

Radio to infrared spectra of late-type galaxies with Planck and WMAP data

M. Peel, C. Dickinson, R. Davies, R. Beswick Jodrell Bank Centre for Astrophysics, University of Manchester D. Clements Imperial

2 July 2012

Overview

- Motivation
- Emission components and data
- Individual galaxies
 - M82
 - NGC253
 - NGC4945
- Conclusion

Motivation

- Measure total emission of late type galaxies to compare with the Milky Way
- First time we can accurately measure the complete spectra from radio to infrared
- Quantify free-free emission, match with star formation rate
- Constrain AME on a global basis is it everywhere, or patchy?

NGC6946

- GBT (Murphy et al. 2010)
- I0 star-forming regions only I anomalous
- Confirmed by AMI (Scaife et al. 2010)

Our Galaxy

 Expect 30GHz AME emission to be around I/3000th of the I00µm emission

The sample

M82

HST optical (green) Spitzer infrared (red) Chandra X-ray (blue) (Public Domain)

NGC4945

Optical, MPG/ESO 2.2m at La Silla (CC-BY-3.0 ESO)

NGC253

Optical with VISTA (CC-BY-3.0 ESO)

Emission components

 Galactic emission between I and I000 GHz is a mix of (steepening) synchrotron, freefree, anomalous dust and thermal dust

$$S(\nu) = A_{\rm sync} \nu^{\alpha} + S_{\rm ff} + \frac{A_{\rm dust}h}{k} \frac{\nu^{\beta+3}}{\exp(h\nu/kT_{\rm dust}) - 1}$$
$$S_{\rm ff} = 2 \times 10^{26} k T_{\rm e} (1 - e^{-\tau_{\rm ff}}) \Omega \nu^2 c^{-2}$$
$$\tau_{\rm ff} = 3.014 \times 10^{-2} T_{\rm e}^{-1.5} \nu^{-2} \, \text{EM}_{\rm ff} \, g_{\rm ff}$$

Data

Planck ERCSC at 28.5-857 GHz

Planck Collaboration (2011). 3-7% cal uncertainty; colour corrections applied. Exclude 100 and 217 GHz due to CO.

WMAP 7-yr catalogue at 22.3-93.5 GHz Gold et al. (2011). 3% cal uncertainty, colour corrections applied (Jarosik et al. 2003).

IRAS 100um

Wang & Rowan-Robinson (2009). I 3% uncertainty. Don't use higher frequency data due to small dust grains.

Ancillary radio data

Many references; most found via NED. 5% uncertainty; only fit to data above 1.5GHz due to sync. ageing & free-free absorption.

The sample

Fit values

Parameter	M82	NGC253	NGC4945
A _{sync} []y]	14.9±2.9	. ±4.3	2.3±3.
α _{sync}	-1.11±0.13	-1.59±0.35	-1.15±0.20
EM _{ff}	920±110	284±17	492±81
β_{dust}	2.10±0.13	1.96±0.11	2.5±0.2
T _{dust} (K)	24.8±1.9	22.6±1.3	8.9± .
Residual (30)	<0.15 Jy	<0.14 Jy	<0. 3 Jy
100µm/3000	0.36 Jy	0.5 Jy	0.4 Jy

NB: high-frequency synchrotron index, hence steeper than low frequency end.

Residuals all consistent with zero.

Hint of AME in NGC 4945?

Star Formation Rates

SFR (M₀/yr)	M82	NGC253	NGC4945
Sync	2.6	I.3	2.7
Free-free	3.0	2.2	2.9
Radio SN	I.8-2.0	_	
RRL	_	_	2-8
Niklas (1997)	<0.2	1.0	-

Using formulae from Condon (1992)

Conclusions

- Find substantially more free-free emission
- Higher FF brings SFR into better agreement
- AME constraints lower than expected c.f. our Galaxy - supports 'patchy' AME
- Cold dust with high β (but degeneracies)
- Need to improve modelling of synchrotron and dust (simplistic approach taken here)
- Need more sources next Planck catalogue? Also more data from ground-based telescopes (RRLs particularly useful).

Thanks for listening!

Questions?

For more info, see: MNRAS Letters, 416, 99 arXiv:1105.6336