SMC Revisited

Conclusion

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Supplement

Magnetic Dipole Emission from Interstellar Grains

Brandon Hensley Bruce T. Draine

Department of Astrophysical Sciences Princeton University

> AME Workshop July 2, 2012

The Sub-mm Excess	Magnetic Dipole Emission	SMC Revisited	Conclusion	Supplement
Outline				

Magnetic Dipole Emission

Theory of Magnetic Dipole Emission Observational Properties

SMC Revisited

Fitting the SED Astrophysical Origins of Grains

Conclusion

Supplement

- Draine, B. T. and Hensley, B. 2012a "Magnetic Nanoparticles in the Interstellar Medium: Emission Spectrum and Polarization", Submitted to ApJ, arXiv:1205.7021v2
- Draine, B. T. and Hensley, B. 2012b "The Submm and mm Excess of the SMC: Magnetic Dipole Emission from Magnetic Nanoparticles?" Submitted to ApJ, arXiv:1205.6810v1

The Sub-mm Excess	Magnetic Dipole Emission	SMC Revisited	Conclusion	Supplement
The SMC				

 The SMC has been studied from the NIR to cm wavelengths, including recent mm and sub-mm measurements by Planck

ESA/NASA/JPL-Caltech/STScI

SMC Revisited

Conclusion

Supplement

SMC SED

We decompose into emission from the CMB, free-free, and synchrotron

SMC Revisited

Conclusion

Supplement

SMC SED

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 の々で

SMC Revisited

Conclusion

Supplement

3

Fitting Dust Models

Milky Way in the sub-mm and mm

 Draine and Li 2007 model works well for our Galaxy at sub-mm and mm wavelengths

SMC Revisited

Conclusion

Supplement

ъ

Fitting Dust Models

- Best fit Draine and Li 2007 model with a spinning dust component
- Insufficient 60 300 GHz emission, violates abundance constraints

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Fitting Dust Models

- Models that respect abundance constraints produce even poorer fits
- Likewise, Plank Collaboration 2011 was unable to fit the emission with cold dust or spinning dust alone

SMC Revisited

Conclusion

Supplement

Magnetic Materials

- Ferromagnetic materials, such as metallic Fe, have all unpaired spins aligned along a preferred axis
- Ferrimagnetic materials, such as magnetite and maghemite, are made up of two spin lattices with opposing but unequal magnetic moments

SMC Revisited

Conclusion

Supplement

Magnetic Materials

- Ferromagnetic materials, such as metallic Fe, have all unpaired spins aligned along a preferred axis
- Ferrimagnetic materials, such as magnetite and maghemite, are made up of two spin lattices with opposing but unequal magnetic moments

SMC Revisited

Conclusion

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Supplement

Magnetic Dipole Emission

- Preferred direction of magnetization implies a minimum energy state with all unpaired spins aligned along preferred direction
- Thermal excitations can move the spins away from this state
- Then magnetization vector precesses about the preferred direction and produces radiation

Magnetic Dipole Emission

SMC Revisited

Conclusion

Supplement

Magnetic Dipole Emission

Response to an excitation

SMC Revisited

Conclusion

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Supplement

Modeling the Emission

Gilbert Equation

$$\frac{d\vec{M}}{dt} = \gamma \vec{M} \times \vec{H}_{T} + \alpha_{\rm G} \frac{\vec{M}}{|\vec{M}|} \times \frac{d\vec{M}}{dt}$$

- First term describes precession of the magnetization about the fictitious "effective field" H
 _T
- ► Second term describes the relaxation of the magnetization toward minimum energy solution (i.e. M and H
 ^T parallel)

SMC Revisited

Conclusion

Supplement

Absorption Cross-Sections

- Absorption cross-section per volume for metallic Fe spheres
- Sub-mm and mm absorption much stronger than amorphous silicate grains

Δ

SMC Revisited

Conclusion

Supplement

Emissivities

- Emissivity per unit volume of 0.01µm grains heated to 18K
- Emissivity in mm and sub-mm much stronger than amorphous silicate grains

900

SMC Revisited

Conclusion

・ロット 小型マネ ヨマイロマ

ъ

Supplement

Fitting a Model with Magnetic Grains

Model with 40K Fe grains

SMC Revisited

Conclusion

A B > A B > A B >

э.

Supplement

Fitting a Model with Magnetic Grains

Model with 20K Fe grains

SMC Revisited

Conclusion

・ ロ ト ・ 雪 ト ・ 目 ト ・

э.

Supplement

Fitting a Model with Magnetic Grains

Model with 17K magnetite grains

SMC Revisited

Conclusion

・ ロ ト ・ 雪 ト ・ 目 ト ・

э.

Supplement

Fitting a Model with Magnetic Grains

Model with 17K maghemite grains

SMC Revisited

Conclusion

Supplement

Fitting a Model with Magnetic Grains

 Models of the SMC emission can be constructed from any or all of these three materials assuming reasonable adundances

	Total Dust	Magnetic Fe	
	$(10^5 M_{\odot})$	$(10^5 M_{\odot})$	comment
Abundance limit	≤10.7	≤ 2.3	
Model 1: DL07 dust, $U_{\min} \ge 0.2$	13.	-	violates limit
Model 2: DL07 dust, $U_{\min} \ge 0.5$	9.7	-	very poor fit
Model 3: DL07 dust + 40 K Fe	8.3	1.4	OK
Model 4: DL07 dust + 20 K Fe	10.2	2.2	OK
Model 5: DL07 dust + 17 K γ -Fe ₂ O ₃	9.4	2.2	OK
Model 6: DL07 dust + 17 K Fe ₃ O ₄	7.2	2.2	OK

^a Fe mass in magnetic material

^b for $M_{\rm H} = 4.7 \times 10^8 M_{\odot}$ and $Z = 0.25 Z_{\odot}$

Magnetic Dipole Emission

SMC Revisited

Conclusion

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Supplement

Polarization

 Polarization depends on whether grains are free-fliers or inclusions in larger grains

Magnetic Dipole Emission

SMC Revisited

Conclusion

Supplement

Free-Fliers

Magnetic Dipole Emission

SMC Revisited

Conclusion

Supplement

Inclusions

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへぐ

The	Sub	-mm	Excess

SMC Revisited

Conclusion

Supplement

Polarization

- Predicted decrease in polarization from 500 to 50 GHz
- Possibly observable effect, but many contributing sources complicate interpretation

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Possible Sources of Fe Grains

- Fe inclusions observed in lunar soil grains and interplanetary dust particles
- Low metallicity AGB stars with excess IR emission attributed to metallic Fe
- Grains in ISM result from balance between formation and destruction
- Sputtering leaves grain surfaces enriched in heavy elements, like Fe
- Fe-rich Supernova ejecta

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Summary

- A new grain component is likely present in ISM
- Ferro/ferrimagnetic materials in the ISM will produce magnetic dipole radiation
- This emission can explain sub-mm excess in SMC

SMC Revisited

Conclusion

Supplement

Magnetic Grains in the Milky Way

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ ○ < ○

SMC Revisited

Conclusion

Supplement

Magnetic Grain Temperatures

SMC Revisited

Conclusion

Supplement

Polarization of Dust Emission

- If carbonaceous grains are relatively unpolarized, then the polarization fraction is expected to increase at longer wavelengths (Models 1 and 3)
- The presence of two grain populations would complicate the interpretation of polarization data at long wavelengths

SMC Revisited

Conclusion

Supplement

Polarization of Free-flying Grains

The polarization fraction will depend upon the degree of alignment of the angular momentum vector with the magnetic field

200