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The Sub-mm Excess

The SMC

» The SMC has been studied from the NIR to cm
wavelengths, including recent mm and sub-mm
measurements by Planck

ESA/NASA/JPL-Caltech/STScl




The Sub-mm Excess

SMC SED
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» We decompose into emission from the CMB, free-free, and
synchrotron



The Sub-mm Excess

SMC SED
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The Sub-mm Excess

Fitting Dust Models

Milky Way in the sub-mm and mm
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» Draine and Li 2007 model works well for our Galaxy at
sub-mm and mm wavelengths



The Sub-mm Excess

Fitting Dust Models
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» Best fit Draine and Li 2007 model with a spinning dust
component

» Insufficient 60 - 300 GHz emission, violates abundance
constraints



The Sub-mm Excess

Fitting Dust Models

» Models that respect abundance constraints produce even
poorer fits

» Likewise, Plank Collaboration 2011 was unable to fit the
emission with cold dust or spinning dust alone



Magnetic Dipole Emission
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Magnetic Materials

» Ferromagnetic materials,
such as metallic Fe, have
all unpaired spins aligned
along a preferred axis

» Ferrimagnetic materials,
such as magnetite and
maghemite, are made up
of two spin lattices with
opposing but unequal
magnetic moments

Ferromagnetic spin lattice
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Magnetic Materials

» Ferromagnetic materials,
such as metallic Fe, have
all unpaired spins aligned
along a preferred axis

» Ferrimagnetic materials, - = —
such as magnetite and
maghemite, are made up
of two spin lattices with
opposing but unequal
magnetic moments

Ferrimagnetic spin lattice




Magnetic Dipole Emission
00800

Magnetic Dipole Emission

» Preferred direction of magnetization implies a minimum
energy state with all unpaired spins aligned along preferred
direction

» Thermal excitations can move the spins away from this
state

» Then magnetization vector precesses about the preferred
direction and produces radiation
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Magnetic Dipole Emission

Response to an excitation
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Modeling the Emission

» Gilbert Equation

dM ¥ x Hir + M Xdl\7[
am _ ac M
AV TN

» First term describes precession of the magnetization about
the fictitious “effective field” Hr

» Second term describes the relaxation of the magnetization
toward minimum energy solution (i.e. M and Hy parallel)
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Absorption Cross-Sections
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Emissivities

» Emissivity per unit
volume of 0.01m
grains heated to 18K

» Emissivity in mm
and sub-mm much
stronger than
amorphous silicate
grains
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Fitting a Model with Magnetic Grains
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» Model with 40K Fe grains
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Fitting a Model with Magnetic Grains
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» Model with 20K Fe grains
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Fitting a Model with Magnetic Grains

v(GHz)= 500 30‘0 2?0 1(‘)0 5‘0 3‘0 2‘0

Alsrael et al. 2010
¢ Gordon et al. 2011
\ vPlanck etal 2011

APlanck etal 2011

(AHI foreground corr.)

r SMC
10 F4.2x10°Mg=Myp, 5,4
[ R.2x105My =M,

108

F, (Jy)

107

105

\
spinning dust \ 7

. ‘ ‘ AFL,(4OGH‘2):3J}/\4/

10 102 103 104
A(pm)
Draine and Hensley 2012b

» Model with 17K magnetite grains
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Fitting a Model with Magnetic Grains
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» Model with 17K maghemite grains
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Fitting a Model with Magnetic Grains

» Models of the SMC emission can be constructed from any
or all of these three materials assuming reasonable

adundances
Total Dust Magnetic Fe
(10°Mp) (10°Mp) comment
Abundance limit <10.7 <23
Model 1: DLO7 dust, Unin > 0.2 13. - violates limit
Model 2: DLO7 dust, Unin > 0.5 9.7 - very poor fit
Model 3: DLO7 dust + 40K Fe 8.3 1.4 OK
Model 4: DLO7 dust + 20K Fe 10.2 2.2 OK
Model 5: DLO7 dust + 17 K y-Fe»03 9.4 2.2 OK
Model 6: DLO7 dust + 17K Fe304 7.2 2.2 OK

@ Fe mass in magnetic material
bfor My = 4.7 x 108M and Z = 0.25Z,
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Polarization

» Polarization depends on whether grains are free-fliers or
inclusions in larger grains



Free-Fliers
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Inclusions
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Polarization

> PrediCted decrease in Draine and Hensley 2012a
polarization from 500 to 50
GHz

» Possibly observable effect,
but many contributing
sources complicate
interpretation
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Possible Sources of Fe Grains

» Fe inclusions observed in lunar soil grains and
interplanetary dust particles

» Low metallicity AGB stars with excess IR emission
attributed to metallic Fe

» Grains in ISM result from balance between formation and
destruction

» Sputtering leaves grain surfaces enriched in heavy
elements, like Fe

» Fe-rich Supernova ejecta



Conclusion

Summary

» A new grain component is likely present in ISM

» Ferro/ferrimagnetic materials in the ISM will produce
magnetic dipole radiation

» This emission can explain sub-mm excess in SMC
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Magnetic Grains in the Milky Way
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Magnetic Grain Temperatures
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Polarization of Dust Emission

» If carbonaceous
grains are relatively
unpolarized, then 15 |- ———— mods
the polarization
fraction is expected
to increase at longer
wavelengths
(Models 1 and 3)

» The presence of two
grain populations
would complicate . Y
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Polarization of Free-flying Grains

» The polarization e
fraction will depend A ’Smgle*DJoinaijlﬁzgziic
upon the degree of ’
alignment of the
angular momentum
vector with the
magnetic field
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