ATCA Observations of RCW 49: is it anomalous microwave emission ?

Roberta Paladini (NHSC/Caltech)

and

<u>Claudia Agliozzo (OACT)</u> <u>Adriano Ingallinera (OACT)</u> Corrado Trigiglio (OACT) Grazia Umana (OACT) Clive Dickinson (University of Manchester) Maxim Voronkov (ATNF) Christopher Tibbs (IPAC/Caltech) Alberto Noriega-Crespo (IPAC/Caltech)

Before ATCA observations....

CBI data @ 31 GHz : Dickinson et al. 2007

Anomalous Emission meeting - Manchester, UK - 2012

Motivations - I

- \rightarrow AME is detected in several HII regions (RCW 49, RCW 175, etc..)
- → according to models (e.g Draine & Lazarian 1998a, b) warm plasma appears to provide favorable environment for the AME
- → <u>however</u>: the interior of HII regions is typically depleted of small grains (e.g. Povich et al. 2007, Draine 2011)
- → Tibbs et a. (2012) analysis of RCW 175 shows that AME is not correlated with abundance of small grains
- → Q: can the observed microwave excess in HII regions be attributed to spinning dust ? Or is this another mechanism ?

Motivations - II

Recent Spitzer/GLIMPSE (i.e. IRAC) observations

Whitney et al. 2004

The ATCA observations

The ATCA observations (December 2008 – February 2009) have been designed to overlap with the area covered by the CBI data, i.e. an area of 7.8' X 5.6' centered on the core of RCW 49. In particular:

• radio continuum -> 6 cm, 1.2 cm, 8.8 mm

(i.e. 5 GHz, 19 GHz, 34 GHz)

• configurations -> 6 cm: 1.5km (1.5C)

1.6 cm / 8.8 mm: 352m (EW352)

• RRLs observations: 6 cm (H109 α)

RRLs observations I – recap of observations

∨ (GHz)	RRL	∆v (km/s)
5.008	H109 α	1.875

RRLs observations II – analysis

Region	v _∟ (MHz)	FWHM (km/s)	v (km/s)	т _е * (К)
В	5008.7	9.2	14.5	5731
С	5009.0	3.1	-4.1	15758
D	5008.7	12.4	14.5	3965
all	5008.8	15.1	10.3	6901

$$T_{e}^{*} = \left[6943\nu^{1.1} \frac{S_{C}}{S_{L}\Delta V} \left(\frac{1}{1+Y^{*}} \right) \left(\frac{\tau_{C}}{e^{\tau_{C}} - 1} \right) \right]^{0.8}$$

Roelfsema & Goss 1992

Since:
$$\tau_{c} = 8.24 \cdot 10^{-2} T_{e}^{-1.35} \left(\frac{v}{5GHz}\right)^{-2.1} EM$$
 and $n_{e} \approx \sqrt{\frac{EM}{l}} \longrightarrow$
(I ~ 2 pc) EM ~ 681 pc/cm⁶

Radio continuum I – recap of observations

Obs. date	∨ (GHz)	ATCA conf.	Integ. Time (hrs)	Synt. Beam (")	I _{max} 10 ⁻³ Jy/ beam	rms 10 ⁻³ Jy/ beam
archive	1.4	1.5B	~10	24.8 X 17.4	2151	7
Dec. 2008	5	750B	10.9	7.3 X 7.3*	295*	6*
Jan. 2009	5	1.5C	10.4	7.3 X 7.3*	295*	6*
Feb. 2009	19	EW352	10.1	8.4 X 6.1	175.4	1.2
Feb. 2009	34	EW352	10.4	8.3 X 4.2	28	1

* Values refer to concatenated map: 750B + 1.5C

Radio continuum II – the maps

Whiteoak & Uchida 1997

Radio continuum III – analysis of <u>low frequency</u> maps: 1.4 and 5 GHz

- 1. The RRL analysis excludes the presence of UCHII regions (at least along the "bridge")
- We have used a canonical free-free spectral index -0.1 to extrapolate the 1.4 GHz map to 5 GHz (but we will come back on this point later). NOTE: -0.1 is consistent with Dickinson et al. 2007 (they find -0.11+/-0.13 between 2.7 GHz and 8.9 GHz)
- 3. We have concatenated in the uv plane the 1.4 GHz data (extrapolated to 5 GHz) and the 5 GHz data

Anomalous Emission meeting - Manchester, UK - 2012

1.4/5 GHz maps: concatenation result

ATCA 1.4 GHz + 5 GHz

IRAC 8 μ m

Radio continuum III – analysis of <u>high frequency</u> maps: 19 and 34 GHz

Spectral index map: we did try to make one..

- 1. By filtering spatial frequencies in uv-plane for 1.4 and 5 GHz maps
- 2. By convolving the 5 GHz to the 1.4 GHz resolution
- 3. By then fitting a power-law for each pixel in the map

BUT

Interferometer acts as a high-pass filter→ spectral index map is not fully reliable (at least, at present – more simulations needed)

Summary

- → The on-going analysis of ATCA observations of the core of RCW 49 shows a possible excess of emission at 34 GHz at RA = 10:23:58, DEC = -57:47:0.3
- →ATCA RRLs observations appear to exclude that the origin of this excess can be attributed to inverted free-free (i.e. UCHII)
- → However, uncertainties due to the impossibility of performing an accurate spectral index analysis have to be taken into account
- → We have coming OT2 Herschel (PACS & SPIRE) observations (coming up (SPIRE already observed / June 23rd 2012)... stay tuned !