; JC, 2005; JC & Sunyaev, 2011; JC, 2013; JC & Jeong, 2013)

• Evaporation of primordial black holes & superconducting strings                                                                            
(Carr et al.  2010; Ostriker & Thompson, 1987; Tashiro et al. 2012; Pani & Loeb, 2013)

• Dissipation of primordial acoustic modes & magnetic fields                                                                
(Sunyaev & Zeldovich, 1970; Daly 1991; Hu et al. 1994; JC & Sunyaev, 2011; JC et al. 2012 - Jedamzik et al. 2000; Kunze & Komatsu, 2013)

• Cosmological recombination radiation                                                                     
(Zeldovich et al., 1968; Peebles, 1968; Dubrovich, 1977; Rubino-Martin et al., 2006; JC & Sunyaev, 2006; Sunyaev & JC, 2009)

•                                                                                  

• Signatures due to first supernovae and their remnants                                        
(Oh, Cooray & Kamionkowski, 2003)

• Shock waves arising due to large-scale structure formation                                    
(Sunyaev & Zeldovich, 1972; Cen & Ostriker, 1999)

• SZ-effect from clusters; effects of reionization                                                              
(Refregier et al., 2003; Zhang et al. 2004; Trac et al. 2008)

• more exotic processes                                                                                          
(Lochan et al. 2012; Bull & Kamionkowski, 2013; Brax et al., 2013; Tashiro et al. 2013)
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Conclusions

• CMB spectral distortions will open a new window to 
the early Universe

• new probe of the inflation epoch and particle physics

• complementary and independent source of 
information not just confirmation

• in standard cosmology several processes lead to 
early energy release at a level that                         
will be detectable in the future

• extremely interesting future for                            
CMB-based science!

We should make use of 
all this information!


